《平均数》数学教案

时间:2022-03-23 09:19:59 数学教案 我要投稿

《平均数》数学教案(精选8篇)

  作为一名专为他人授业解惑的人民教师,常常要写一份优秀的教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么什么样的教案才是好的呢?以下是小编整理的《平均数》数学教案(精选8篇),供大家参考借鉴,希望可以帮助到有需要的朋友。

《平均数》数学教案(精选8篇)

  《平均数》数学教案 篇1

  教学目标:

  1、初步建立平均数的基本思想(即移多补少的统计思想),理解平均数的概念和掌握简单的求平均数的方法。

  2、在动手操作,自主探索与合作交流中学会用数学的思想方法解决生活中的有关平均数的问题,增强数学应用意识。

  3、体会数学源于生活,服务于生活,培养创新精神和探究意识。

  教学重点:

  理解平均数的含义,掌握简单的求平均数的方法。

  教学难点:

  理解平均数的含义,切实掌握平均数的实际意义。

  教具准备:

  课件,用来操作的圆片若干。

  教学过程:

  一、创设情境,引发争论

  师:今天的数学学习咱们从一个故事说起,话说一个老猴子在桃树上摘了12个桃子,回家后叫来了三只小猴子分桃子给他们,猴一一7个,猴二4个,猴三1个。

  问:对于老猴子分桃这件事,你有什么话想说吗?

  生:不公平师:为何不公平?板:不一样多

  师:如果我们用小圆片代替桃子贴图:7、4、1个圆片,请同学们仔细观察,能用哪些方法可以使每组个数一样多?

  方法:移多补少。

  师:谁还有不同的方法?引出计算方法:(7+4+1)÷3=4(个)

  小结:同学们挺聪明的,想出了解决问题的方法,刚才我们通过移一移,算一算的方法得出了一个同样的数4,这个数就叫平均数。

  今天我们一起走进平均数,研究它的意义。

  板书:平均数

  二、寻求方法,探索新知

  说到平均数,老师想起前不久学校举行的篮球赛的时候,五(2)班男女生之间发生的一场争执,五(2)班男子篮球队,要替换一名队员,7号和8号都要求参加,争执不下,为了在关键时候找准队员,老师找出了它们俩在一场小组赛中的成绩统计:

  第1场第2场第3场第4场第5场

  791113

  8713128

  师:观察统计表,从中你能知道哪些信息,能根据这些数据信息帮老师作出决定吗?派谁上场?

  讨论交流:

  生1:比总分。生2:场次多的。

  引出:比总分和场次均不公平师:比什么呢?生:比平均每场得分。

  总结:由于场次不同,不能比总分,就像刚才说的,比两个队员平均每场的得分,也就是它们各自得分的平均数比较合理。

  2、动手操作,求两个队员的平均每场的得分

  (1)在小组长带领下,利用老师提供的学具,摆一摆,移一移,或用其它更简捷方法,求7号队员的平均得分。

  (2)展示交流方法

  生:我们用移动小圆片的方法,求出了7号队员平均每场得分,从第4场拿出来2个小圆片补给第一场,这样每场得分就一样多了。

  师:通过移动学具方法,你们得出了7号运动员平均每场得分是多少?

  师:你们觉得他的方法怎么样?(移动一次,就求出了7号得分的平均数,这个办法简捷清楚,你们有没有问题要问他们?)

  生:为什么要把第4场得分移动起来补给第一场呢?

  生:把多的补给少的,就能使他们结果趋于一致。

  师:不仅操作好,说得也好,大家知道吗?你们刚才运用的就是咱们数学上用来研究平均数时经常使用的一种方法,叫移多补少法。

  板书:移多补少。课件:动态演示一次。

  方法二:计算方法

  师:我刚才看到有不少同学有纸笔在写,谁用计算方法了?

  板书:(9+11+13)÷3=11

  先求什么?再求什么?为什么要除以3?

  师:在这个过程中先把多的和少的合在一块,再平均分成3份,这样能使每份一样多吗?是多少?这和我们刚才移多补少的方法得出的结果相同吗?

  3、自主探索,求8号运动员平均每场的得分

  用自己喜欢的方法,求一求8号运动员平均每场得分。

  展示方法。

  方法一:移多补少(课件展示)

  方法二:计算方法(7+13+12+8)÷4=10(分)

  分析:先求什么?再求什么?现在能帮五(2)班同学解决他们争论的问题了吗?

  师:解决两个队员平均得分时,我们都用到了计算方法,这两个计算方法计算时有什么共同点。

  生:都是先求总分,再求平均每场得分。

  引出:求平均数方法,总数÷份数=平均数

  小结:遇到这样的问题到底是移多补少还是计算方法,我想这要根据实际情况完成,如果数据小,可用移多补少,如果数据较大,可以用计算方法。

  4、理解平均数的意义

  师:“10”是8号运动员哪场比赛得分?

  “11”是7号运动员哪场比赛得分?

  生:不是哪一场得分,而是将它的得分平均之后的得分。

  师:好极了,平均数并不是一个实际存在的数,而是我们经过移多补少或者是合再均分之后,算出的一个理想的数。

  师:仔细观察,将10、11与它们原来每组数据中的数比较一下,你会有什么独特发现?(课件演示)

  引出:平均数介于最大和最小数之间

  小结:平均数的大小应该在最大的数和最小的数之间,此外,一组数的平均数是我们计算出的结果,表示的是这组数的平均水平,并不一定这一组数都等于平均数,有些可能比平均数大,有些可能比平均数小。

  三、应用方法,解决问题

  刚才我们一起认识了平均数,也知道了如何求平均数,接下来我们要遇到的是生活中有关平均数的问题,你能勇敢闯关吗?

