小学六年级上册数学手抄报图片

发布时间:2017-01-06 编辑:dcl

抽象代数

抽象代数是研究各种抽象的公理化代数系统的数学学科。由于代数可处理实数与复数以外的物集,例如向量(vector)、矩阵(matrix)、变换(transformation)等,这些物集的分别是依它们各有的演算定律而定,而数学家将个别的演算经由抽象手法把共有的内容升华出来,并因此而达到更高层次,这就诞生了抽象代数。抽象代数,包含有群(group)、环(ring)、Galois理论、格论等许多分支,并与数学其它分支相结合产生了代数几何、代数数论、代数拓扑、拓扑群等新的数学学科。抽象代数已经成了当代大部分数学的通用语言。

创始人

被誉为天才数学家的Galois(1811-1832)是近世代数的创始人之一。他深入研究了一个方程能用根式求解所必须满足的本质条件,他提出的“Galois域”、“Galois群”和“Galois理论”都是近世代数所研究的最重要的课题。Galois群理论被公认为十九世纪最杰出的数学成就之一。他给方程可解性问题提供了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题。Galois群论还给出了判断几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的问题都是不可解的。最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响。同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义哲学的产生和发展都发生了巨大的影响。

1843年,Hamilton发明了一种乘法交换律不成立的代数——四元数代数。第二年,Grassmann推演出更有一般性的几类代数。1857年,Cayley设计出另一种不可交换的代数——矩阵代数。他们的研究打开了抽象代数(也叫近世代数)的大门。实际上,减弱或删去普通代数的某些假定,或将某些假定代之以别的假定(与其余假定是兼容的),就能研究出许多种代数体系。

1870年,Kronecker给出了有限Abel群的抽象定义;Dedekind开始使用“体”的说法,并研究了代数体;1893年,韦伯定义了抽象的体;1910年,施坦尼茨展开了体的一般抽象理论;Dedekind和Kronecker创立了环论;1910年,施坦尼茨总结了包括群、代数、域等在内的代数体系的研究,开创了抽象代数学。

奠基人

有一位杰出女数学家被公认为抽象代数奠基人之一,被誉为"代数女皇",她就是Emmy Noether, 1882年3月23日生于德国埃尔朗根,1900年入埃朗根大学,1907年在数学家哥尔丹指导下获博士学位。Noether的工作在代数拓扑学、代数数论、代数几何的发展中有重要影响。1907-1919年,她主要研究代数不变式及微分不变式。她在博士论文中给出三元四次型的不变式的完全组。还解决了有理函数域的有限有理基的存在问题。对有限群的不变式具有有限基给出一个构造性证明。她不用消去法而用直接微分法生成微分不变式,在格丁根大学的就职论文中,讨论连续群(Lie群)下不变式问题,给出Noether定理,把对称性、不变性和物理的守恒律联系在一起。1920~1927年间她主要研究交换代数与交换算术。1920年,她已引入“左模”、“右模”的概念。1921年写出的<<整环的理想理论>>是交换代数发展的里程碑。建立了交换Noether环理论,证明了准素分解定理。1926年发表<<代数数域及代数函数域的理想理论的抽象构造>>,给Dedekind环一个公理刻画,指出素理想因子唯一分解定理的充分必要条件。Noether的这套理论也就是现代数学中的“环”和“理想”的系统理论,一般认为抽象代数形式的时间就是1926年,从此代数学研究对象从研究代数方程根的计算与分布,进入到研究数字、文字和更一般元素的代数运算规律和各种代数结构,完成了古典代数到抽象代数的本质的转变。Noether当之无愧地被人们誉为抽象代数的奠基人之一。1927-1935年,Noether研究非交换代数与非交换算术。她把表示理论、理想理论及模理论统一在所谓“超复系”即代数的基础上。后又引进交叉积的概念并用决定有限维Galois扩张的布饶尔群。最后导致代数的主定理的证明,代数数域上的中心可除代数是循环代数。

1930年,毕尔霍夫建立格论,它源于1847年的bool代数;第二次世界大战后,出现了各种代数系统的理论和Bourbaki学派;1955年,Cartan和Elienberg合著了《同调代数》。