小学数学教案

时间:2021-06-09 09:42:51 数学教案 我要投稿

精选小学数学教案八篇

  在教学工作者开展教学活动前,往往需要进行教案编写工作,教案是保证教学取得成功、提高教学质量的基本条件。优秀的教案都具备一些什么特点呢?以下是小编帮大家整理的小学数学教案8篇,仅供参考,大家一起来看看吧。

精选小学数学教案八篇

小学数学教案 篇1

  《数学课程标准》在解决问题的课程目标中对解决问题的策略教学提出了明确要求:形成解决问题的一些基本策略,体验解决问题策略的多样性。为了将解决问题的策略教学目标落到实处,必须先解决两个问题:其一,如何清晰地界定解决问题的策略,明确义务教育阶段小学生应该形成哪些解决问题的策略?其二,如何帮助学生形成解决问题的一些基本策略,并体验解决问题策略的多样性?

  一、关于解决问题的策略

  对解决问题的策略,人们已经有很多研究。波利亚在《怎样解题》一书中谈及的解决问题的策略有普遍化、特殊化、类比、猜想和检验、画一张图、建立方程、倒着干等。浙江省特级教师朱德江认为解决问题的策略有尝试和检验、画图、操作、找规律、制表、从简单的情况人手、整理数据、从相反的方向思考、列方程、逻辑推理、改变观点等11种。加拿大的某套数学教材中将解决问题的策略分为10种,并采用图文结合的方式形象地呈现如下:

  我国课程改革下的实验教材,不再以传统的算术应用题内容为线索,而是以学生的生活经验为线索,以所学运算体现的数量关系为线索,以体现解决问题的策略为线索。人教版教材编排了图示、列举、列表、找规律、从简单情况入手等解决问题的策略。北师大版教材编排的解决问题的策略有画图、列表、猜想与尝试、从特例开始寻找规律等。苏教版教材采用分散与集中相结合的原则,从四年级起集中编有解决问题的策略单元,安排学生学习摘录与列表、画图、一一列举、倒推;替换、假设、转化等策略。

  从以上的分析,我们可以大致明晰教材中解决问题的策略的内容。

  二、学习解决问题策略的三个阶段

  教师不但要思考解决问题的策略有哪些,还要思考怎样帮助学生形成这些策略。

  解决问题策略的学习,不可能脱离解决问题的过程,必须和解决问题紧密结合在一起。也就是说,解决问题策略的学习是基于解决问题、为了解决问题的。解决问题,首先是作为学生感受、体会、反思解决问题策略的手段,其次是让学生运用所学策略解决新的问题。对学生来说,解决问题的活动价值,不仅仅是解决某一类问题,获得某一类 问题的结论,更重要的是在解决问题的过程中获得发展,即基于解题的经历,形成相应的经验、技巧、方法,进而通过反思和提炼,形成一定的解决问题的策略。学生认识、理解、掌握解决问题的策略一般要经历潜意识阶段、明朗化阶段、深刻化阶段。教师要顺应学生的学习心理,展开解决问题策略的教学。

  1.走出潜意识阶段

  对学生来说,学习解决问题的策略,并不是建空中楼阁。他们在日常生活中已经积累了一些关于策略的认识,在以往解决问题的过程中也已经初步积累了解决问题的经验,但并不一定关注到了解决问题时隐藏在背后支撑解决问题的策略,即学生对策略的认识处于潜意识阶段。在这个阶段,学生往往关注具体的问题是否得以解决,对解决问题的策略处于朦朦胧胧、似有所悟的状况,缺乏应有的思考。学生对解决问题的策略的认识要经历一个从模糊到清晰的过程。教学时,教师可先呈现问题,让学生根据他们已有的知识经验尝试解决问题,获得一定的经验;再引导学生回顾解决问题的过程,

  思考解决问题的策略,并通过回顾性陈述交流,将解决问题的策略化隐为显。在回顾性陈述时,学生可能会基于自己的经验和理解,提出不同的策略,教师应引导学生联系解决问题的过程提炼。

  2.步入明朗化阶段

  学生对某一种解决问题的策略有了初步的感受后,教师应引导学生将策略明朗化。如:呈现新问题后,组织学生思考可以用什么策略解决问题,使学生具有明确的应用策略的意识;解决问题后,再组织学生交流解决问题的过程。这样,随着解决问题策略的初步应用以及对解决问题过程的回顾与反思,解决问题的策略就逐步浮出水面并凸现出来。这里要指出的是,在教学新的解决问题策略时,不能排斥学生应用以往学习的解决问题策略。学生学习解决问题策略的过程,不是小猴子掰玉米,喜新弃旧,而是在不断整合、应用不同策略的过程中,丰富自己解决问题的经验,并在新的问题中主

  动、综合、灵活应用各种策略解决问题。

  3.走向深刻化阶段

  在学生比较充分地感知了解决问题的策略、明确了解决问题的策略后,教师要安排一定的练习,对相关策略进行集中强化,以加深学生对策略的理解与掌握,使学生对策略的认识更深刻,逐步达到运用自如的境界。在这一过程中,教师要引导学生继续反思自己所使用的策略,促进学生形成稳定的解决问题的策略。在教师的眼中,学生采用的策略可能有优劣之分,但学生的思考过程并没有好坏之别,都能反映学生对问题的理解和所作的努力。因此,即使到了巩固、深化策略的阶段,教师仍不应急于对学生的策略作出评价,而应给学生阐明和讨论策略的机会,让学生在交流、倾听中比较不同的策略,优化自我的策略。为了深化学生对策略的认识,教师可在学生采用一定的策略解决问题后引导学生进一步思考:自己所采用的解决问题的策略有什么特点,适用哪些情况?还可采用什么策略解决问题?不同策略之间有无一定的本质联系?学生不断地经历这样的思考,就能对策略的本质有更深入的认识,就能得心应手地应用策略解决问题。

  策略,有助子在解决问题时走出无从下手的沼泽地;解决问题,有助于加深对策略的认识、理解与掌握。教师要充分认识策略的意义,进一步在实践中探索学生形成策略的规律,将解决问题策略的教学目标落到实处。

小学数学教案 篇2

  教材说明

  这部分内容是在学生已经理解了除法的意义与基本性质、分数的意义与基本性质,以及分数与除法的关系等知识,掌握了分数乘、除法的计算方法,会解答分数乘法实际问题的基础上进行教学的。内容包括比的意义和比的基本性质。