  挑战第一关:“明辨是非”

  (1)城南小学全体同学向希望工程捐款,平均每人捐款3元,那么,全校每个同学一定都捐了3元。()

  (2)学校排球队队员的平均身高是160厘米,李强是学校排球队队员,他的身高不可能是155厘米。()

  《平均数》数学教案 篇2

  第一课时

  素质教育目标

  (一)知识教学点

  1、使学生初步了解统计知识是应用广泛的数学内容。

  2、了解平均数的意义,会计算一组数据的平均数。

  3、当一组数据的数值较大时,会用简算公式计算一组数据的平均数。

  (二)能力训练点

  培养学生的观察能力、计算能力。

  (三)德育渗透点

  1、培养学生认真、耐心、细致的学习态度和学习习惯。

  2、渗透数学来源于实践,反地来又作用于实践的观点。

  (四)美育渗透点

  通过本课的学习,渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显,寓纷繁于严谨的辩证统一的数学美。

  重点·难点·疑点及解决办法

  1、教学重点:平均数的概念及其计算。

  2、教学难点:平均数的简化计算。

  3、教学疑点:平均数简化公式的应用,a如何选择。

  4、解决办法:分清两个公式,公式②的运用要选择一个适当的a。

  教学步骤

  (一)明确目标

  在日常生活中,我们常与数据打交道,例如,电视台每天晚上都要预报第二天当地的最低气温与最高气温,商店每天都要结算一下当天的营业额,每个班次的飞机都要统计一下乘客的人数等、这些都涉及数据的计算问题、请同学们思考下面问题。(教师出示幻灯片)

  为了从甲乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验、两人在相同条件下各射靶10次,命中的环数如下:

  甲 7 8 6 8 6 5 9 10 7 4

  乙 9 5 7 8 7 6 8 6 7 7

  1、怎样比较两个人的成绩?

  2、应选哪一个人参加射击比赛?

  教师要引导学生观察,给学生充分的时间去思考,并可以分成小组讨论解决办法。

  对于这个问题,部分学生可能感到无从下手,部分学生可能想到去比较两组数据的平均,让学生动手具体算一下两组数据的平均数结果它们相等在学生无法解决此问题的情况下,教师说明,这正是本章要解决的问题之一(写出课题)、这样做的目的是教师有意创设问题情境、制造悬念,这不仅能激发学生学习的积极性和自觉性,引起学生对所学课程的注意,还能诱发学生探求新知识的浓厚兴趣、

  (二)整体感知

  解决类似上述的问题要用到统计学的知识,统计学是一门研究如何收集、整理、分析数据并据之做出推断的科学,它以概率论为基础,着重研究如何根据样本的性质去推测总体的性质、在当今的信息时代,统计学的应用非常广泛,以至于它已渗透到整个社会生活的各个方面、本章我们将学习统计学的一些初步知识、

  (三)教学过程

  这节课我们首先来学习了平均数。

  1、(出示幻灯片)请同学看下面问题:

  某班第一小组一次数学测验的成绩如下:

  86 91 100 72 93 89 90 85 75 95

  这个小组的平均成绩是多少?

  教师引导学生动笔计算,并找一名学生到黑板板演,讲完引例后,引导学生归纳出求平均数方法,这样做使学生对平均数的计算公式能有深刻的认识。

  2、平均数的概念及计算公式

  一般地,如果有n个数。

  那么 ①

  叫做这n个数的平均数, 读作“x拨”。

  这是在初中数学课本中第一次出现带有省略号的用字母表示的n个数相加的一般写法。学生对此可能会感到比较抽象,不太习惯,要向学生强调,采用这种写法是简化表示,是为了使问题的讨论具有一般性。教师应通过对公式的剖析,使学生正确理解公式,并掌握公式中各元素的意义。

  3、平均数计算公式①的应用

  例1 一个地区某年1月上旬各天的最低气温依次是(单位:℃):

  -6,-5,-7,-6,-4,-5,-7,-8,-7

  求它们的平均气温。

  让学生动手计算,以巩固平均数计算公式(一名学生板演)

  教师应强调:①解题格式。②在统计学里处理的数据包括负数。③在本章中,如无特殊说明,平均数计算结果保留的位数与原数据相同。

  例2 从一批机器零件毛坯中取出20件,称得它们的质量如下(单位:千克):

  210 208 200 205 202 218 206 214 215 207 195 207 218 192 202 216 185 227 187 215

  计算它们的平均质量。(用投影仪打出)

  引导学生两人一组完成计算,然后一起对答案。由于数据较大,计算较繁,可能会出现不同的答案。正好为下面提出简化计算公式作好铺垫。

  教师提出问题:像例2这样,数据较大,计算较繁,因而容易出错,有没有较为简便的算法呢?引导学生观察数据有什么特点?都接近于哪一个数?启发学生讨论,寻找简便算法。

  学生回答:数据都在200左右波动,可将各数据同时减去200,转而计算一组数值较小的新数据的平均数,至此让学生再一次两人一组用简便方法计算例2,并与前面计算的结果相比较是否一样。

  讲完例2后,教师指出几点:常数a的取法不是惟一的; 读作“x——撇——拨”;简化计算的结果与前面毛算的结果相同。

  通过学生的动手计算,若产生困难或错误,教师及时点拨,引导学生寻找解决问题的方法,这不仅可以激发学生学习的兴趣,更培养了学生的发散思维能力,同时也使学生对公式②的推导更容易接受。

  3、推导公式②

  一般地,当一组数据 的各个数值较大时,可将各数据同时减去一个适当的常数a,得到,

  那么 ,

  因此,

  即 ②

  为了加深学生对公式②的认识,再让学生指出例2的 、 、 各是什么?(学生回答)

  课堂练习:

  教材P148中~P149中1,2,3

  (四)总结、扩展

  知识小结:

