分数表示一个数是另一个数的几分之几,或一个事件所有事件的比例。把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。
加减法
1、同分母分数相加减,分母不变,即分数单位不变,分子相加减,能约分的要约分。
例1:2/9+5/9=(2+5)/9=7/9
例2:1/8+3/8=(1+3)/8=4/8=1/2
例3:5/9-1/9=(5-1)/9=4/9
例4:3/4-1/4=(3-1)/4=2/4=1/2
2.异分母分数相加减,先通分,即运用分数的基本性质将异分母分数转化为同分母分数,改变其分数单位而大小不变,再按同分母分数相加减法去计算,最后能约分的要约分。
例1:3/4+5/7=21/28+20/28=(21+20)/28=41/28
例2:5/24+1/8=5/24+3/24=(5+3)/24=8/24=1/3
例3:7/8-1/4=7/8-2/8=(7-2)/8=5/8
例4:8/15-1/5=8/15-3/15=(8-3)/15=5/15=1/3
乘除法
1、分数乘整数,分母不变,分子乘整数,最后能约分的要约分。
例1:4/5×3=(4×3)/5=12/5
例2:3/22×2=(3×2)/22=6/22=3/11
2.分数乘分数,用分子乘分子,用分母乘分母,最后能约分的要约分。
例1:5/6×1/3=5×1/(6×3)=5/18
例2:2/5×1/4=(2×1)/(5×4)=2/20=1/10
3.分数除以整数,分母不变,如果分子是整数的倍数,则用分子除以整数,最后能约分的要约分。
例1:4/15÷2=(4÷2)/15=2/15
例2:42/30÷7=(42÷7)/30=6/30=1/5
4.分数除以整数,分母不变,如果分子不是整数的倍数,则用这个分数乘这个整数的倒数,最后能约分的要约分。
例1:3/8÷2=3/8×1/2=(3×1)/(8×2)=3/16
例2:4/5÷6=4/5×1/6=(4×1)/(5×6)=4/30=2/15
5.分数除以分数,等于被除数乘除数的倒数,最后能约分的要约分。
例1:2/3÷3/4=2/3×4/3=(2×4)/(3×3)=8/9
例2:2/15÷1/3=2/15×3=(2×3)/15=6/15=2/5
更多相关文章推荐:
1.关于数学手抄报图片
2.三年级数学手抄报内容:百分数应用题
3.三年级趣味数学手抄报内容
4.数学手抄报内容:分数除法
5.三年级数学手抄报内容:关于数学的小故事
6.三年级上册数学手抄报
7.数学手抄报三年级上册
8.三年级数学手抄报:生活中的数学
9.数学手抄报三年级下册