  这些内容过去是安排在小学最后阶段进行教学。由于比与分数有密切联系,把比的最基础知识提前安排在分数除法单元中教学,既能加强知识间的内在联系,又可以为以后学习比例知识,以及其他方面的知识打下较好的基础。

  传统的算术教材在讲比的意义时,只强调比的一种情况,即两个同类量的倍数关系。但在实际应用中,经常要用到比的另一种情况,即不同类量的比,所以现在的小学数学教材,既讲同类量的比,又讲不同类量的比。这样,小学生进入中学后就便于理解物理等学科中经常出现的不同类量的比。如路程和时间的比,质量和体积的比等。当然,不同类的量相比,有关联的才行。这时,比的结果产生了新的量,例如,路程和时间的比就形成速度,质量和体积的比就形成密度。

  本节教材分成三段。

  (1)教学比的意义。

  教材选取我国第一艘载人飞船的有关内容作为引入比的载体,通过这一富有时代性的情节内容,引出同类量的比、非同类量的比。在此基础上概括比的意义,介绍比的读、写及其各部分名称,然后引导学生思考比与除法、分数的联系。

  (2)教学比的基本性质。

  教材联系比和除法、分数关系,通过“想一想”启发学生找出比中有什么样的规律?然后概括比的基本性质。接着,应用这个性质,通过例1学习比的化简。例1有两道题。第(1)题,化简整数比。常用的方法是前、后项同时除以它们的最大公约数。第(2)题,化简分数、小数比。常用的方法是前、后项同时乘上分母的最小公倍数,或者把前、后项的小数点向右移动相同位数,把分数比、小数比转化为整数比再化简。此外,还有其他一些化简方法,由于化简的目的都是化成最简单的整数比,即前后项都是整数,公约数只有1。所以,转化为整数比的方法,思路比较统一,也容易理解和掌握。

  这里,教材安排了练习十一,主要练习怎样根据要求写出比,怎样求比值,怎样化简比。

  (3)教学比的应用。

  在小学数学中,比的应用主要有两个内容,即比例尺和按比例分配。由于比例尺与比例的联系更多一些,且《标准》把比例尺归入空间与图形领域的图形与位置这部分内容中,因此留在后面教学,这里只教学怎样解答按比例分配的实际问题。

  所谓按比例分配就是把一个数量按照一定的比进行分配。它是“平均分”问题的发展。例如,把12张画片分给甲、乙两个小朋友,如果按1∶1分,习惯上称平均分。如果按2∶1分,就是通常所说的按比分配。显然,平均分是按比分配的特例。按比例分配还有按正比例和反比例分配两种,由于按反比例分配的实际应用并不广泛,而且可以转化为按正比例分配来解答,因此教材只教学按正比例分配。

  按比例分配问题有不同解法,主要有三种:一是把比看作分得的份数,用先求出每一份的方法来解答;二是把比化为分数,用分数乘法来解答;三是用比例知识来解答。较早的算术课本通常采用第三种方法,按比例分配的名称由此而来。现在的小学数学教材,一般以第二种方法为主,因为学生在理解了比和分数的关系,并掌握分数乘法实际应用的基础上,比较容易接受这种方法,而且也有利于加强知识间的联系。考虑到学生尚未学习比例,且教材避开了比例方法,所以教学中不必出现“按比例分配”这一名称。

  教材通过例2,以清洁剂浓缩液的稀释为例,提出问题,引导学生把一个数量按照已知的比分成两部分。进而通过“做一做”的第2题,教学把一个数量按照已知的比分成三部分的问题。

  教学建议

  1. 联系相关知识,促进学生自主学习。

  在这部分内容中,因为比与除法、分数有着密切的联系,所以,比的很多基础知识与除法、分数的相关知识,具有明显的、可供利用的内在联系。比如,比的后项不能为0与除数分母不能为0,比的基本性质与商不变性质和分数的基本性质,求比值与求商,化简比与约分,按比例分配与求一个数的几分之几是多少等等。因此,教学这部分内容时,应当充分利用原有的学习基础,引导学生联系相关的已学知识,进行类比和推理,尽可能让学生自主学习,通过自己的思考,推出新结论,解决新问题。

  2. 让学生感悟相关知识的联系与区别,使新旧知识融会贯通。

  在本节内容的学习过程中,新旧知识的联系,不仅有利于生成新知识,也能加深对旧知识的理解,使新旧知识融会贯通。为此,教学时应当采用适当的方式,让学生看清并理解相关知识的联系,知道它们的区别。同时也应注意,揭示知识的联系与区别,要考虑学生的理解水平,不宜求全、深究。因为在小学阶段,很多知识不可能,也没有必要讲深讲透。

  具体内容的说明和教学建议

  1. 比的意义。

  编写意图

  (1)为了帮助学生理解比的意义,教材精心选择了中国人民引以为豪的内容作为载体,这一内容既富有教育意义,又能比较自然地引出比的两种应用情况。教材先介绍飞船里的两面长方形小旗,给出真实数据,引导学生讨论长与宽的倍数关系,得到长度相除的两个算式,由此引出同类量的比。然后再介绍飞船的运行路程与时间,让学生用除法表示飞船进入轨道后的速度,由此引出非同类量的比。进而通过这两种情况的实例,概括比的意义。接着以这几个比为例,说明比的读、写及比的各部分名称,并由比值计算的实例,引出“比值通常用分数表示”,然后根据分数与除法的关系,具体说明比也可以写成分数形式。最后,由小精灵提出问题,启发学生思考:“比的前项、后项和比值分别相当于除法算式和分数中的什么?比的后项可以是0吗?”

  (2)“做一做”,安排了两道练习。一道是根据条件和要求写出比并求比值的练习,用以巩固比的概念;另一道是求未知的前项或后项的练习,旨在通过求比的未知项,从另一侧面理解比与除法的关系。

  教学建议

  (1)教学比的意义前,可以先复习一些除法的应用,如:

  ①某班统计会骑车的人数,男生有18人,女生有12人。会骑自行车的男生人数是女生人数的多少倍?女生人数是男生人数的几分之几?