  1、统计学是一门与数据打交道的学问,应用十分广泛。本章将要学习的是统计学的初步知识。

  2、求n个数据的平均数的公式①。

  3、平均数的简化计算公式②。这个公式很重要,要学会运用。

  方法小结:通过本节课我们学到了示一组数据平均数的方法。当数据比较小时,可用公式①直接计算。当数据比较大,而且都在某一个数左右波动时,可选用公式②进行计算。

  八、布置作业

  教材P153中1、2、3、4。

  《平均数》数学教案 篇3

  一、教材分析

  1、教材的地位和作用

  在信息社会“数字”社会里,常常需要在不确定的情况下,根据大量纷繁杂芜的数据做出一个合理的决策,而统计正是通过对数据的收集、整理和分析,为人们更好地制定决策提供依据及建议,数学教案-平均数、中位数和众数(第二课时)]。平均数,众数,中位数是描述一组数据的集中趋势的3个统计特征量,是帮助学生学会用数据说话的基本概念。本节内容是继平均数学习之后的后续内容,既是对前

  面所学知识的深化与拓展,又是联系现实生活培养学生应用数学意识和创新能力的良好素材。

  2、课时安排和说明

  参照新教材教师用书建议:“10.2平均数、中位数和众数”这一节准备安排三个课时,第一课时主要承上启下地回顾探索平均数的一些性质及简单应用。第二课时探索得到众数和中位数的概念,并会正确计算众数和中位数,了解平均数、众数和中位数的各自适用范围。 第三课时是练习实践课,目的是巩固和深化本节知识及会用计算器计算平均数,用计算机计算平均数、众数和中位数。本次说课内容为第二课时。

  3、教学重点和难点

  教学重点:众数和中位数两概念的形成过程及两概念的简单运用。

  教学难点:利用收集的数据整理分析,对刚接触统计不久的学生来说,他们原有的认知结构中尚缺乏这方面的知识经验,因此,对统计数据从多角度进行全面分析,使学生形成一定的统计观念(即数据感)是教学难点。

  二、学情分析

  认知分析:学生已初步了解统计的意义,理解平均数的含义及会计算平均数,这两者形成了学生思维的“最近发展区”。

  能力分析:学生已初步具备一定的归纳、猜想能力,但在数学的应用意识与应用能力方面尚需进一步培养。

  情感分析:多数学生对数学学习有一定的兴趣能够积极参与研究,但在合作交流意识方面,发展不够均衡,有待加强;少数学生的学习主动性不够强,尚需通过营造一定的学习氛围,来加以带动。

  基于以上分析,在学法上,引导学生采用自主探索与互相协作相结合的学习方式,尽量让每一个学生都能参与研究,并最终学会学习。

  三、教学目标

  根据教材分析和学生的认知特点,本节课设置的教学目标为:

  知识目标:理解众数和中位数的含义,会正确计算众数和中位数。

  能力目标:进一步发展学生类比、归纳、猜想等合情推理能力;让学生接触并解决一些现实生活中的问题,逐步培养学生的应用能力和创新意识。

  情感目标:通过各种真实的,贴近学生生活的素材和适当的`问题情境,激发学生学习数学的热情和兴趣;在合作学习中,学会交流,相互评价,提高学生的合作意识与能力。

  四、教学方法

  根据本节课的教学内容和建构主义教学理论,从发展学生认识问题、探索问题、研究问题的能力角度考虑,准备采用“以问题为中心”的讨论发观法:即课堂上,教师或学生提出适当的数学问题,通过学生与学生(或教师)之间相互讨论,相互学习,在问题解决过程中发现概念的产生过程,思想方法的概括过程从而逐步建立完善的认知结构。

  具体说本节课由五个基本环节组成:创设情境,提出问题--合作交流,探索问题--理性概括,构建新知――实践应用,鼓励创新――归纳小结,反思提高。

  五、教学过程

  1、 创设情境,提出问题

  (1) 创设情境(用多媒体课件演示)

  某小厂欲招工人一名,小张应征而来,经理告诉他:“我们这里报酬不错,平均工资水平是每周300元,初中数学教案《数学教案-平均数、中位数和众数(第二课时)]》。”小张工作几天后,找到经理说:“你骗我,多数工人的工资水平没有超过每周200元,”这时,工会主席过来说:“小张,经理说得没错,其实我们厂有一半人达到或超过中等工资水平即每周250元,不止每周200元的!不信,看看这张工资表。”看后,小张感慨:“难道是我错了?”

  (2) 问题:真是公说公有理,婆说婆有理,平均数真能客观反映工人的真实工资水平吗?

  基于学生原有认知结构的问题情境,更诱发了学生的认知冲突,从而引发学生提出问题:究竟什么数据能反映工人的真实工资水平?

  2、 合作交流,探索问题

  在导出以上问题后,分三人小组开小型辩论会(三人分别充当经理、小张、工会主席三个角色展开辩论)。各小组再拿出最能反映工人真实工资水平的数据全班交流。

  学生会用人数最多的工种的工资200元或中等水平工资250元来回答,从而引出:今天要学习的内容----众数和中位数。

  通过学生合作交流,相互完善,在自主探索中发现概念的形成过程。让学生体验生活中的角色,认识到研究数据的必要性。

  3、理性概括,构建新知

  (!)启发建构

  在上述数据中象“200”这样的数我们就叫做这组数据的众数,象“250” 这样的数我们就叫做这组数据的中位数,它们与其它几个数相比是不同的,有何不同?我们能用自己的语言来描述它们吗?在学生描述的基础上为加深印象,教师可适时补充说明:“众数”中“众”即多,也就是某个数据在一组数据中出现次数最多;而“中位数”中“中位”是指位置居于中间,即某个数据在按照大小顺序排列的一组数据中,位置处于最中间。形象语言的描述更易新知的构建。

  (2)完善建构

  练习:

  ① 在一次英语考试中,11名同学得分如下:80 70 100 60 80 70 90 50 80 70 90 请指出这次英语考试中,11名同学得分的中位数和众数。

  ② 10名工人某天生产同一零件,生产的件数是:13 15 10 14 19 17 16 14 12

  你能说出这一天10名工人所生产零件数的众数和中位数吗?

