有关小学数学教案合集7篇
作为一无名无私奉献的教育工作者,有必要进行细致的教案准备工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么问题来了,教案应该怎么写?以下是小编整理的小学数学教案7篇,希望能够帮助到大家。
小学数学教案 篇1
教学目标:
1、在具体的情境中,进一步认识分数,发展学生的数感,体会数学与生活的密切联系。
2、结合具体的情境,进一步体会“整数”与“部分”的关系。
教学重点:
体会一个分数对应的“整体”不同,所表示的具体数量也不同。
教学过程:
一、谈话引入,教学新课。
现场组织活动:请两位同学到台前,每人分别从一盒铅笔中拿出1/2,结果两位学生的结果不一样多,一位学生拿出的是4枝,另一位学生拿出的是3枝。
师:这里有两盒铅笔,你能从每盒铅笔中分别拿出全部的1/2吗?其他同学注意观察,你发现了什么?
师:你准备怎么拿呢?
生1:我准备把全部的铅笔平均分成2份,拿出其中的一份就是1/2。
生2:我准备把全部的铅笔除以2,也就是平均分成2份,其中一份就是1/2。
学生活动,一位学生拿出3枝笔,另一个学生拿出4枝笔。
师:你发现了什么现象,你有什么疑问,或者说你能提出问题吗?
生:他们拿出的枝数不一样多,一个是3枝,一个是4枝,这是为什么呢?
师:他们两人都是拿全部铅笔的1/2,拿出的铅笔枝数却不一样多,这是为什么呢?请想一想,然后小组交流一下。
学生小组交流,再全班反馈。
生:我们认识两盒铅笔的总枝数不一样多。
生:有可能数错了。
师:现在大家的意见都认为是总枝数不一样,也就是整体“1”不一样了吗?
学生都表示同意。
师:告诉大家总枝数是多少,1/2是多少枝。
生1:全部是8枝,1/2是4枝。
生2:全部的铅笔是6枝,1/2是3枝。
师:真的是不一样多,一盒铅笔的1/2表示的都是把一盒铅笔平均分成2份,其中的一份就是1/2。但由于分数所对应的整体不同(也就是总枝数不一样多),所以1/2表示的具体的数量也就不一样。
师:原来分数还有这样一个特点,你对它是不是又有了新的认识?
二、练一练
1、看数学书说一说,小林和小明一样多吗?笑笑和小红一样多吗?
说说理由。
2、画一画,说说画法对吗?为什么?还有别的画法吗?
三、巩固练习:
1、独立完成1、2、3,然后选几题说说思考过程。
2、第4题让学生充分说说自己的想法,必要时可以举例说明。
3、第5、6题独立完成,然后选几题说说思考过程。
四、思考题。
放学后独立完成,课后讲评。
五、课堂作业
小学数学教案 篇2
教学内容:
教材第29~31页内容。
学习目标:
1.引导学生在解决问题的过程中了解乘除混合应用题的数量关系,能运用运算定律进行一些简便计算。
2.通过交流,让学生体验到解决问题策略的多样性,提高学生灵活运用所学知识解决实际问题的能力。
3.通过情境创设,让学生感受到数学知识的现实性,体验到数学与生活的密切联系。学习重点:
根据解决的具体问题,选择运算定律进行简便计算方法。
学习难点:
正确选择相应的简算方法使计算简便
教学过程:
一、创设情境,提出问题
师:同学们,为了加强青少年的身体素质,我校开展了丰富多彩的“大课间”活动,你们喜欢这个活动吗?(喜欢)老师了解到,为了丰富“大课间”的活动内容,学校最近又新买了一些体育用品,大家想知道都有什么吗?(想)
师:请看情境图,学校都买了哪些体育用品?
1.仔细观察,说一说你了解到了哪些数学信息。
预设
生1:学校买了5副羽毛球拍,花了330元。
生2:学校买了25筒羽毛球,每筒32元。
生3:我还看见一筒羽毛球上写着“一打装”。
师:“一打”是多少个?(12个)
2.根据这些信息,你能提出哪些数学问题?