  ②路程÷时间=()

  总价÷数量=()

  教学比的意义时,可以先扼要介绍中国首次载人航天成功的大致情况,然后出示航天员杨利伟在“神舟五号”飞船里展示联合国旗和我国国旗的照片,引出两面旗,给出它们的长和宽,让学生用算式表示长和宽的关系。

  15÷10=1.5,表示长是宽的多少倍;

  10÷15=2/3,表示宽是长的几分之几。

  由此引出:长和宽之间的倍数关系,除了用除法表示之外,还有一种表示方法,即说成“长和宽的比是15比10;或宽和长的比是10比15”。教师还可以说明,不论长和宽的比,还是宽和长的比,都是两个长度的比,相比的两个量是同类的量。

  接着,出示“神舟五号”进入运行轨道后的运行数据:平均90分钟绕地球一周,大约运行42252 km。让学生用算式表示飞船的速度。由此引出:表示路程和时间的关系也还有一种形式,就是用路程和时间的比来表示,如“神舟五号”运行路程和时间的比是42252比90。然后通过提问:路程和时间,是不是同类的量?使学生知道两个不同类量的关系也可以用比表示。教师还可以指出,两个同类量的比表示这两个量之间的倍数关系,两个不同类量的比可以表示一个新的量。如“路程比时间”又表示速度。

  进一步就可以概括出比的意义,着重说明这些例子都是通过两数相除来表示两个数量之间的关系,它们都可以用比来表示,所以“两个数相除又叫作两个数的比”。

  然后,可以让学生看书自学。通过交流,搞清楚以下几点:

  ①几比几怎样写、怎样读?(可以写成比的形式,也可以写成分数形式,但仍读作几比几)

  ②比的各部分名称是什么?

  ③怎样求比值?

  ④比值可以怎样表示?(通常用最简分数表示,能除尽时也可以用小数表示,能整除时就用整数表示)

  ⑤比和比值有什么联系与区别?这个问题是个难点,可以组织学生讨论。两者的联系在于,比值是比的前项除以后项所得的商,它通常用分数表示,而比也可以写成分数。它们的区别主要是,比值是一个数,有时可以用小数甚至整数表示,而比表示两个数的关系,不能用一个小数或一个整数表示。

  这个问题也可以让学生举例说明:什么情况下比和比值的表示形式完全相同,什么情况下它们的.表示形式有区别?

  前者如:8∶3=8/3,8/3既可以看作比,又可以看作比值。

  后者如:8∶4=2,2是比值。

  8∶4=2/1,2/1是比。

  接下去,再让学生思考回答课本上小精灵提出的两个问题。关于比和除法、分数的联系,教师可以将学生的回答整理成下表:

  或者用字母表示三者之间的内在关系,即

  a∶b=a÷b=a/b(b≠0)

  关于比和除法、分数的区别,学生只要知道除法是一种运算,分数是一种数,而比表示两个数的关系就行了。

  至于为什么比的后项不能是0,一般学生都能回答。事实上,在用字母表示比和除法、分数的关系时,就能捎带解决这个问题。

  (2)“做一做”可以让学生把答案填写在书上。因为还没有学比的基本性质和化简比,所以第1题中练习本的本数之比写成6∶8就可以了,这里不要求化成最简单的整数比,花的钱数之比也是如此。交流、校对答案之后,还可以让学生说说,为什么两人买练习本的本数之比和所花钱数之比,它们的比值相等。这是因为单价相同,买的本数越多,花的钱数也越多,所以本数的倍数关系与总价的倍数关系相同。

  如果有学生写出的比,前后项互换了位置,可以通过质疑,使学生明白:交换了比的前、后项,比的具体含义就变了,由小敏是小亮的几分之几,变成了小亮是小敏的几倍。(实际上得到了一个新的比,叫做原来的比的反比,这个概念不必教给学生。)

  第2题则可以让学生说说,未知的前项或后项是怎样求的。

  2. 比的基本性质。

  编写意图

  (1)教材首先让学生回忆商不变性质和分数的基本性质,然后启发学生思考:“在比中有什么样的规律?”进而按照将比与除法、分数类比的思路,举出例子,并先利用比和除法的关系对实例加以研究,再让学生自己根据比和分数的关系加以研究。在此基础上,概括出比的基本性质。

  (2)作为比的基本性质的直接运用,例1教学怎样根据比的基本性质化简比。例题由两道题组成。第(1)题仍采用“神州五号”的题材,但讨论的是两面一大一小的联合国旗。题目告诉两面旗的长和宽,要求这两面旗长和宽的最简单的整数比。其中15∶10的化简给出了完整的过程并启发学生思考为什么这样化简;180∶120的化简则留空让学生自己完成。这里的两个答案相同,实际上渗透了两面旗按比例缩小的相似变换思想,同时也便于学生感悟化简的必要性,即能使数量关系更加简单明了。从中也可以看出,教材精心选取的这一内容载体,既有思想性和趣味性,又有数学内涵,而且数据真实,适合教学的需要。

  第(2)题也有两个比,比中分别出现了分数和小数。教材同样提出了启发思考化简过程的问题,并留有空白让学生自己完成。

  (3)第46页上的“做一做”,安排了化简比的练习。其中有整数比、小数比、分数比,还有一道小数和分数组成的比。通过练习,使学生接触到化简比的各种基本情况,以帮助学生初步掌握化简比的方法,并加深对比的基本性质的理解。

  教学建议

  (1)教学时可以先让学生回忆以前学过的商不变性质和分数基本性质,并由学生自己举例说明。或者通过填空题帮助学生再现这些知识。如:

  然后提出课本中的问题:联系比和除法、分数的关系想一想,在比中有什么相应的规律?可以先让学生说出个人的猜想,再自己举例验证,或者四人小组分工合作举例验证。通过交流,使学生看到各种角度(除法与比,分数与比)、各种方式(同乘,同除)的验证情况。

  也可以先举例试探,再总结规律。如果学生独立试探有困难,教师可以先给出例子,并加以提示,如:

  根据除法和比的关系来研究:

  根据分数和比的关系来研究:

  再由学生自己补充举例,然后总结、归纳。

  还可以在复习后,给出“6∶8”和“3∶4”,让学生判断这两个比的比值是否相等,并说明理由。再启发学生依据除法中商不变的规律说明它们是相等的。

  不论采用那种教学方法,总结、归纳规律时都应强调,同时乘上或除以相同的数,必须“0除外”,并请学生说明理由。

  (2)教学例1前,可以先做一些分数除法与约分的口算练习。

  出示例题时,教师可以简要说明课本插图是我国首飞航天员杨利伟(左二)在联合国总部向联合国秘书长安南(右)移交“神舟”五号所搭载的联合国旗(大的那一面)的照片。

  然后让学生写出一小一大两面联合国旗长和宽的比,15∶10和180∶120。教师可以先设置一个悬念:这两个比,数据大小悬殊,很难看出它们之间有什么关系,让我们化简后再来看。再引导学生观察思考:这两个比,是不是最简单的整数比?或者说什么是最简单的整数比?学生只要搞清了最简单整数比的要求(前、后项的公约数只有1),就容易想到化简的方法及其依据。在此基础上,可以放手让学生自己尝试,有困难的可以看书,根据例题的提示完成填空。