  学生独立思考后讨论回答。

  结合学生回答的实际情况,对练习追问:a、能说出1 2 3 4 5 6 的众数吗?b、如何求一组数据的中位数?c、在一组数据中平均数,众数和中位数会都是同一个数吗?d、实话实说,对平均数、众数和中位数知道多少?谈谈它们的区别和共同特点、

  归纳探索结果:

  众数、中位数都是用来描述一组数据的集中趋势。众数是一组数据中出现次数最多数据;一组数据中的众数可能不止一个,也可能没有。中位数是指:将一组数据按大小依次排列,处在最中间位置的一个数据(或最中间两个数的平均数),一组数据中的中位数是惟一的。

  这一环节,由浅入深设置问题链,使学生思维分层递进,目的是突出本节重点;通过追问层层引导,又把学生的探索逐步引向最近发展区,启发学生运用类比、归纳、猜想等思维方法探究问题,揭示概念的实质,不断完善新的知识结构。同时体验了知识的形成过程和发现的快乐,继而转化为进一步探索的内驱力。

  4、实践应用,鼓励创新

  请你当厂长

  某鞋厂生产销售了一批女鞋30双,其中各种尺码的销售量如下表所示:

  《平均数》数学教案 篇4

  教学目标

  1、在具体情境中,通过实践操作和思考体会平均数的意义,能用自己的语言解释其意义,体会平均数的作用,感受求平均数是解决一些实际问题的需要,能计算平均数。

  2、运用平均数的知识解释简单生活现象、解决简单实际问题,进一步积累分析和处理数据的方法,发展统计概念。

  3、在活动中,进一步增强与他人交流的意识和能力,体验运用已学的统计知识解决问题的兴趣,建立学习数学的信心。

  教学重点

  理解平均数的实际意义,掌握求平均数的方法。

  教学难点

  体会平均数的特征,用平均数解释简单的生活现象。

  一、谈话引入,激发兴趣

  你乘车买票吗?六岁以前买票吗?你对乘车是否买票这方面的常识了解吗?我们把1.2米这条线叫“儿童乘车免票线”。看,就是这条线,经过相关部门研究决定,六岁以下儿童乘车免票线为1.2米。你知道怎么去确定这个标准吗?调查谁?如果数据来了,有高的,有矮的,如何处理?让我们一起通过这节课的学习来解决这些问题。

  (设计意图:通过学生熟悉的生活实例,让学生带着问题自然进入课堂,激发学生的学习兴趣,学生体会为什么要学均数。)

  二、探究新知,自主构建

  (一)理解平均数的意义

  上个月我校开展了保护环境,争优环保小队活动,我班成立了三个小分队:快乐队、天使队、阳光队。

  1、相同数据,初步体会平均数的代表性。

  出示快乐队数据:宁宁12个,丁丁12个,冰冰12个。

  你能提出什么数学问题?要表示快乐队每个人的收集情况,用哪个数比较合适呢?

  小结:快乐队每人都收集了12个矿泉水瓶。12能代表快乐队每个人的收集情况。

  2、不同数据,深入体会平均数的意义。

  出示天使队数据:小红12个,小兰14个,小丽11个,小明15个。

  你看到了什么信息?你能提出什么问题?现在,每个人收集的数量各不相同,该用哪个数据代表第二小队每人的收集情况呢?14能代表吗?12呢?(如果每人同样多就好了)怎样把他们的瓶子变成同样多?

  小组合作学习,用学具摆一摆。并在组内说一说你是怎么把它们变的同样多的。

  交流汇报。

  学情预设:

  生1:可以移动瓶子,将小红移1个给小兰,小明移2个给小亮,然后每个人就一样多了。(刚才这些同学都是通过把多的瓶子移出来,补给少的同学,让每个同学的瓶子数量同样多,这种方法就叫“移多补少”。板书:移多补少)

  生2:计算的方法(14+12+11+15)÷4=13,说说你是怎么想的。

  (先把四个人的瓶子数合起来,再平均分给四个人)为什么要除以4?除以3可以吗?4表示什么。括号里的表示什么?关系式:总数量÷份数。板书:先求和再平分)

  总结:其实无论是移多补少,还是先求和再平分,目的只有一个,那就是使原来不同的数变得——同样多。在数学上,我们把这个数叫做平均数。(板书课题:平均数)

  3、追问中理解平均数的虚拟性。

  继续看天使队的收集情况:13是小红收集的数量吗?是小兰收集的数量吗?是小明收集的数量吗?

  13到底是什么呢?是哪个同学收集矿泉水瓶的数量吗?

  小结:13是天使队平均每人收集的数量。它代表天使队收集矿泉水瓶的一般水平。

  (设计意图:由浅入深,快乐队每人收集12个,用12代表每人的收集数量;天使队每人的数量各不相同,该用哪个数代表呢?学生体会到:都不合适,如果和快乐队一样,每人同样多就好了。通过移多补少或求和平分,用一个虚拟的13来代表。这样由浅入深、层层递进,让学生慢慢体会平均数良好的代表性。在追问中让学生感受平均数的虚拟性特征,以加深对平均数意义的理解。)

  (二)在具体情境中体会平均数的作用

  出示阳光队收集矿泉水瓶统计表。阳光队一共收集了多少个?哪个小队能评为“环保小队”呢?和你的同桌说一说。

  学情预设:

  生1:快乐队收集了36个,天使队收集了52个,阳光队收集了60个,第三小队收集的多。

  生2:他们人数不同,这样不公平!

  生3:人数不同,应该比较平均数。怎么求阳光队的平均数呢?

  学生列式:(13+11+14+10+12)÷5=12(个)

  12代表什么?哪个小队能评为“环保小队”?

  小结:在人数不相等的情况下,用平均数作比较更公平!

  平均数13能代表天使队的一般水平,12能代表快乐队、阳光队的一般水平。(板书:反映一组数据的一般水平)

  (设计意图:人数不等,哪个队能评为“环保小队”?引导学生展开辩论。在辩论中学生清楚:比总数不公平,而平均数能代表每队收集的一般水平,所以用平均数作比较更公平。从而加深对平均数作用的理解。)

  (三)思考交流,理解平均数的敏感性

  如果阳光小队的王林收集的瓶子变多了或变少了,平均数会怎样呢?你发现了什么?