教师根据学生的汇报,出示问题:王老师一共买了多少个羽毛球?每支羽毛球拍多少钱?
设计意图:数学来源于生活,将学生置身于“大课间”活动的现实情境中,把学生的学习活动与现实生活紧密联系起来,既有利于激发学生的好奇心和求知欲,又增强学生应用数学的意识。
二、解决问题,探究学习
1.教学教材29页例8(1)。
(1)解决“王老师一共买了多少个羽毛球”这个问题都需要题中的哪些条件?(让学生找出解决此问题所需的条件)
(2)指名列出算式,并说明解题思路。
(3)引导学生用简便方法计算出结果。
预设
生1:运用乘法结合律可以使计算简便。
12×25
=(3×4)×25
=3×(4×25)
=3×100
=300(个)
生2:运用乘法分配律可以使计算简便。
12×25
=(10+2)×25
=10×25+2×25
=250+50
=300(个)
生3:先扩大再缩小可以使计算简便。
12×25
=12×(100÷4)
=12×100÷4
=1200÷4
=300(个)
师:你是怎样想的?(学生对于最后一种方法可能说不太清楚,教师应引导学生说出:100÷4=25,把25筒看成100筒,扩大到原来的4倍,要使计算结果不变,应缩小到原来的)
(4)引导学生比较几种简便算法。
①这几种算法有哪些相同点?(结果一样;算法都比较简便)
②你喜欢哪种算法?在以后的解题过程中,你能应用自己喜欢的算法解决问题吗?
(5)总结:思考的角度不同,解决问题的方法也就不同,但结果都是相同的。
这就是我们今天要学习的内容:乘、除法的简便计算。(板书课题)
2.教学教材29页例8(2)。
(1)找到解决这个问题都需要题中的哪些条件。
(2)引导学生独立列式计算。
(3)让学生汇报解题方法。
预设
生1:我先求出1副羽毛球拍多少钱,然后除以2求出每支羽毛球拍多少钱。
330÷5÷2
=66÷2
=33(元)
生2:我先求出5副羽毛球拍一共有多少支球拍,然后用总价除以支数求出单价。
330÷(5×2)
=330÷10
=33(元)
(4)唤起回忆,理解意义。
①组织学生仔细观察,在小组内讨论。
②教师结合学生的回答把两个算式用等号连起来。
330÷5÷2=330÷(5×2)
质疑:在这个算式中,为什么“一个数连续除以两个数”与“用这个数除以两个除数的积”的结果相等呢?
学生借助题意理解:先求出1副羽毛球拍多少钱,然后除以2求出每支羽毛球拍多少钱和先求出5副羽毛球拍一共有多少支球拍,然后用总价除以球拍的支数求出单价,都能求出最终的结果,只是采用的方法不一样,所以一个数连续除以两个数,可以用这个数除以两个除数的积。
(5)方法选优:相比之下,这两种计算方法哪种比较简便?(出示课堂活动卡)
(6)引导总结,归纳规律。
学生讨论、汇报后教师板书:一个数连续除以两个数,可以用这个数除以两个除数的积。用字母表示为a÷b÷c=a÷(b×c)(b、c均不为0)。
设计意图:采用学生自主探究、小组合作的'方式展开学习,让学生在实践活动中利用已有的知识经验,自己去探究发现,从而培养学生根据具体的情况选择合适的方法使计算变得简便的能力。
三、巩固练习,拓展提高
1.简便计算。
32×125=(________×________)×125
32×125=32×(________÷________)
32×125=(________+________)×125
32×125=(________-________)×125
2.同桌合作完成教材29页“做一做”,鼓励学生用简便方法计算。
四、课堂总结
这节课你有什么收获?
