《用比例解决问题》数学教案

时间:2022-10-25 10:36:02 数学教案 我要投稿
  • 相关推荐

《用比例解决问题》数学教案(通用5篇)

  作为一位无私奉献的人民教师,很有必要精心设计一份教案,教案是教学活动的依据,有着重要的地位。如何把教案做到重点突出呢?下面是小编收集整理的《用比例解决问题》数学教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

《用比例解决问题》数学教案(通用5篇)

  《用比例解决问题》数学教案 篇1

  学习目标:

  使学生掌握运用比例解决问题的方法,能正确运用正、反比例知识解决有关问题,发展学生的应用意识和实践能力。

  学习重难点:

  重点:运用正、反比例解决实际问题。

  难点:正确判断两种量成什么比例。

  学习方法:

  尝试教学法、引导发现法等。

  学习过程:

  一、旧知铺垫

  1、下面各题两种量成什么比例?

  (1)一辆汽车行驶速度一定,所行的路程和所用时间。

  (2)从甲地到乙地,行驶的速度和时间。

  (3)每块地砖的面积一定,所需地砖的块数和所铺面积。

  (4)书的总本数一定,每包的本数和包装的包数。

  过程要求:

  ①说一说两种量的变化情况。

  ②判断成什么比例。

  ③写出关系式。

  如:

  2、根据题意用等式表示。

  (1)汽车2小时行驶140千米,照这样速度,3小时行驶210千米。

  (2)汽车从甲地到乙地,每小时行70千米,4小时到达。如果每小时行56千米,要5小时到达。

  70×4=56×5

  二、探索新知

  1、教学例5

  (1)出示课文情境图,描述例题内容。

  板书:8吨水10吨水

  水费12.8元水费?元

  (2)你想用什么方法解决问题?

  过程要求:

  ①学生独立思考,寻找解决问题的方式。

  ②教师巡视课堂,了解学生解答情况,并引导学生运用比例解决问题。

  ①汇报解决问题的.结果。

  引导提问:

  A、题中哪两种量是变化的量?说说变化情况。

  B、题中哪一种量一定?哪两种量成什么比例?

  c、用关系式表示应该怎样写?

  ②板书:解:设李奶奶家上个月的水费是X元

  8X=12.8×10

  X=

  X=16答:略

  (3)与算术解比较。

  ①检验答案是否一样。

  ②比较算理。算述解答时,关键看什么不变?

  板书:先算第吨水多少元?

  12、8÷8=1.6(元)

  每吨水价不变,再算10吨多少元。

  1、6×10=16(元)

  (4)即时练习。

  王大爷家上个月的水费是19.2元,他们家上个月用了多少吨水?

  过程要求:

  ①用比例来解决。

  ②学生独立尝试列式解答。

  ③汇报思维过程与结果。

  想:因为每吨水的价钱一定,所以水费和用水的吨数成正比例。也就是说,水费和用水吨数的比值相等。

  解:设王大爷家上个月用了X吨水。

  12.8X=19.2×8

  X=

  X=12

  或者:

  16X=19.2×10

  X=

  X=12

  1.教学例6。

  (1)出示课文情境图,了解题目条件和问题。

  (2)说一说题中哪一种量一定,哪两种量成什么比例。

  (3)用等式表示两种量的关系。

  每包本数×包数=每包本数×包数

  (4)设末知数为X,并求解。

  (5)如果要捆15包,每包多少本?

  1、完成课文“做一做”。

  2、课堂小结。

  三、巩固练习

  完成练习九第3~5题。

  《用比例解决问题》数学教案 篇2

  【教材分析】

  本节课是在学生熟练掌握简单的求一个数的几分之几是多少的应用题的基础上进行教学的。本节课是让学生画线段图来分析题意,这部分内容是让学生用不同的方法,也就是不同的解题思路来分析。从而让学生理解和掌握这种稍复杂的分数乘法应用题的数量关系,为下一步学习稍复杂的已知一个数的几分之几是多少求这个数的应用题打好基础。

  【学情分析】

  本节课是在学生熟练掌握简单的求一个数的几分之几是多少的`应用题的基础上进行教学的,例2分析一个数量的两个部分与整体的关系,确定把什么看作单位1学生不难理解,教学时,要画线段图帮助学生理解题意,学生就不会感到有太大的困难了。例3分析的是两个量之间的关系,教学方法与例1相同。

  【教学目标】

  1、使学生掌握解答稍复杂的求一个数几分之几是多少的应用题的思路,并能正确解答。

  2、提高学生分析解答应用题的能力,培养探索精神。

  【教学重点】分析和掌握把什么量看作单位1及谁是谁的几分之几。

  【教学难点】分析和理解两个数量的比校对于学生来说比较难些。

  【教学过程】备注

  活动一:创设情境,初步感知题意。

  1、教师出示例2的情境图。

  2、让学生结合图叙述题意。

  活动二:动手画图,分析题意。

  1、你能不能用上节课我们讲过的学习方法,借助于其它的方法来分析一下这道的意思呢?