  然后进行交流。通常,会有学生想到把比写成分数形式再约分。特别是新授前复习了约分的口算后,就更容易想到这种方法。可以让学生比较各种化简过程。或者将不同的方法与书上例题的化简过程加以比较,使学生明白,书上虚线框内说明了化简的方法与过程,熟练以后可以不写出来。因此,直接同除以前、后项的最大公约数比较简便,它与写成分数形式约分的方法,实际上是一致的。

  这里,有必要提醒学生注意两个比化简的结果,并让学生说说结果相同,说明了什么?初步体会两面旗大小不同,形状相同,从中进一步了解化简比的必要性。

  (3)教学例1的第(2)题时,可以先让学生比较第(2)题与第(1)题的区别,看清第(1)题的两个比都是整数,第(2)题的两个比里有分数、小数。然后让学生独立探索,或者组织小组讨论,再交流各自是怎样化简的。也可以启发学生明确化简的基本思路:先化成整数比,再化成最简单的整数比,然后再尝试。

  如果放手让学生独立探索,则可以在交流后再小结化简分数比、小数比的思路和方法。可能会有学生想到不同的方法。比如,用分数除法的方法计算:

  对此,教师应给予肯定。因为比可以写成分数形式,所以3/4就是3∶4。如果没有学生想到这样的方法,教师就不必介绍了。因为这种方法只适合化简两个数组成的比,三个数组成的连比就不适用了。

  (4)第46页的“做一做”共6小题,可以在完成例1的教学之后进行练习。也可以在完成例1的第(1)题后练习前两小题,学完例1的第(2)题后练习后四小题。最后,在校对、交流的基础上,可以引导学生对化简比的方法进行小结。

  3. 关于练习十一中一些习题的说明和教学建议。

  第1~3题是学习“比的意义”的练习题。

  第1题创设了学校三个兴趣小组比较人数的问题情境,让学生按比较的要求写出人数比。练习时,可以提醒学生看清楚条件,根据要求写出比,前后项不能颠倒。

  第2题,要求学生利用方格纸找出三面长方形红旗中哪面红旗的长宽之比是3∶2。可以让学生看图口答。

  第3题是求比值的练习题。四小题的数据各异,有整数、小数、分数,也有小数与分数混合,通过练习,既巩固了比值的概念和求比值的方法,又练习了整数、小数、分数的除法。

  第4题共3小题,要求把各比化成后项是100的比。练习时,可以先观察后项乘上或除以多少才是100,然后根据比的基本性质把前项也乘上或除以这个数。其中前两小题很容易观察找出这个数,第(3)小题稍难些,如有学生感到困难,教师可提示,先去掉相同的单位“万”,也就是同时除以10000,再观察寻找。本题可要求学生书写化简的过程,如:

  275万∶250万=275∶250=(275÷2.5)∶(250÷2.5)=110: 100

  第6题以比较身高为题材,通过对话形式引出质疑,启发学生思考:前后项是带有不同单位的比,应该怎样化简。可要求学生写出化简的过程:

  150 cm∶1 m=150∶100=3∶2

  第7*题供学有余力的学生选做。解答时可以这样想:十位上的数与个位上的数之比是2∶3,说明它们相差“1份”,由第二个已知条件可知,这两个数相差2。所以1份是2,2份是4,3份是6,这个两位数是46。

  最后一题是思考题,解法多样。可以这样想:重叠部分占大长方形面积的1/6,说明大长方形面积含6个重叠部分;同理,小长方形面积含4个重叠部分,所以大、小长方形面积的比是6∶4=3∶2。学生比较容易想到画图依靠直观进行比较,如右图,教师可以肯定。

  4. 比的应用。

  编写意图

  (1)例2创设了一个日常生活中比较常见的稀释清洁剂浓缩液的问题情境。教材首先通过一段文字说明稀释瓶上用不同颜色条形标明的比的含义,使学生了解按比配制的实际意义。然后通过三个人物的对话插图,由阿姨说明稀释的配制要求,并提出问题,再由两个同学讨论算法,引导学生思考。这样的例题设计,较传统形式的应用题,更具可读性与启发性。例2介绍了两种解法。一种是先求出每份是多少,再求几份是多少。即转化为整数的除法、乘法来解决。另一种是转化为求一个数的几分之几是多少,用分数乘法来解决。例题的解答过程,作了一些留白处理。

  (2)第49页上的“做一做”,安排了两道练习题。第1题与例2相仿,要求把303按51∶50分成两部分。第2题略有变化,一是把70棵树按要求分成三部分,二是要求“按3个班的人数分配”,已知的是三个班的人数,而不是三个班人数的比。由于情节内容贴近学校生活,题意明显,所以这些变化一般不会构成练习时的困难。

  教学建议

  (1)教学例2前,可以先练习求一个数的几分之几是多少的实际问题。如六(1)班40名学生参加大扫除,其中3/8的同学打扫教室,5/8的同学打扫操场。

  ①打扫教室、操场的同学各有多少人?

  ②写出打扫教室、操场的人数比。

  练习后可作出小结:在实际生活中,有时并不是把一个数量平均分配的,而是按一定的比来进行分配。由此引出课题“比的应用”。

  教学例2时,首先引导学生弄清题意。可以让学生说说自己是怎样理解的,如什么是稀释液,怎样配制?通过同学或老师的补充,使大家明白家庭使用的清洁剂稀释液是用浓缩液和水配制而成。现在的要求是按浓缩液和水的体积之比1∶4配制500 ml的稀释液。

  在理解题意的基础上,可以放手让学生试着解决问题。然后看看课本是怎样解决的。并把例题解答过程中留出的空白填补完整。

  这里,还应引导学生对得数进行检验。完整的检验包含两个方面,一是把浓缩剂与水的体积相加,看是不是等于稀释液的总量500 ml,二是把两种液体的比化简,看是不是等于1∶4。

  小结时,应当通过交流使学生明确:把一个总数按一定的比来分配,可以把各部分数的比看作份数关系,先求出每一份;也可以把各部分数的比转化为总数的几分之几,直接求总数的几分之几是多少。前一种方法用整数除法、乘法解决问题,后一种方法用分数乘法解决问题。