  小结:平均数就是这么敏感!这组数据中任何一个数发生变化,都能引起平均数的变化。

  结合平均数观察表格,平均数处于什么位置呢?

  平均数正如你们所说,可以代表一组数的一般水平,而且知道平均数在值和最小值之间,相信大家对平均数有了一定的认识。

  (四)首尾呼应,引起共鸣。

  相关部门是怎么确定这个儿童乘车免票线的呢?和你们想的一样,相关部门就是参照了平均身高确定免票线的。据统计:6岁男童平均身高119.3厘米,6岁女童平均身高118.7厘米。

  看来,平均数的作用真不小,连确定免票线的高度都可以参照它。

  (五)联系生活,体会平均数的用途。

  生活中在哪儿用到过平均数呢?出示平均数资料。如果学校订做校服,用平均身高订做可以吗?平均数的用途很广泛,可是也要根据实际情况而定。

  三、应用拓展,巩固提高

  1、小明家每人每天月平均用水量是多少?

  在严重缺水地区平均每人每天用水量约为3千克,你知道3千克的水有多少吗?

  老师还给大家带来一则信息。

  请选择正确答案。(2)第(1)式和第(3)式分别求的是什么呢?

  小刚家平均每人每天用水88千克,严重缺水地区平均每人每天用水3千克,比较这两个数据,你有什么感受?

  2、小明会遇到危险吗?

  游泳池平均水深只有120厘米,小明身高130厘米,小明站在游泳池里学游泳,会不会有危险?为什么?

  四、回顾反思,结束全课

  谈谈你对这节课的收获,把你感受最深的一点说一说。

  《平均数》数学教案 篇5

  学习内容:

  练习十一13题,教材42页例1

  学习目标:

  1、掌握平均数的意义和求平均数的方法

  2、知道移多补少求平均数的方法

  3、会根据数据列出算式求平均数

  学习重点:

  掌握求平均数的方法

  学习难点:

  正确计算平均数

  学习准备:

  课件,小黑板,统计表

  学习流程:

  一、导入

  拿8枝铅笔,指4名同学,要平均分怎样分?

  每人2枝,每人手中一样多,叫平均分。2是平均数

  二、学习交流

  1、出示例1、小红、小兰、小亮、小明收集矿泉水瓶统计图

  (1)从图中,你知道了什么信息?

  (2)他们四人怎样分才能一样多?

  (3)平均分后是多少个?

  2、课件展示统计图的变化过程

  (1)指名展示

  (2)这种方法叫什么?

  点拨:移多补少

  3、要求平均数,还可以怎样想?

  (1)要把4人收集的矿泉水瓶平均分成4份,必须先求出什么?

  14+12+11+15=

  (2)平均分成4份,怎么办?

  524=

  4、归纳

  要求平均数,可以先求出( )数,再平均分几份

  5、算一算你们小组的平均身高,交流展示求平均数的方法和过程

  6、算出各小组的平均体重,说说你们是怎么算的?

  三、交流展示

  展示自己的学习成果,说清求平均数的方法和过程

  四、达标测评

  1、练习十一第2题

  (1)什么是最高温度?什么是最低温度

  (2)你知道了哪些信息?

  (3)填写统计表:本周温度记录

  (4)计算出一周平均最高温度和最低温度

  (5)说说你是怎么算的?

  2、测量小组跳远成绩,求平均数

  五、总结

  通过这节课的学习活动,你有什么收获?

  《平均数》数学教案 篇6

  一、教学内容:

  人教版《义务教育课程标准实验教科书数学》三年级下册P42、43页《平均数》

  二、教学准备:

  直尺、三角板,学生按矮到高的顺序坐好。

  三、教学目标与策略选择:

  以往我们把《平均数》这节课当成是一节应用题的课,侧重读题、分析、计算;从新课程标准出台以后,列入统计与概率的范畴,重视平均数意义的教学,更注重学生估计意识、猜想意识和推理能力的发展。学生已有了相当丰富的统计知识,对于“平均数”这个概念已有所接触,如测试中的“平均分”等。但大部分学生还不能准确理解“平均数”的意义。为此,确定以下教学目标:

  1、通过观察、比较,理解平均数不是一个具体的数(实际的数);

  2、在师生、生生的交流互动中,让学生知道平均数是有一定范围的,培养学生的估计、猜想意识,并产生探究数学知识的积极情感;

  3、学生能掌握求平均数的方法:

  (1)移多补少;

  (2)先求总数再平均分等;

  4、体现总体与样本的关系。

  鉴于以上的目标定位,本节课重在学生的体验、参与。在学生互动中,使学生感受够到生活中处处有数学,并会从实际生活中提出数学问题,运用不同的方法加以解决,同时在学生的合作中初步感受统计知识。为此,主要采取了以下教学策略:

  1、以“情”、“趣”开路。

  2、创设生动的生活情境,提供丰富的生活化材料,唤起学生已有的知识经验。

  四、教学流程设计及意图:

  教学流程

  设计意图

  一、活动导入,引出平均数的意义。

  1、创设情境:比身高。

  (1)第一次比较。师:今天进行男女同学比身高。先请--(一个男的,一个女的同学;男的同学比女的同学明显高一点)

  (2)第二次比较。师再请两位同学。一位男同学,一位女同学。(男同学略高于女同学)现在是男同学高还是女同学高?

  (3)第三次比较。师:看来这么一比,大家一看就知道了。继续请上两位同学(女生明显高于男生)

  师:你觉得这3个男生与这3个女生比,是男同学高还是女同学高?怎么比呢?生:......

  (4)第四次比较。师:如果再请上一位女生(比平均水平稍矮一点)呢,是男同学高,还是?

  师:如果不请男同学上来了,你觉得还有其它比较的办法吗?

  2、同桌学生讨论。生:求出几个同学的平均数。

  3、现场测量台上同学的身高。

  4、学生尝试练一练,指名板书。

  5、比较结果。是男同学高,还是女同学高。

  6、小结:看来平均数(板书课题)还真能帮肋我们解决一些问题。

  二、延伸拓展,形成统计观念。

  1、感悟平均身高。师指着平均身高:这个身高是你们当中times;times;同学的身高吗?那它是什么?