五、布置作业
教材30页1、4题。
小学数学教案 篇3
在数表里框出几个数、在墙面上贴瓷砖、选择连号的参观券或座位等实际问题,都可以和图形的覆盖现象联系起来。围绕覆盖了哪里、有多少个位置可以选择等问题进行研究,发现其中的规律,能感受数学是研究客观世界里的事物和现象的工具,进一步发展数学思考,培养乐于探索的。教材编排了两道例题,例1里的覆盖比较简单,覆盖的位置只有一个维度上变化。例2里图形的覆盖位置,在两个维度上变化。练习十运用例题里的方法和认识的规律,解决日常生活、数学游戏中的实际问题。
1、 例1突出探索规律时的数学活动。
例1的教学从游戏开始。把1~10这十个数从左往右顺次排列,组成一张数表,游戏的方法是,用红框在数表里框数,分三次进行。第一次只框两个数,第二次要框三个数,第三次框更多个数。
第一次游戏,先框出数表左端的两个数1和2,算出它们的和是3。再任意移动红框的位置,可以看到各次框出的两个数都不会完全相同,因此两个数的和不可能相同。“一共可以得到多少个不同的和”提出了游戏里的数学问题,把教学的注意力集中到研究红框在数表中有多少个不同的位置。学生首先会想到第一种方法,随着红框从数表的左端逐渐移到右端,依次计算1+2=3、2+3=5……9+10=19,数数一共写了9个算式,得到9个不同的和。第二种方法有两个特点: 一是对问题的理解十分准确。“一共可以得到多少个不同的和”这个问题,是问和的个数,不是问和是多少,所以不必进行求和计算。二是应用了图形平移的知识,通过红框从左往右依次平移一格得出了结果。其中,红框平移8次,能得到9个不同的和,是需要突破的难点。在第一种方法的基础上理解并使用第二种方法,学生数学活动的水平有了提升,也为继续进行的游戏和探索规律构筑了平台。
第二次游戏,红框每次框出三个数,和第一次游戏相比,有两点提高: 一是只用平移的方法找答案。在前一次游戏中体会了平移是解决这类问题比较好的方法,在这次游戏中学生必然乐意应用这种方法。二是初步感知每次框出的数多,得到不同的和的个数少。这一感知一方面能在问题的答案上获得: 每次框2个数,得到9个不同的和;每次框3个数,得到8个不同的和。另一方面能在平移的过程中体会: 每次框的数少,红框平移的次数多,得出的和的个数多;每次框的数多,红框平移的次数少,得出的和的个数少。显然,通过这次游戏,学生对用平移方法解决问题的体验深了,为发现规律迈了坚实的一步。
第三次游戏,在同一张数表里,每次框出更多个数,如4个数、5个数,分别能得到几个不同的和?安排学生继续实验,并把数据都填入一张表格。有前两次操作的经验,这里可以根据自己的需要选择活动的方法。或是仍旧用红框逐次去框数,或是看着数表想像框的活动。
通过这次活动,对这类现象的感知得到进一步的充实,更清楚地看到,每次框的数的个数越多,红框平移的次数越少,得到的和的个数也越少,它们之间是有联系的。
得出规律是例题最关键的教学环节。带着教材里的两个问题逐行观察表格里的数,研究平移次数与每次框的数的个数之间的关系,以及得到不同和的个数与平移次数的关系,找到的共同特点就是这类现象的规律。平移次数与每次框的数的个数的关系,在表格中能看到的是: 它们相加的和都是10(数表里有10个数)。由此推理,10减每次框的数的个数等于平移的次数。如果联想平移红框的操作,就能体会这个关系是合理的。如在数表左端框出3个数,数表里还剩7个数,红框还能向右平移7次。发现和的个数与平移次数的关系比较容易,表格里能看到平移的次数加1等于得到的和的个数,在几次操作活动中都有这一体会。发现的规律要用自己的语言,顺着填的表格,从左到右概括地讲述。如数表里有10个数,减每次框几个数等于平移次数,平移次数加1得到几个不同的和。看着表格讲述比较方便,关系清楚,也有助记忆。
“试一试”增加了数表里的数(从10个变成15个),“练一练”把数表换成正方形图案连成的花边。要求利用例题里的规律,说出几个问题的答案,在应用中进一步体会和巩固发现的规律。还要注意的是,“试一试”直接说出可以得到多少个不同的和,“练一练”直接说出有多少种不同的盖法,它们都没有问“平移多少次”。这是因为平移是解决这些问题的手段,平移次数是解决问题时应该主动思考的中间数量。