  学生动手画线段图,分析。小组交流。

  与教师共同再一次感受如何画线段图。(教师板书)

  重点让学生明确谁是单位1。

  2、让学生说一说是怎样想的?确定解题的思路。

  3、可能会有两种不同的思路。教师让学生用自己喜欢的方法解答。

  4、全班交流,订正。

  5、问:这两种解法有什么区别?有什么联系?

  活动三:教学例3.

  教师出示例3。

  1、引导学生读题,理解题意。

  2、根据这句话应当把什么看单位1?

  3、学生试画出线段图,分析数量关系。

  4、学生自己解答。

  订正时,让学生说说是怎样分析的?与全班交流。

  活动四:巩固练习。

  1、完成21页中的做一做。

  教师要求学生画线段图。

  2、完成练习五中部分练习题。

  订正时,让学生说说分析的思路。

  活动五:课堂小结。

  通过本节课的学习你都有哪些收获?

  《用比例解决问题》数学教案 篇3

  教学过程:

  一、复习

  1.一辆汽车行驶的速度不变,行驶的时间和路程。

  2.一辆汽车从甲地开往乙地,行驶的时间和速度。

  看上面的题,回答下面的问题:

  (1)各有哪三种量?

  (2)其中哪一种量是固定不变的?

  (3)哪两种量是变化的?这两种量是按怎样的规律变化的?他们成是什么关系?

  3、这节课,我们就应用比例的知识解决一些实际问题。

  二、新授

  1、教学例5

  (1)出示例5:张大妈家上个月用了8吨水,水费是2.8元。李奶奶家上个月用了10吨水,李奶奶家上个月的水费是多少钱?

  (2)学生读题后,思考和讨论下面的问题:

  ① 问题中有哪两种量?

  ② 它们成什么比例关系?你是根据什么判断的?

  ③ 根据这样的比例关系,你能列出等式吗?

  (3)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

  (4)根据正比例的意义列出方程:

  解:设李奶奶家上个月的水费是元。

  12.8/8=/10

  8= 12.8×10

  =128÷8

  = 16 答:李奶奶家上个月的水费是16元。

  (5)将答案代入到比例式中进行检验。

  2、修改题目:王大爷上个月的水费是19.2元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,并交流订正,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的'正比例关系没变,只是未知量变了)

  3、教学例6

  (1)出示例6:书店运来一批书,如果每包20本,要捆18包。如果每包30本,要捆多少包?

  (2)学生根据例5的解题思路,思考:题中已知两个量?什么是一定的?已知的两个量成什么关系?思考后独立解答。

  (3)指名板演,全班评讲。

  4、做一做:教科书P59“做一做”1、2题,让学生先判断两个量的关系,再进行解答。

  三、巩固练习

  1、教科书P61练习九第3、4题。学生读题后,先说说题中哪个量是一定的,再独立进行解答。

  2、完成练习九第5、6、7题。

  四、总结

  用比例知识解决问题的步骤是什么?

  《用比例解决问题》数学教案 篇4

  设计说明

  本节课主要学习用比例知识解决实际问题。遵循“学会应用才能真正实现数学的价值”的理念,为学生创设轻松的学习氛围,让学生亲身去体会、观察、发现、探索。因此,本节课在教学设计上关注以下两个方面:

  1.合理复习,有效铺垫。

  温故而知新,用比例知识解决正、反比例问题的关键是先让学生能够正确找出两种相关联的量,然后判断它们成什么比例,最后利用正、反比例的意义列出方程。所以利用比例知识解决相关问题之前,先给出一些数量关系,让学生判断成什么比例,不但很好地复习了旧知,也用正、反比例知识解决了教学难点,为学生探究用比例知识解决问题提供了有力的保障。

  2.巧妙引导,拓展思维。

  《数学课程标准》指出:教师是学生学习的'引导者。因为在学习这部分知识之前学生已经会解决生活中的有关归一、归总的实际问题,所以教学教材例题时,先引导学生用学过的方法解决问题,再引导学生用比例知识解决问题,这样既有利于学生理解、掌握用比例知识解决问题的方法,又有利于学生创新思维能力的培养,确保数学活动的有效性。

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙复习铺垫,引入新课

  1.复习铺垫。

  课件出示:

  (1)一辆汽车行驶的速度不变,行驶的时间和路程。

  (2)一辆汽车从甲地开往乙地,行驶的速度和时间。

  提出问题:

  ①每道题中各有哪三种量?