  2、全班的平均身高。师:现在要知道全班同学的平均身高,怎么办?

  生:先把所有的身高加在一起,再除以有40人。

  师:是个办法,能解决这个问题。如果想知道全校四年级同学的平均身高,有什么办法?

  生:......

  3、选取样本。师:但是现在在课堂里没办法解决这个问题。有没有更好的办法呢?

  (1)学生参考选取第一排或第五排。

  (2)选取第一组的学生比较有代表性。

  4、估计。

  师:你们先估计一下,第一组5个同学的平均身高是多少?

  生:......(不会比最大的大,比最小的小)

  5、学生计算。

  6、进一步感悟平均数。

  师:是times;times;同学的身高吗?我们可以推测全班的同学身高,全校四年级同学的身高,甚至是更大范围的四年级同学的平均身高。

  7、小结方法。

  师:我们来观察一下,刚才我们是怎样求平均数?

  生:先求总数(板书),除以人数,等于平均身高。

  三、应用提高,深化统计观念。

  1、举例。师:其实生活除了求平均身高外,还有很多地方用到平均数,能举个例子吗?......

  2、你觉得有危险吗?

  小朋友说:我身高140厘米,在这里游泳不会有危险。

  2、猜猜看:

  3根小棒,平均3根小棒,平均

  每根长10厘米每根长15厘米

  (1)猜测。师:如果从第一个袋子里拿一根(标上序号),第2个袋子里也拿一根,哪个袋子里拿出的长一些?

  (2)举例。师:能举个例子吗?同桌商量一下。

  (3)汇报。

  3、变式练习。

  (1)在龙港万科印业公司的印刷车间,第一天印39万张商标,第二天、第三天共印87万张,他们平均每天印多少万张?

  ①(39+87)divide;2=63(万张)

  ②(39+87)divide;3=42(万张)

  (2)在龙港万科印业公司的印刷车间,第一天印39万张商标,第二天上午印22万张,下午印23万张。他们平均每天印多少万张?

  ①(39+22+23)divide;2=42(万张)

  ②(39+22+23)divide;3=28(万张)

  质疑:为什么两个数要除以3?三个数相加要除以2呢?

  小结:像这样的天数、人数,我们可以称为份数。(平均每天的张数、平均身高可以称为平均数)

  4、读信息,了解最新动态,解决实际问题。

  (1)你在这幅图上了解到哪些信息?根据这些信息,你能提出什么数学问题?

  (2)计算前,你先估计一下,第二十五届到第二十八届平均每届获金牌的块数?并介绍你是怎么估计的?

  (3)计算--课件验证。

  (4)根据这幅图的发展趋势,你能预测一下20xx年能获多少块?

  四、全课总结。

  以“比身高”作为本节课学生的学习主题,通过现场简单的两人比较,四人,六人,七人的比较,使学生在观察中发现比较的量在不断的变化,结果也不断在变化,在矛盾迭起的活动中,不断寻找平衡,寻求合理的比较方法。

  通过教师言语的引导,制造在大范围的情况下,求平均身高这么一个矛盾,怎么办?促使学生经历寻求“样本”的过程,致使合理的解决这个问题。

  在本节课的练习设计中,突出对平均数意义的理解,体现开放性,变通性,实效性。促进学生的思维不断深入、发展。

  五、教学片断实录:

  片断一:

  开场白:今天我们进行一场比赛--比身高。板书:男、女

  师:同学们的想法都很好!但是今天先进行男女同学比身高。我先请--(一个男的,一个女的同学;男的同学比女的同学明显高一点)

  师:你们说谁比较高?

  生:男同学。

  师再请两位同学。一位男同学,一位女同学。(男同学略高于女同学)现在谁比较高?

  生:还是男同学。(男同学似乎很得意)

  师:看来这么一比,大家一看就知道了。继续请上两位同学(女生明显高于男生)

  此时学生大笑。

  师:你们笑什么呢?

  生:这个男同学这么矮?

  师:你们听过一句话吗,浓缩就是--精华。更何况,你们现在正是长身体的时候,过几年后,他可能会长得比你们高呢。

  师:你觉得这3个男生与这3个女生比,是男同学高还是女同学高?

  生:是男同学。生:是女同学。生:一样高。

  师:怎么比呢?

  生:把男同学高的部分“切下来”补到矮的身上,女同学也用这种办法,再比较。(还没等这位同学说完,其它同学就大笑,一致认为这是不可能的。)

  生:可以把男同学或女同学的身高加起来,再比较。

  另一学生似乎心领神会:找一个男生和一个女生比较,求出相差数,再找第二、第三个男生和女生比,最后比一比相差数的办法。

  ......

  师:如果再请上一位女生(比平均水平稍矮一点)呢,是男同学高,还是?

  生:女同学或不公平。

  生:还得再叫一位男生上来。

  师:如果不请男同学上来了,你觉得还有其它比较办法了吗?

  同桌讨论。

  生:求出男、女生的平均身高。......

  六、教学反思:

  1、情境的设置不应仅仅起到“敲门砖”的作用,也即仅仅有益于调动学生的学习积极性,还应在课程的进一步开展中自始至终发挥一定的导向作用(郑毓信语)。开课这一情境的创设,并不仅仅是为了引出平均数这一概念。从第一次、第二次简单的进行比较,学生一看就明白,当出现三人比较时,学生开始犯难了,有的学生觉得男生高,有的觉得女生高,有的认为一样高等,出现意见不一,怎么办?有的学生想到了用“切”的办法(当然这种方法不近合理,但也是学生对移多补少的形象化解释)、求和比较的方法(这一方法为求平均数打下铺垫)、还有的学生受到“移多补少”方法的影响,想出了求相差数的方法等,把学生的思维不断引向深入。通过第四次身高的比较,出现不合理的因素,逐步把学生的视线引向平均数,从而学生自发解决了求平均身高,也初步掌握了求平均数的方法。