2、 例2用较简单的规律构建稍复杂的规律。
例2的素材是在墙面上贴瓷砖,每块瓷砖都是大小相同的正方形。4块花色瓷砖拼成正方形,组成一个图案。把这个图案贴在墙面任意一个位置,称为一种贴法。要解决的问题是图案在墙面上一共有多少种贴法?显然,图案在墙面上的位置,可以在同一行左、右移动,还可以在同一列上、下移动,这是例2比例1复杂的地方。但是,无论图案从左往右移动,还是从上往下移动,计算平移次数的方法与例1是一致的。所以,这道例题要以例1的规律为基础,构建稍复杂一些的规律。
首先是理解题意,激活相关的经验。示意图的墙面上贴了瓷砖,中间的4块组成一个图案。“把图案贴在这面墙的任意一个位置”引发想像,可以把图案贴高些,也可以贴矮些;可以把图案贴在墙面的左边,也可以贴在右边。经过交流和,得出两条线索,即教材呈现的两种思考。这两种方法都是把例1里获得的经验,应用到新的情境中。第一种方法想的是在一行上移动,和例1非常贴近,很快得出贴在最上面一行有7种贴法。第二种方法想的是在一列上移动,比例1稍有变化,所以贴在最左边一列有多少种贴法需要数一数或算一算。
然后小组讨论三个问题,这三个问题是逐步深入的。第(1)个问题需要的时间最多,把第一种一行有7种贴法和第二种一列有5种贴法结合起来,才能“既不重复又不遗漏”。这里不要急于得出一共有多少种贴法,要弄明白的是: 如果一行一行地想,要从上到下想5行;如果一列一列地想,要从左到右想7列。第(2)个问题在理解题意时已经有了答案,这里再次讨论,是因为第一种方法讲的是最上面一行,第二种方法讲的是最左边一列,需要扩展到每一行都有7种贴法,每一列都有5种贴法。第(3)个问题是解决一共有多少种贴法以及它的算法。有前两个问题为基础,很容易想到一共有7×5=35(种)贴法,这个算式的数量关系就是沿着长的贴法、沿着宽的贴法与一共有的贴法之间的关系。
“试一试”和“练一练”都是例题的变式。“试一试”的图案虽然仍旧由4块瓷砖拼成,但拼法变成“凸”字形。把它贴到墙面上,求一共有多少种贴法,要把图案看成长方形。这一点可以通过教师演示或学生操作来理解。“练一练”在墙面上贴的是长方形瓷砖,有6块同样大小的长方形瓷砖拼成一个图案。求一共有多少种贴法的思考与计算,和贴正方形瓷砖相同,能再次体会一共有的贴法与沿墙面长的贴法、沿墙面宽的贴法之间的关系。
练习十第3题里有两类问题,一类是用“十”字形的框在数表里每次框出5个数,一共有多少种框法。解决这类问题,要把红框看成每次框出9个数的长方形。这一点,学生在“试一试”里已有初步的体会。另一类问题是研究每次框出的5个数的和与中间数的关系,只要通过几次框数活动,就能发现框里的5个数的和是中间数的5倍。中间的那个数是5个数的平均数。
小学数学教案 篇4
教学目标:
1、探索并掌握列竖式计算两位数除以一位数(商是两位数且十位计算有余数)的方法,能正确进行计算。
2、结合具体的情境,培养学生提出问题、解决问题的意识和能力。
教学重点:
探索并掌握列竖式计算两位数除以一位数(十位有余数)的方法,能正确进行计算。
教学难点:
结合具体的情境,培养学生提出问题、解决问题的意识和能力。
教学过程:
一、情境导入
西游记里的三个师兄弟遇到麻烦了,让我们来帮帮他们吧。
二、探索新知
1、利用分橘子这个情境,启发、鼓励学生提出问题。
2、学生根据问题独立列出算式。
3、重点解决有48个橘子,平均分给3个师兄弟,每人分多少个? □ ○ □ = □ ( )
4、学生独立计算483。
5、小组交流。组织学生在小组内说一说自己的计算方法。
6、全班交流。小组代表发言,展示不同的算法。
(1) 10个 10个 10个 18个(10个 8个)
每个人可以分1篮还剩18个(1篮8个),一人可再分6个,共16个。
(2) 30 3 = 10 18 3 = 6 10 + 6 = 16
(3)竖式计算(再次对比加减乘竖式)
①竖式的书写格式不同
②计算顺序不同(从高位开始)
③数位对齐
7、讨论:为什么除法要从高位算起?