  ②其中哪种量是不变的?

  ③哪两种量是相关联的?相关联的量成什么比例?(生讨论后解答)

  2.引入新课。

  生产、生活中的一些实际问题也可以应用比例知识来解决。今天,我们就来学习用正、反比例知识解决问题。(板书:用比例解决问题)

  ⊙合作交流,探究新知

  1.学习例5,用正比例知识解决问题。

  (1)课件出示教材61页例5主题图。

  (2)学生读题思考,并汇报题中的已知条件和所求问题。

  预设

  生1:已知条件是张大妈家上个月用了8 t水,水费是28元。李奶奶家用了10 t水。

  生2:所求问题是李奶奶家上个月的水费是多少钱。

  (3)指名完整叙述题意。

  根据学生的回答,课件出示例5:张大妈家上个月用了8 t水,水费是28元,李奶奶家用了10 t水。李奶奶家上个月的水费是多少钱?

  (4)讨论、交流。

  师:例5的问题可以用什么方法解决?

  预设

  生1:可以用算术方法解决。先用28÷8求出每吨水的价钱,再求出10 t水的价钱,列式为28÷8×10。

  生2:可以用比例方法解决。设李奶奶家上个月的水费是x元,用正比例知识解答。

  师:为什么可以用正比例知识解答?

  预设

  生:因为用水的吨数和水费是两种相关联的量,且水费和用水的吨数的比值(也就是每吨水的价钱)是一定的,所以可以用正比例知识解答。

  师:如何运用正比例关系列方程解答?

  预设

  生:解:设李奶奶家上个月的水费是x元。

  =

  8x=28×10

  x=

  x=35

  答:李奶奶家上个月的水费是35元。

  (5)拓展练习。

  王大爷家上个月的水费是42元,上个月用了多少吨水?

  (学生独立完成后汇报交流)

  《用比例解决问题》数学教案 篇5

  一、教学目标:

  1、加深对反比例概念的理解,掌握运用比例知识解决实际问题的方法和思路,能用反比例知识解决有关问题。

  2、提高学生对应用问题数量关系的分析能力和对正、反比例的'判断能力。

  二、教学重点:

  用比例知识解决实际问题。

  三、教学难点:

  正确分析题中的数量关系,列出方程。

  四、教学过程:

  (一)、复习

  1、成正比例和成反比例的量的判断。

  2、用正比例解决问题的步骤。

  一:找到题中不变的量;

  二:根据不变的量写出关系式;

  三:判断成什么比例;

  四:列出比例式;

  五:解比例。

  (二)、探究新知

  教学例5:一批书如果每包20本,要捆20包,如果每包30本,要捆多少包?

  A.提出问题组织学生讨论:

  ① 问题中有哪两种量?

  ② 它们成什么比例关系?你是根据什么判断的?

  ③ 根据这样的比例关系,你能列出等式吗?

  B. 根据反比例的意义列出方程并解方程。

  根据比例的意义,学生独立完成,并在小组中交流。

  学生汇报:

  解:设要捆元。

  30=2018

  = 36030

  =12

  答:要捆12包。

  五、应用反馈 课件出示:

  1. 教材60页做一做第2题。(单价乘数量等于总价,总价一定)

  2. 课件上的练习题。

  指名扮演,独立练习,集体订正。 巩固新知,训练解题能力。

  六、课堂小结 通过这节课的学习,你有哪些收获?

【《用比例解决问题》数学教案】相关文章:

比和比例的优秀数学教案(精选10篇)11-27

用智慧解决问题作文(通用11篇)12-19

小学数学教案:用数学08-28

小学三年级上册数学教案《解决问题》(精选10篇)12-16

小学三年级数学教案《运用估算解决问题》(精选10篇)03-22

比例的意义教学设计05-11

解决问题教学设计(精选20篇)06-20

《按比例分配》教学设计06-27

数学解决问题心得体会03-30