  (2)完成第49页上的“做一做”时,可以让学生独立思考解答,允许学生选用适合自己的解法。教师可以提醒学生对得数进行检验,做完后交流各自的解法与检验方式。

  5. 关于练习十二中一些习题的说明和教学建议。

  练习十二的第1~6题都是配合例2的练习题。

  第1~4题是比较基本的问题,第5、6题则稍有变化和综合。

  第1题涉及空气的成分。为了简化问题,题目只给出了空气中氧气和氮气的体积比。对此,如有学生提出疑问,如:空气中还有一氧化碳等。教师可做解释:空气是混合物,它的成分很复杂,但由于自然界各种变化的相互补偿,如植物的光合作用吸收二氧化碳,释放出氧气,使得空气中比较固定的成分是氧气和氮气,其他成分在这里就忽略不计了。

  第2题的特点是用份数代替了比作为已知条件。

  第3题则用每个橡皮艇上两种人员的人数代替比。学生如用整数乘除法分步列式,要注意56÷8得到的是橡皮艇的个数,而不是人数。

  第4题中出现了由3个数组成的比2∶3∶5,叫做连比(不必对学生讲这个名词),读作2比3比5。练习时不必刻意去教、去讲,让学生读一读题目,说一说比中三个数的具体含义,学生就能自然而然地读和理解了。

  第5题综合了长方体的棱的知识。根据题意,120 cm是长方体12条棱的总长。为了求长方体的长、宽、高,可以把12条棱平均分成4组,每组由相交于一个顶点的一条长、一条宽和一条高组成。即120÷4 得到一组长、宽、高的总和,再按比分。

  第6题综合了分数乘法的问题,根据题意是800 m2菜地种了一些西红柿,剩下的面积按2∶1分,所以要先求出剩下的面积,再按比分。

  第7*题可让学有余力的学生自己选做,试探解决。学生可能有多种解法。

  如:假设甲数是20,则根据甲、乙两数的比2∶3推算出乙数是30,再根据乙、丙两数的比4∶5,推算出丙数是30÷4×5=37.5,然后写出甲、丙两数的比是20∶37.5=200∶375=8∶15。

  又如:注意到前一个比中乙数是3,后一个比中乙数是4,3和4的最小公倍数是12。因此把前一个比改写成2∶3=8∶12,把后一个比改写成4∶5=12∶15。同样可得甲、丙两数的比是8∶15。教师可让个别想到这种解法的学生说说其中的算理。浅显地说,把乙数看作12份,作为标准,则甲数相当于这样的8份,丙数相当于这样的15份,这时的12份、8份、15份,每一份都是相等的。

  第51页上的“你知道吗?”介绍了“黄金比”的小知识,可让学生自己阅读。感兴趣的学生还可以课外自己去收集有关的资料,与同学交流共享。

  整理和复习

  (第52~54页)

  这部分内容是对分数除法这一单元所学知识,进行系统整理和复习。通过整理和复习,把前面分散学习的知识加以梳理,整出头绪,加以归纳,提出要点。因此,整理和复习的过程也是一个加深理解和巩固所学知识,提高知识运用能力的过程。

  教材通过四个精心设计的问题,把本单元的主要内容归纳为概念、计算和应用三方面。第1题复习概念,包括分数除法的意义和比的意义,第2题复习分数除法的计算,第3题复习比的有关知识,第4题复习分数除法和比的应用。这四个问题,简明扼要,重点突出,而且非常清晰地沟通了有关内容间的联系。如一个数是另一个数的几分之几与两个数的比(第1题),分数的应用问题与比的应用问题(第4题)。这就为复习课教学提供了一个层次分明的整理思路和复习素材。

  具体内容的说明和教学建议。

  1. 复习概念。

  第1题,复习本单元学习的主要概念。可以先让学生说一说分数除法的意义和比的意义,再完成第1题的填空。然后由学生说说四个算式的含义,教师可以加以板书:

  使学生更清晰地感悟乘法与除法,分数与比之间的内在联系。

  2. 复习计算。

  第2题,复习分数除法的计算。可以先由学生说一说分数除法的计算方法,使学生明确,整数可以看成分母是1的分数,所以不管被除数、除数是整数(0除外)还是分数,都可以把除转化为乘,即除以一个数(0除外),等于乘这个数的倒数。然后让学生完成第2题的三道计算,再说一说根据以往的计算经验,计算时还要注意什么。如除转化为乘以后再约分,能约分的尽量约分,等等。当然也可以先完成计算,再来总结。

  第3题,复习比的化简。可以先让学生说出比和除法、分数的关系,化简比的依据,然后化简第3题的三个比。这里可以引导学生对常用的化简方法加以总结。

  还可以让学生举例说明,求比值与化简比的区别。求比值用除法,结果是一个数;化简比根据比的基本性质,结果是一个比,可以写成分数,但不能写成小数或整数。例如:

  18÷3=6/1或18∶3= 6∶1,写成18∶3=6,就不是化简比,而是求比值了。

  3. 复习应用。

  第4题复习运用分数除法与比解决实际问题。可以先让学生根据第(1)题用两条线段表示鸭、鹅的只数:

  再列出三题的方程或算式,然后说出它们的数量关系加以比较:

  (1)鸭的只数×2/5 =鹅的只数

  (2)鸭的只数-鹅比鸭少的只数=鹅的只数

  (3)鸭与鹅的总只数×5/7=鸭的只数

  鸭与鹅的总只数×2/7=鹅的只数

  使学生看清这三题都反映了鸭、鹅只数5∶2的关系,区别只是5∶2的表示方式有所不同,已知数与未知数有所交换。在此基础上,让学生用上面的数据编出其他的分数乘、除法问题。如:

  ①张大爷养了500只鸭,200只鹅。

  a. 鸭的只数是鹅的多少倍?

  b. 鹅的只数是鸭的几分之几?

  c. 写出鸭与鹅的只数比。

  d.写出鸭与总只数的比。

  e. 写出鹅与总只数的比。

  ②张大爷养了500只鸭,鹅的只数是鸭的2/5,养了多少只鹅?

  ③张大爷养了500只鸭,鹅的只数比鸭少3/5,养了多少只鹅?

  ④张大爷养了200只鹅,鸭的只数是鹅的5/2,养了多少只鸭?

  ⑤张大爷养了200只鹅,鸭的只数比鹅多3/2,养了多少只鸭?

  ⑥张大爷养了500只鸭,鸭的只数是鹅的5/2,养了多少只鹅?