  2、新课程倡导用具体的、有趣味的、富有挑战性的素材引导学生投入数学活动。在“比身高”的情境中,让学生在一次次的观察、比较中迎接挑战,这样一个活动,在平时课堂中可以信手拈来的一个情境,在学生的争论中完成数学化的过程,并不需要花费过多的时间。在这种以情、趣开路的情境中,学生学得主动。

  《平均数》数学教案 篇7

  一、说教材

  1、教学内容:北师大版五年级数学下册第八单元《平均数的再认识》

  2、教材分析:

  随着科学技术和数学本身的发展,统计学已成为现代数学方法的一个重要部分和应用数学的重要领域。大到科学研究,小到学生的日常生活,统计无处不在。新《数学课程标准》中也将“统计与概率”安排为一个重要的学习领域,强调发展学生的统计观念。本单元正是在此基础上,向学生介绍统计的初步知识的。本课则是在学生初步认识统计后进行教学的,它包含两部分,即算术平均数和加权平均数(较复杂的平均数问题)。

  3、教学重、难点:求平均数说课稿

  平均数是统计工作中常用的一种特征数,它能反映统计对象的一般水平,用途很广泛。所以进一步理解平均数的意义,掌握求平均数的计算方法是教学的重点。而本课的“平均数”又和过去学过的“平均数”的方法不同,弄清“全部数据的总和”与“全部数据的个数”之间的对应关系就是教学的难点。

  4、教学目标

  在学生计算出平均数的基础上应充分引导学生理解“平均数”概念所蕴含的丰富、深刻的统计与概率的背景,帮助他们认识到平均数在现实生活中的实际意义与广泛应用,并能在新的情境中运用它去解决实际问题,从而获得必要的发展。基于这样的认识我们定为:

  知识目标:使学生进一步理解平均数的含义,掌握求算术平均数的方法。

  能力目标:能从现实生活中发现问题,并根据需要收集有用的信息,培养学生的策略意识和应用数学解决实际问题的能力。

  情感目标:通过小组学习活动培养学生的合作精神和创新品质,体验数学与生活的紧密联系,促进学生个性和谐发展。

  二、说教法:

  “求平均数”作为一类应用题,若教学内容脱离生活实际,会使学生感到枯燥乏味。因此要积极创设真实的、源于生活的问题情境,以“学生发展为本,以活动为主线,以创新为主旨”,采用多媒体教学等有效手段,以引导法为主,辅之以直观演示法、设疑激趣法、讨论法,向学生提供充分从事数学活动的机会,激发学生的学习积极性,使学生主动参与学习的全过程,充分发挥教师的主导作用,扮演好组织者、引导者与合作者的角色。

  三、说学法:

  在学法指导上,努力营造平等、民主、和谐、安全的教学氛围,充分发挥学生的主体性,通过观察、操作、比较、分析等活动,让每个学生积极参与,根据自己的体验,用自己的思维方式主动探究,去发现、构建数学知识。通过小组合作中的互相讨论交流,让学生从中学会与他人交往,分享同伴的成功,解释自己的想法,倾听别人的意见,获得积极的情感体验。教师还要让学生进行自己我反思,自主评价,以提高解决问题和综合概括的能力。

  四、说教学过程:

  五年级下册数学平均数的再认识教学设计

  教学内容 平均数的再认识

  教学目标

  1、结合生活实际再进一步理解平均数的意义的基础上,掌握求平均数的方法。

  2、能运用平均数解决简单的实际问题,体会平均数在实际生活中的应用。

  3、在探索知识的过程中,增强学好数学的信心,提高自主学习的能力。

  教学重点

  难点 掌握求平均数的方法。

  体会平均数在实际生活中的应用。

  教具准备:多媒体

  教学课时:1课时

  教学过程

  一、情境引入。

  1、出示:根据有关规定,我国对学龄前儿童实行免票乘车,即一名成年人可以携带一名身高不足1.2米的儿童免费乘车。1.2米这个数据是如何得到的呢?

  2、学生质疑,说一说你的看法。

  二、新授。

  1、解决疑惑。

  学龄前儿童,即0-6岁的儿童,而这就意味着0-6岁的儿童身高普遍不会超过1.2米,那么我们首先就要调查一下0-6岁儿童的身高数据,但是我们无法确定一个准确数值,这就需要计算出数据的平均数来解决问题。

  出示平均数的意义:一组数据中所有数据之和除以数据的个数。它是反映数据集中趋势的一项指标,具有代表性。

  2、求平均数的方法。

  出示:“新苗杯”少儿歌手大奖赛的成绩统计表。

  评委1 评委2 评委3 评委4 评委5 平均分

  选手1 92 98 94 96 100

  选手2 97 99 100 84 95

  选手3 90 98 87 85 90

  (1)把统计表填写完整,并排出名次。

  (2)在实际比赛中,通常采取去掉一个最高分和一个最低分,然后再计算平均数的记分方法。你能说出其中的道理吗?

  (3)按照上述的记分方法重新计算3位选手的最终成绩,然后排出名次。

  3、教授解题策略。

  题中数据众多,无法直接比较,可以先求出每位选手的平均成绩,再进行比较,这样就容易排出名次。

  求平均数的方法:总数量÷总份数=平均数。

  选手1:(92+98+94+96+100)÷5=96(分)

  选手2:(97+99+100+84+95)÷5=95(分)

  选手3:(90+98+87+85+90)÷5=96(分)

  4、计算完毕请补充统计表,并排出最终名次。

  板书设计

  平均数的再认识

  平均数的意义。

  求平均数的方法:总数量÷总份数=平均数。

  《平均数》数学教案 篇8

  教学目的:

  ⒈、经历平均数产生的过程,理解平均数的概念,了解平均数的特点和作用,掌握求简单平均数的方法。

  ⒉、在解决问题的过程中培养学生的分析、综合、估算和说理能力。

  ⒊、渗透统计初步思想。

  教学实录:

  一、创设情境,提出问题

  师:从孩子喜欢的球类运动入手:“小朋友们,你们都喜欢什么球类运动?”