三、拓展应用
1、先估算再计算。
382
524
723
2、用竖式计算。
81 3
90 6
98 7
84 6
96 4
56 4
小学数学教案 篇5
第三课时
教学内容:求三个数的最小公倍数
教学目标:
使学生学会求三个数的最小公倍数的方法,并能正确地,合理地求三个数的最小公倍数。
教学过程:
一、复习
什么是公倍数、最小公倍数
怎样求两个数的最小公倍数
求两个数的最小公倍数与最大公约数有什么联系
当两个数是倍数关系时,大数就是这两个数的最小公倍数,小数就是这两个数的最大公约数。
当两个数是互质数时,这两个数的最大公约数是1,这两个数的最小公倍数是这两个数的乘积。
二、揭示课题
这节课我们学习求三个数的最小公倍数。
三、教学新课
1、例3求12、16和18的最小公倍数。
2、学生自学完成。
3、对不懂的问题提出疑问。
4、注意:用短除法求三个数的最小公倍数时,先要用三个数的公约数去除,然后再用任意两个数的公约数去除。最后的结果要两两互质。
5、试一试
求15、30和60,3.4和7的最小公倍数。
计算后,你发现了什么?
(1)其中一个数是其他两个数的倍数,那么最大的数就是这三个数的最小公倍数。
(2)当三个数是互质数时,三个数的乘积是这三个数的最小公倍数。
四、巩固练习
书本第57-58页
五、反馈
六、布置作业
反思:本节课的难点是让学生知道为什么在求出三个数的公约数后还要求出两个数的公约数。然后把所有的除数和商乘起来。
小学数学教案 篇6
一、复习利息、成数等概念
1.做整理和复习第1题。
请一名学生读题。另请两名学生加以回答,教师补充完整。
提问:同学们准备用自己的存款做些什么事情呢?让学生自由讨论,教师及时表扬那些准备用自己存款做些有意义的事情的学生,适时进行勤俭节约的教育。
2.做整理和复习第2题。
请一名学生读题。
提问:什么叫本金、利息、利率?利息的意义是什么?
利息是怎样计算的?
让几名学生回答.然后将本金、利息、利率的概念用幻灯显示,请学生齐读一遍。板书利息的计算公式:利息=本金利率时间;
3.做整理和复习第4题。
请一名学生读题:另请两名学生分别对两个问题加以回答。
4.做练习三的第3、4题。
把全体学生分或两组.一组做第3题,另一组做第4题,答案直接写在课堂练习
本上:教师巡视.及时纠正学生中间出现的错误。最后进行集体订正。
二、复习有关利息、成数的应用题
1.做整理和复习第3题:
请一名学生读题。
提问:要求利息,必须知道哪些数据?(引导学生在题中找出本金、利率、时间 各是多少。)
计算利息的公式是什么?(引导学生看黑板上的公式。)。
让一名学生到黑板前做,其余学生做在练习本上。教师一边巡视,一边及时纠正学生中出现的错误。最后集体订正。
2.做练习三的第1题。
请一名学生读题。教师无需用任何提示,直接让学生计算利息。教师行间巡视,然后集体订正:
小结:我们国家还有许多贫困地区的儿童因为家庭困难而失学,许多小朋友都像小英一样把零用钱节省下来存入银行,既支援了国家建设,又可以把利息捐献给希望工程。我们也应该向他们学习,平时勤俭节约,不乱花钱,为贫困地区的儿童献一份爱心。
3.做练习三的第2题。
请一名学生读题。
教师说明:购买建设债券是支援国家建设的另一种方式,和储蓄在实质上是一样的。只是债券的利率一般高于定期储蓄。
抽取两名学生到黑板前做,其余学生做在课堂练习本上。教师巡视,等全体学生做完以后,集体订正。尤其要提醒学生注意题目要求的是到期时一共能取出多少元?所以在求出利息以后,不要忘记把本金加上。
4.做整理和复习第5题。
请一名学生读题。
提问:一成五是多少?
