数学基础(Foundation of Mathematics)是研究整个数学的理论基础及其相关问题的一个专门学科,即研究数学的基础,回答“数学是什么?”,“数学的基础是什么?”,“数学是否和谐?”等等一些数学上的根本问题的学科。对于直觉主义、逻辑主义和形式主义的异同,可以追溯到近代哲学家康德对数学本质的思考。康德认为算术来自先验主体对时间纯形式的直观,几何则是对空间纯形式的直观。这实质上是一种由主观而客观的思路。康德的思想后来又在胡塞尔那里得到继承和发展。胡塞尔就是从考虑“数在哪里”的问题提出现象学还原方法的。
现状
数学上,数学基础一词有时候用于数学的特定领域,例如数理逻辑,公理化集合论,证明论,模型论,和递归论。但是寻求数学的基础也是数学哲学的中心问题:在什么终极基础上命题可以称为真?
占统治地位的数学范式是基于公理化集合论和形式逻辑的。事实上,所有的数学定理都可以用集合论的定理表述。数学命题的真实性在这个观点下,不过就是该命题可以从集合论公理使用形式逻辑推导出来。
这个形式化的方法不能解释一些问题:为什么我们选择我们所用的而不是其他的公理,为什么我们使用我们所用的逻辑规则而不是其他的,为什么"真"数学命题(例如,算数的皮亚诺公理)在物理世界中似乎是真的。这被Eugene Wigner在1960年叫做“数学在自然科学中无理由的有效性”(The unreasonable effectiveness of mathematics in the natural sciences)。
上述的形式化真实性也可能完全没有意义:完全可能所有命题,包括自相矛盾的命题,都可以从集合论公理导出。而且,作为歌德尔第二不完备定理的一个结果,我们永远不可能知道事情是不是就是这样。
在数学现实主义(有时也叫柏拉图主义)中,独立于人类的数学对象的世界的存在性被作为一个基本假设;这些对象的真实性由人类发现。在这种观点下,自然定律和数学定律有同样的地位,而"有效性"不再"无理由"。不仅是我们的公理,而且是数学对象的真实世界构成了基础。那么,明显的问题在于,我们如何接触这个世界?
一些数学哲学的现代理论不承认基础在其原始意义上的存在性。有些理论倾向于聚焦于数学实践,把目标设定于描述和分析数学家作为社交群体的真实工作。其他的试图创造一个数学认知科学,聚焦于把人类的认知作为数学应用到"现实世界"时的可靠性的起点。这些理论建议只在人类的思考中找到基础,而不是任何"客观"的外在构造。这个主题一直很有争论性。