  生:“足球!”“篮球!”“乒乓球!”……

  师:“这么多小朋友都喜欢足球,我也和你们一样是个球迷!不过,今天由于场地的限制,我们想组织一次拍球比赛,有兴趣吗?”

  生:“有!”

  师:“咱们全班男女生分为两大组,每组商量一下,先为本组起一个名字。”

  (很快,男生组起名叫“必胜队”,女生组起名叫“快乐队”。)

  师:“如果一个人一个人地来拍球,时间肯定不够,咱们想个办法,应该怎样进行比赛呢?”

  【课伊始,趣已生。从孩子喜欢的游戏入手,激发了学习兴趣;让孩子自己想出比赛的办法,把自主权留给了孩子。】

  二、解决问题,探求新知

  1、感受平均数产生的需要

  问题提出,同学们马上有办法,各队推选一名最有实力的代表进行比赛。比赛开始,男生10秒钟拍球19个,女生10秒钟拍球20个,老师宣布“快乐队”为胜。男生马上不服气,“不行!不行!一个人代表不了大家的水平!再多派几个人!”于是,两队又各派四人上台。比赛结果:男生队拍球数量为:17、19、21、23。女生队拍球数量为:20、18、15、23。同学们用计算器算出:“必胜队”拍球总数为80个,“快乐队”拍球总数为76个。老师高高地举起男生代表的小手宣布:“必胜队胜利!”“吔!”男孩子们高兴地跳了起来,女生们则沮丧地低下了头。

  这时老师来到了弱者的一边,安慰女生“快乐队的小朋友们,不要气馁,我来加入你们队好不好?”“太好了!”于是,我现场拍球29个。“快算算,这回咱们快乐队拍球的总数是多少?”女生很快算出:105个。“这一次我宣布:快乐队胜利!”女同学的脸上现出了微笑,男生们却马上反驳:“不公平!不公平!我们是4个人,快乐队是5个人,这样比赛不公平!”

  “哎呀,看来人数不相等,就没法用比较总数的办法来比较哪组的拍球水平高,这可怎么办呢?”

  一个胖胖的小男孩站起来伸开双臂,结结巴巴地说:“把这几个数匀乎匀乎,看看得几,就能比较出来了。”

  “求平均数!”几个孩子脱口喊了出来。

  【在一次又一次的矛盾激化中,在现实生活的需要中,学生请出了“平均数”。可爱的孩子一句“匀乎匀乎”,表明孩子们已经从实际问题的困惑中产生了求平均数的迫切需求。】

  2、探索求平均数的方法

  “我们怎样求出平均数呢?你能想办法试一试吗?”很快,有同学把大数多的部分匀乎给了小数,使数字平均;有的学生用计算的方法:(17+19+21+23)÷4=20(个)(20+18+15+23+29)÷5=21(个)通过求平均数,比较得出“快乐队”为胜方。

  3、理解平均数的意义

  平均数已经求出来了,但探讨并没有就此停止,我继续引导大家:“快乐队拍球的平均数是21,21代表什么?你怎么认识理解21这个数?”

  孩子此时也发现了问题:“怎么没有一个人拍球的数量是21呀?“

  “是呀,21是谁拍的数量呀?”老师俨然一个大朋友般地与孩子们一起陷入了思考。此时的课堂很安静,老师在耐心地等待着。

  终于,一个清秀的小女孩站起来说:“21是这几个数的平均数。”

  老师我马上追问:“什么是平均数呀?”

  生1:“就是把大数多的部分往小数上匀乎匀乎。”

  生2:“平均数是一个虚的数,比最小的数大一些,比的数小一些,在它们中间。”

  生3:“平均数不是某一个人具体的拍球数量,它代表的是几个人拍球的平均水平。”

  此刻,老师再也抑制不住激动的心情:“孩子们,你们真是太棒了!平均数正如你们所说,它不是一个实实在在的数,而是代表一组数的平均值。你们的学习精神和理解能力真让我佩服!”

  【在老师精心创设的情境中,在孩子们的亲身感受中,他们用自己稚嫩的语言道出了他们对平均数意义的理解,虽然这只是初步的,但却是非常有价值的。】

  三、联系实际,拓展应用

  少儿歌手比赛(出示题目)你知道1号歌手的实际得分是多少吗?

  同学们经过计算得出:(93+98+95+83+92+96+94+)÷7=93(分)。

  此时电脑上出现1号歌手的实际得分是94分。

  师:“咦?这是怎么回事?”“为什么小朋友们计算1号歌手的得分是93分,而电脑给出的却是94分呢?是我们错了,还是电脑错了?”教师里一片寂静。

  突然,一个小朋友大声说:“是我们错了!我们看歌手比赛的时候,还要去掉一个分和一个最低分呢?”

  师:“噢!想起来了,是这样的。”

  孩子们用自己的生活经验找到了症结所在。同学们马上自觉地又伏案计算,去掉一个分98分,去掉一个最低分83分,(93+95+92+96+94)÷5=94(分)。电脑给出的答案是正确的。

  【一个生活实例的巧妙运用,使孩子们深深地体会到在生活中不能死套公式,知识的运用要结合具体情况具体分析。那一段时间的沉默,留给孩子的是一片思考的空间。等待是一种艺术,空白也是一种艺术,我们在课堂上应该善于等待,恰到好处地运用等待艺术。】

  四、总结评价,布置作业

  通过这节课的学习,你有什么收获?还有什么遗憾?你认为应该给自己布置什么样的作业?”

【《平均数》数学教案(精选8篇)】相关文章:

小学奥数题—平均数问题08-01

初二数学平均数同步练习题12-18

【精选】小学数学教案7篇02-04

精选小学数学教案9篇07-10

【精选】小学数学教案5篇07-02

精选小学数学教案5篇06-18

小学数学教案(精选15篇)02-23

精选小学数学教案八篇06-09

【精选】小学数学教案3篇05-18

【精选】小学数学教案四篇05-04