七年级上册数学《一次函数》教案
导语:《一次函数》本节课安排在正比例函数的图象与一次函数的概念之后。通过这一节课的学习使学生掌握一次函数图象的画法和一次函数的性质。下面是小编为您收集整理的教案,希望对您有所帮助。
教学目标:
1、知道一次函数与正比例函数的意义.
2、能写出实际问题中正比例关系与一次函数关系的解析式.
3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性.
4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力.
教学重点:对于一次函数与正比例函数概念的理解.
教学难点:根据具体条件求一次函数与正比例函数的解析式.
教学方法:结构教学法、以学生“再创造”为主的教学方法
教学过程:
1、复习旧课
前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三
2、引入新课
就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是一次函数.顾名思义,谁能根据一次函数这个名字,类比一元一次方程、一元一次不等式的概念能举出一些一次函数的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了.教师将学生的正确的例子写在黑板上)
这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果.)不难看出函数都是用自变量的一次式表示的',可以写成( )的形式.一般地,如果( 是常数, )(括号内用红字强调)那么y叫做x的一次函数. 特别地,当b=0时,一次函数 就成为( 是常数, )
3、例题讲解
例1、某油管因地震破裂,导致每分钟漏出原油30公升
(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式
(2)破裂3.5小时后,共漏出原油多少公升
分析:y与x成正比例
解:(1) (2) (升)
例2、小丸子的存折上已经有500元存款了,从现在开始她每个月可以得到150元的零用钱,小丸子计划每月将零用钱的60%存入银行,用以购买她期盼已久的CD随身听(价值1680元)
(1) 列出小丸子的银行存款(不计利息)y与月数x 的函数关系式;
(2) 多长时间以后,小丸子的银行存款才能买随身听?
分析:银行存款数由两部分构成:原有的存款500元,后存入的零用钱
解:(1) (2)1680=500+90x解得x=13.… 所以还需要14个月,小丸子才能买随身听
例3、已知函数 是正比例函数,求 的 值
分析:本题考察的是正比例函数的概念
解:
说明:第一题让学生上黑板来完成,二、三题学生分组讨论每个组讨论出一个结果,写在黑板上
4、小结
由学生对本节课知识进行总结,教师板书即可.
5、布置作业
书面作业:1、书后习题 2、自己写出一个实际中的一次函数的例子并进行讨论
【七年级上册数学《一次函数》教案】相关文章:
高一数学上册知识点:一次函数和二次函数10-25
高考数学一次函数知识点11-07
人教版七年级上册《动物笑谈》教案01-26
七年级上册语文《散步》优质教案11-15
七年级上册语文《荷叶母亲》教案10-19
七年级英语上册的复习教案04-08
七年级英语上册全册教案04-05
七年级数学教案12-14
高一数学《一次函数》知识点01-26
七年级上册美术教案(通用23篇)05-23