  ⑦张大爷养了500只鸭,鸭的只数比鹅多3/2,养了多少只鹅?

  实际复习时,应适当控制编题数量,不要求全,否则基础较差的学生会适得其反。部分同学有兴趣,可以课后继续改编。

  4. 关于练习十三中一些习题的说明和教学建议。

  第1 题,要求学生运用本单元的一些基本概念作出判断。练习后,应让学生说出判断的理由。如:

  第(1)题可以举出相反的例子来说明结论是错的。

  第(2)题已知a÷b=1/3,那么b÷a=3a,所以是对的。

  第(3)题3∶5是a与b的份数关系,每一份不一定是1,所以是错的。

  第(4)题可以这样思考,走同样的路程,用的时间越短,速度越快,而不是相反,所以是错的。

  事实上,从学校走到电影院,小明用了8分钟,每分钟走全程的18;小红用了10分钟,每分钟走全程的1/10,小明和小红的速度比是1/8∶1/10=5∶4 。这一速度比的正确答案,不是一般要求,可供学有余力的学生选做。

  第2题,可以先计算出得数再连线,也可以通过观察直接连线。

  第3题,应让学生选择适合自己的方法计算,然后通过交流了解其他算法。其中乘除和连除运算,可以统一转化为乘法,再一起约分。两个分数的和(差)与一个数相乘,可以用分配律计算。如:

  第4题,可以把冰的体积看作单位“1”,设为x dm3,列方程得(10/11)x=30。也可以把分数看成比,即水与冰的体积比是10∶11,已知10份是30 dm3,求11份,算式是30÷10×11。

  第5题,同第4题类似。

  第 6题,是分数乘除法的综合应用问题。可以分步列式,也可列出一个方程。如:设猫每分钟跳x次,依题意得方程16x=500×(2/25)。

  第7题,是有关比的基础知识的综合练习。第(1)题综合了比与除法、分数的关系,以及它们的基本性质。第(2)题综合了求一个数是另一个数的几倍(或几分之几),以及两个数的比。第(3)题综合了质量单位的改写与比的化简。

  练习后,应酌情作出针对性的分析讲评。

  第8题,是把24小时按5∶3分,其中24小时是一个隐蔽条件。

  第9题,要求学生写出3个吨数的比并化简。化简时,可以把每个数都除以它们的最大公约数15,答案是10∶4∶1。

  第10题,要求学生根据题目提供的信息,寻找合适的量写出比。如:我和爸爸岁数的比;爸爸和妈妈年工资的比;爸爸和妈妈月工资的比。这里交换前后项也是可以的,只要写清楚是什么和什么的比。小精灵提出的问题可作为课外作业,让学生自己去搜集信息。教师可从学生的作业中选择一些有意义、有价值的比在全班交流,共享信息

小学数学教案 篇3

  教学内容:《义务教育课程标准试验教科书·数学》(青岛版)五年制二上第37—39页

  教学目标:

  1、借助具体情景,进一步理解乘法的意义,通过自主探究、合作交流编制8的乘法口诀。

  2、在编制口诀的过程中,探索规律,培养学生发现规律、运用规律的能力及迁移类推的能力。

  3、培养学生学习数学的兴趣,发展初步的应用意识。

  教学要点分析:

  教学重点:进一步体会乘法的意义、寻找规律编制记忆口诀

  教学难点:寻找规律 记忆口诀

  教学准备:小棒 数字卡片

  教学过程设计:

  一、创设情境,激发兴趣

  1、谈话导入

  今天,小凯蒂又来到了同学们中间,看看她在向大家学什么手艺?

  (出示情景图)

  原来凯蒂来到教室里学习编中国结。

  仔细观察,从图中你能得到哪些数学信息?

  提问:你能提出什么问题?

  生1:一共需要多少个圆环?

  生2:做2个中国结需要多少个圆环?

  生3:每周要安排多少人做值日?

  ……

  这节课我们就和小凯蒂一起来解决这些问题。

  二、合作交流,探求新知

  1、编儿歌,填填表(教学红点)

  我们一起来看 “一共需要多少个圆环?”这一问题在老师送给小凯蒂的儿歌中能不能找出答案。

  (出示儿歌)

  小小凯蒂志气高

  编起结来手儿巧

  中国结儿传友谊

  我们一起瞧一瞧

  一个结上8个环

  ……

  谁能接着往下编?2个结上……?3个结上……?……

  (以小组为单位,可借助小棒,把儿歌编完整)

  学生按照共同编好的儿歌,边说边完成38页“填填表”

  2、读儿歌,编口诀

  同学们数得很好,你是怎样数的?和同桌交流一下你的方法。

  (学生交流方法)

  同学们猜想一下,根据以往乘法口诀的学习经验,8的乘法口诀共有几句?你们能编出口诀吗?

  (学生试着编口诀,并将整理好的口诀进行板书)

  3、寻找规律 记忆口诀

  (1)来看一下我们编出的8的乘法口诀,一起来读一读。

  (2)仔细观察,同桌讨论一下,你发现了什么小秘密?(引导学生比较发现规律)

  (对的,也就是每相邻两句口诀相差8,三八二十四和四八三十二相差几呢?4个8比3个8多几?比5个8少几?)

  (4)如果忘记了“六八”这句口诀,怎么办?

  (5)你认为哪句口诀最好记?哪句最难记?你有什么好的方法记住它?把你的想法在小组内进行交流。

  记忆口诀。

  三、解决问题 走进生活(教学绿点)

  1、一周安排多少人做值日?

  能很快解决吗?

  (学生先独立计算解决,然后再小组交流)

  2、全班交流:谁能代表你们小组说出在解决问题的过程中你们是怎样想的?用到了哪句口诀?

  (学生独立思考)

  生1:就是求5个8是多少?

  生2:可以列成5×8或8×5,用到的口诀都是五八四十。

  ……

  四、自主练习 巩固深化

  1、自主练习1“对口令”游戏

  现在我们大家一起做一个对口令的游戏。(师说上半句,生说下半句。再轮换,增加趣味性。)

  练完之后再由同桌两人继续练习。

  2、7个8比6个8多( ),比8个8少( )

  提问:7个8比6个8多几个8?

  你能照样子说一句吗?

  3、一组一组地做,做完后想一想,你有什么发现?每一组的得数为什么是一样的?

  3×8+8= 5×8+8= 6×8+8=

  4×8= 6×8= 7×8=

  8×4= 8×6= 8×7=

  4、同学们愿意接受挑战吗?(看得数、讲算式)

  48 56 24

  五、拓展应用

  班上共有多少名学生?(42名)

  除了用数字告诉大家用,你还能用算式来告诉我们吗?