这道题里单位1是谁?
可以用什么方法计算?哪种方法更简便?(方程解法和算术解法)
分别请两名学生回答这两个问题。
请两名学生到黑板前做,分别用方程解法和算术解法进行解答,其余学生做在课堂练习本上。教师边巡视,边纠正学生出现的错误。最后进行集体订正。
5.做练习三的第5题。
请一名学生到黑板前做,其余学生做在课堂练习本上。教师巡视,集体订正.
小学数学教案 篇7
设计说明
1.加强动手操作训练,促进学生的思维。
有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。本设计积极引导学生理解天平平衡的原理,加强对用天平称物和画图的动手操作训练。使学生经历称物、分轻重的过程,了解和思考称物的不同情况,逐步把思维条理化、逻辑化,并想办法用图示表示出来,从而促进学生逻辑思维的发展。
2.自主探索,体会优化思想。
本设计给予学生充分的自主探索的空间,通过试验、汇报不同的解决问题的方法,发现如何分份是优化“找次品”方法的关键,从而总结出最佳的分份方法和最佳的图示方法,渗透优化思想。
课前准备
教师准备 PPT课件 天平 药瓶
学生准备 天平
教学过程
情境导入,激发兴趣
1.你们每天上学通常要走哪条路?为什么要选择这条路?
(生自主回答)
2.你们真聪明,在平时做事的时候就能选择最简便的方法。在数学学习中,解决问题的方法是多种多样的,但通常都有一种最有效、最简便的方法,我们把它叫最优化的方法。这节课就让我们带着优化的思想走进课堂。(师出示2瓶钙片)
师:老师这里有2瓶钙片,其中有1瓶少了3片,你们能不能想办法帮我把它找出来呢?(生回答想法)
师:老师准备了一架天平。如果在天平左右两边的托盘里放上质量相同的物品,天平就会平衡;如果一边重一边轻,那重的一边就会沉下去,轻的一边就会翘起来。今天我们就借助天平来完成本节课的学习内容。
设计意图:引导学生根据次品的特点发现用天平“称”的方法,知道并不需要称出每个物品的具体质量,而只要根据天平的平衡情况对托盘两端的物品进行判断就可以了。
实践操作,自主探究
1.提出探究要求。
师:同学们很容易就从2瓶钙片中把这瓶次品找到了,如果是3瓶钙片,你还能从中找到这瓶次品吗?同桌可以用学具摆一摆,试一试。
2.动手操作,汇报方法。
学生动手试验后汇报。(先在天平的两端分别放上1瓶钙片,如果天平平衡,剩下的一瓶就是次品;如果天平不平衡,轻的那端就一定是次品了)
3.总结归纳记录的方法。
组织学生把用天平称的过程用图表记录下来。
合作交流,研究探讨
师:同学们真聪明,这么容易就从3瓶钙片中找到了次品,其实你们已经用自己的聪明才智解决了教材中例1所提出的问题。那么,例2又向我们提出了哪些问题呢?
理解题意,动手操作。
(1)先让学生读题,说说“至少”的含义。
(2)小组分工合作:用学具摆一摆,并尝试用图示和表格表示摆的过程,完成下表。
(合作要求:2名同学摆学具,1名同学用图示法作记录,1名同学填表)
【有关小学数学教案合集7篇】相关文章:
有关小学数学教案合集5篇03-12
有关小学数学教案9篇12-31
有关小学数学教案7篇07-02
有关小学数学教案10篇06-15
有关小学数学教案六篇06-11
有关小学数学教案8篇06-09
有关小学数学教案九篇06-05
有关小学数学教案八篇06-04
有关小学数学教案四篇03-15