  可能会出现:5×8+2 6×8-2 4×10+2

  五、总结评价 延伸拓展

  学了这节课,你有新的收获吗?(学生说感受,并一起回忆8的乘法口诀。)在实际生活中,有哪些地方用到8的乘法口诀呢?

  如:一只螃蟹几条腿?两只?三只?你能编首儿歌吗??(学生做拍手游戏)

  同学们编儿歌的兴趣真浓厚,等我们以后学了9的乘法口诀,还能解决更多的生活问题。只要同学们用心去发现学习,老师相信你们一定会收获的更多。

小学数学教案 篇4

  教学内容:

  简便计算第39页例4练习十第5-10题

  教学要求:

  使学生进一步掌握整数、小数四则混合运算的顺序,熟练地进行有中、小括号的运算,在混合式题运算中能自觉地使用简便计算,提高计算的速度。

  教学重点:

  混合运算式题中怎样使用简便计算。

  教学难点:

  同上。

  教具准备:

  小黑板,卡片,幻灯。

  教学过程:

  一、复习

  1、填空:

  ()叫做第一级运算。乘法和除法叫做()。一个算式里,如果只含有同一级运算,应();如果有中、小括号的,要先算(),再算();遇到除法的商除不尽时,一般()。

  2、计算:(指名板演,其余座练)

  7.4×1.3-4.68÷0.9

  [10-(0.2+16.7×0.7)]×0.01

  教师针对性评讲,着重让学生说说脱式时哪一步用约等号,哪一步用等号,为什么?

  3、口算:说出下列算式根据什么定律,性质进行简算。

  7.5-0.26-1.74+2.50.25×13×4

  18-2.7-9.332×0.125

  3.5×3+3.5×74.5×20-3.5×20

  二、新授

  1、谈话引入。

  在四则混合运算中,有时也可以应用运算定律,使一些计算简便。(板书课题)

  2、教学例4。

  看一看,这道算式有什么特点?运用什么运算定律,可以使计算简便?

  试一试,让学生自己算,教师巡视。指名板演。

  集体订正,教师指出;这道题虽然不能把整个题简便计算,但是式子里有两步可以简便,能简便计算的要尽量使用简便方法。

  看课本第39页的例4,提问:虚线框框里的算式表示什么?

  3、做一做第39页

  指名板演,其余的做在本子上,教师巡视,做完后集体评讲。要求学生在计算时应该随时注意,能简算的自觉简算。

  三、巩固练习

  1、练习十第5题

  先独立练习,再集体订正。订正时让学生说一说自己是怎样算的,有没有简便算法。

  2、练习十第7题

  这三道题,主要训练学生学会列综合算式和使用括号。先让学生独立列式,再集体订正。

  3、练习十第8、9、10题

  指名分析题目,然后让学生独立列式解答。

  四、课堂(略)

  五、课堂作业练习十第6题

  板书设计:

  整数、小数四则混合运算

小学数学教案 篇5

  设计说明

  1.加强动手操作训练,促进学生的思维。

  有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。本设计积极引导学生理解天平平衡的原理,加强对用天平称物和画图的动手操作训练。使学生经历称物、分轻重的过程,了解和思考称物的不同情况,逐步把思维条理化、逻辑化,并想办法用图示表示出来,从而促进学生逻辑思维的发展。

  2.自主探索,体会优化思想。

  本设计给予学生充分的自主探索的空间,通过试验、汇报不同的解决问题的方法,发现如何分份是优化“找次品”方法的关键,从而总结出最佳的分份方法和最佳的图示方法,渗透优化思想。

  课前准备

  教师准备 PPT课件 天平 药瓶

  学生准备 天平

  教学过程

  情境导入,激发兴趣

  1.你们每天上学通常要走哪条路?为什么要选择这条路?

  (生自主回答)

  2.你们真聪明,在平时做事的时候就能选择最简便的方法。在数学学习中,解决问题的方法是多种多样的,但通常都有一种最有效、最简便的方法,我们把它叫最优化的方法。这节课就让我们带着优化的思想走进课堂。(师出示2瓶钙片)

  师:老师这里有2瓶钙片,其中有1瓶少了3片,你们能不能想办法帮我把它找出来呢?(生回答想法)

  师:老师准备了一架天平。如果在天平左右两边的托盘里放上质量相同的物品,天平就会平衡;如果一边重一边轻,那重的一边就会沉下去,轻的一边就会翘起来。今天我们就借助天平来完成本节课的学习内容。

  设计意图:引导学生根据次品的特点发现用天平“称”的方法,知道并不需要称出每个物品的具体质量,而只要根据天平的平衡情况对托盘两端的物品进行判断就可以了。

  实践操作,自主探究

  1.提出探究要求。

  师:同学们很容易就从2瓶钙片中把这瓶次品找到了,如果是3瓶钙片,你还能从中找到这瓶次品吗?同桌可以用学具摆一摆,试一试。

  2.动手操作,汇报方法。

  学生动手试验后汇报。(先在天平的两端分别放上1瓶钙片,如果天平平衡,剩下的一瓶就是次品;如果天平不平衡,轻的那端就一定是次品了)

  3.总结归纳记录的方法。

  组织学生把用天平称的过程用图表记录下来。

  合作交流,研究探讨

  师:同学们真聪明,这么容易就从3瓶钙片中找到了次品,其实你们已经用自己的聪明才智解决了教材中例1所提出的问题。那么,例2又向我们提出了哪些问题呢?

  理解题意,动手操作。

  (1)先让学生读题,说说“至少”的含义。

  (2)小组分工合作:用学具摆一摆,并尝试用图示和表格表示摆的过程,完成下表。

  (合作要求:2名同学摆学具,1名同学用图示法作记录,1名同学填表)

小学数学教案 篇6

  教学目标:

  1.使学生能运用不同的方法正确数出数量在100以内的物体的个数,能正确数出100以内的数,知道这些数是由几个十和几个一组成的。

  2.能根据提供的素材,估计数量在100以内的物体的个数;通过对100以内的数的认识,进一步培养学生的数感。

  3.激发学生学习数学的兴趣,培养学生的合作意识。

  教学重、难点:能正确数出数量在100以内的物体的个数;培养学生的数感。

  教具准备:每个小组四样奖品:糖、小星星、橡皮、铅笔各100个。

  教学过程:

  一、课前谈话

  (设计意图:教师通过与学生自然和谐的交谈了解学生学习本节课内容的认知基础,掌握学生口头唱数的情况,使学生了解生活中常常需要估数,培养学生的估计意识,使学生感知到口头数数容易,但要准确地数出物体的个数可不太容易,指导学生数数时要注意手口一致。)

  教师与学生交谈:

  1.我们以前认识过哪些数?谁能从0数到20?(请一名学生数。)谁能接着往后数?(预计学生能比较准确地数到100,但数到100后学生可能数得不整齐了,部分学生开始出错了。)

  大家能数那么多数,真了不起啊!

  2.那么你猜猜今天有多少位同学来上课吗?到底有多少位同学呢?请你们自己数一数,好吗?(学生自己数一数。)谁能说说你数的结果是多少位同学?

  3.谁愿意领着大家一起数?(请一名学生边点边数,这位学生指着,大家跟他一起数。)

  今天来上课的人数比我们以前学过的20多一些。

  4.刚才大家数数的时候数得那么好,可是数人数的时候却遇到了困难,看来要准确地数出物体的个数还真不太容易!不过没关系,只要大家像刚才那位小朋友一样,边点边数,点的和数的一样快,相信你们一定能数对!

小学数学教案 篇7

  教学目标:

  1.通过观察、操作,使学生体会所学平面图形的特征,并能用自己的语言描述长方形、正方形的边的特征。

  2.通过观察、操作,使学生初步感知所学图形之间的关系。

  3.通过学生大量拼摆图形,发现图形可由简单到复杂的变化及联系,感受图形美。

  4.通过数学活动,培养学生用数学进行交流、合作探究和创新的意识。

  教学重难点:体会所学平面图形的特征,能用自己的语言描述长方形、正方形的边的特征。

  教法设计:引导观察,动手操作,体验知识的形成过程。

  教学过程:

  一、创设情境,谈话导入

  教师出示一个风车,并以谈话引入:同学们看,这是什么?

  你们喜欢风车吗?谁动手做过这样的风车?给大家介绍一下做这样的风车要用哪些东西?

  二、感受新知,观察比较

  1.提问:你们说得很对,作风车的风叶要用一张正方形的纸,正方形上个学期跟我们见过面了,是个老朋友了,回忆一下,上学期除了正方形你还认识哪些图形?

  在这些图形中,哪些图形和正方形最相似?为什么?

  2.提问:它们都有四个角,四条边,先来看看长方形,它的四条边有什么特点?

  上面的边对着下面的边,这样相对的边我们把它叫做对边。

  3.引导学生继续观察长方形的边。

  提问:我们能想办法证明长方形对边相等吗?

  生可以自由选择证明方法,如对折、测量等,并请用不同的方法的学生上台演示。(教师板书:对边相等)

  4.引导学生观察正方形的边,有什么发现?

  你能证明正方形的四条边都相等吗?

  5.小朋友们真了不起,通过你的观察,动手验证了两种图形边的特点,那你能不能利用手中老师发给你的长方形的纸做一个风车呢?(全班同学动手做风车,教师给有困难的学生进行指导)说一说你在做风车的过程中发现了哪些图形?

  6.一个简简单单的风车,就让我们发现了这么多的图形,你能试着用这些图形来拼更多的图形吗?大家来试试!

  三、动手实践

  1.学生独立完成第3页的“做一做”。

  2.第6页的第4题。

  3.第6页的第5题。

  四、小结

  这节课我们进行了图形的拼摆,同学们学得很投入,课下请大家留心观察生活中有哪些基本的图形拼成的图案,说不定会有更多更好的发现。

小学数学教案 篇8

  一、教学目标:

  1、在具体的情景和教学活动中认识“10”的组成,并初步理解10的加法和相应的减法算式,进一步体验加减法的含义和加减法之间的关系;

  2、初步培养学生有条理地思考问题的能力及善于交流合作学习的能力。

  二、教学重点及难点:

  1、重点:能正确熟练地口算10的加减法;

  2、难点:经历从实际问题抽象并整理出10的加法和相应的减法。

  三、教学准备:

  1、教具:磁性苹果、课件

  2、学具:苹果图片

  四、教学过程:

  教师活动

  学生活动

  1、情景导入:

  师:同学们喜欢吃苹果吗?今年苹果大丰收,老师也摘了些回来。瞧,咱黑板上这一堆苹果,你估计估计有多少个?我们一起数数吧!

  学生估计苹果数量。

  1个、2个……10个。

  2、实践操作:

  师:大家都想亲手分苹果吧?咱们按小组分苹果吧!(板书:分苹果)

  活动要求:4人一个小组,同学之间要合作,有想办法的、有操作的、有记录的,比比哪组合作的最默契,分的而且方法多。

  小组一边动手分,一边记录。(附小组活动记录表)

  3、汇报分苹果情况:

  (1)师:10个苹果分成两堆,有几种分法?

  (2)进一步理解分苹果:课件再现学生分苹果的情况,渗透整体与部分的思想。

  小组汇报,展示活动记录表。

  10个苹果被分成两部分,一部分是(),另一部分是();……

  4、理解10的加减法

  师:苹果分成1和9,你想到了什么算式?说一说你列的算式是什么意思?苹果还可以怎样分,你想到其它算式了吗?

  1+9=109+1=10

  10-1=910-9=1……

  学生解释算式的意思。

  5、练习口算10的加减法:

  (1)师:数一数、连一连,哪两盘合起来是10个?

  想要两盘合起来是10个,还需要一盘有几个的?

  (2)找规律填空。(附题目)

  学生连线,发现其中有一盘是5个的没的连。

  还需要一盘有5个的。

  找规律,口算填空。

  6、数学活动:猜猜老师家的电话号码

  10-4=()10-8=()10-1=()10-2=()

  10-10=()4+5=()10-9=()10-3=()

  学生口算得出号码:

  62980917

  7、小结:

  师:把今天数学课上有趣的事告诉爸爸妈妈或同学,然后把自己家的电话号码编成算式告诉给大家!

  课后编电话号码,同学之间可以练习10以内的加减法。

【精选小学数学教案八篇】相关文章:

【精选】小学数学教案7篇02-04

精选小学数学教案9篇07-10

【精选】小学数学教案5篇07-02

精选小学数学教案5篇06-18

小学数学教案(精选15篇)02-23

【精选】小学数学教案3篇05-18

【精选】小学数学教案四篇05-04

【精选】小学数学教案九篇04-17

【精选】小学数学教案8篇04-05