《比和比例》数学教案

时间:2022-08-17 20:15:43 数学教案 我要投稿

《比和比例》数学教案

  作为一名教学工作者,就不得不需要编写教案,借助教案可以更好地组织教学活动。那么应当如何写教案呢?以下是小编精心整理的《比和比例》数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。

《比和比例》数学教案

《比和比例》数学教案1

  【教学内容】

  教科书第66~67页例2、例3及相关练习。

  【教学目标】

  1.通过对分数基本性质的记忆和沟通分数与比、除法之间的联系,理解比的基本性质。

  2.能够运用比的基本性质把比化成最简单的整数比。

  3.渗透转化的数学思想,培养学生的抽象概括能力,并使学生认识事物之间都是存在内在联系的。

  【教学重、难点】

  理解比的基本性质,并运用比的基本性质把比化成最简单的整数比。

  【教学过程】

  一、复习准备

  1.求比值。

  8∶4=48∶12=16∶8=

  24∶18=40∶16=15∶5=

  .准备题。

  (1)找出下列分数中相等的分数,并说说你是根据什么找的?(略)

  学生找出后,教师作引导性提问:它们为什么相等?谁能完整地说出分数的`基本性质?

  (2)在()内填上适当的数。

  3÷4 =( )4=( )40= ( )÷12 =0.75

  58=5:( )

  6:7 =( )7=( )7

  9:( )=( ):16

  教师:由上面这两组题你想到了什么?

  小结: 根据分数与除法的关系,除法与比的关系,比的前项相当于分数的分子,比的后项相当于分数的分母,比值相当于分数值。

  比也可以写成分数的形式,如5:8可以写成5/8。

  二、学习新知

  1.出示例2:观察下面的比是怎样变化的。

  200/240=20/24=10/12=5/6

  ↓ ↓↓↓

  200∶240=20∶24=10∶12=5∶6

  独立观察,思考:比的前项、后项发生了什么变化?

  分组讨论:看看上面的这个例子,想一想:在比中有什么样的规律?

  学生进行小组总结后,小组间交流汇报。 通过交流总结出比的基本性质。

  2.概括比的基本性质:比的前项和后项同时乘以或者同时除以相同的数(0除外),比值不变。

  3.应用比的基本性质化简比。

  (1)让学生在例2中找出你认为最简单的整数比,明确什么是最简整数比。

  (2)出示例3:化简下面各比。

  ①15∶12②14∶56

  ③30∶60∶120

  师生共同观察,找出各组比的特征,然后进行分析 、化简。

  第①题:这个比的前项和后项都是整数,如何化简?(用比的前、后项分别除以它们的最大公约数,直到前后项是互质数为止)

  第②题:这个比的前项和后项都是什么数,怎样才能把它们转化成整数比?(学生观察分析后,独立探索化简的方法,再交流优化的化简方法)

  学生交流完后,教师进一步作小结:比的前项和后项都是分数的,一般把比的前项和后项同乘两个分数分母的最小公倍数,把它们转化成两个整数比,再进一步化简。

  第③题:这个比有什么特点?(三个数的连比)又如何化简呢?化简两个整数比的方法对于化简三个整数连比是否适用呢?

  学生讨论后尝试化简,填在书上。

  教师提示:在三个数的连比中,比号不表示除号。

  三、巩固练习

  1.用已经学过的知识试着将第67页“试一试”中的比化成最简整数比。

  学生化简后交流反馈,说说方法。师生共同小结方法及注意点:应用比的基本性质把整数比、小数比、分数比化成最简单的整数比时,第一步一般都化成整数比,接着再利用比的基本性质把比的前、后项同除以它们的最大公约数,使比的前、后项成为互质数。

  2.出示练习题:化简下面各比,并求出比值。

  比最简单的整数比比值

  9:54

  34∶67

  5.8∶2.9

  200∶150∶26

  讨论:化简比与求比值有什么区别?(求比值就是求“商”,得到的是一个数,可以写成分数、小数,有时也能写成整数。而化简比则是为了得到一个最简单的整数比,可以写成真分数或假分数的形式,但是不能写成带分数、小数或整数)

  3.学生独立完成练习十五第3题,完成后用投影仪集体订正。

  4.拓展练习。

  (1)六(3)班男生人数是女生的1.2倍,男、女生人数的比是( ),男生和全班人数的比是( ),女生和全班人数的比是( )。

  (2)一个长方形周长是30厘米,长与宽的比是7∶3,求长与宽各是多少厘米?

  四、课堂小结

  通过今天的学习,你又掌握了哪些知识?什么是比的基本性质?应用比的基本性质如何化简比?

《比和比例》数学教案2

  课前准备:

  教师准备:PPT课件

  教学过程:

  ⊙谈话揭题

  1.谈话。

  师:我们学过了关于比的哪些知识?(结合学生回答,板书知识网络)

  预设

  生1:比的意义。

  生2:比和分数、除法的关系。

  生3:比的基本性质。

  生4:求比值和化简比。

  生5:比例尺。

  生6:按比分配。

  2.揭题。

  同学们说得很全面,这节课我们就来复习有关比的知识。[板书课题:比和比例(一)]

  ⊙回顾与整理

  1.比的意义。

  (1)什么叫比?比的各部分名称是怎样规定的?

  ①两个数相除又叫做两个数的比。

  ②“∶”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

  (2)比和分数、除法有怎样的关系?

  预设

  生1:同除法比较,比的前项相当于被除数,后项相当于除数,比号相当于除号,比值相当于商。

  生2:比值通常用分数表示,也可以用小数表示,有时也可能是整数。

  生3:根据分数与比的关系可知,比的前项相当于分子,后项相当于分母,比号相当于分数线,比值相当于分数值。

  2.比的基本性质。

  比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的`基本性质。

  3.求比值和化简比。

  (1)求比值的方法。

  用比的前项除以后项,它的结果是一个数值,可以是整数,也可以是小数或分数。

  (2)化简比的方法。

  根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前项和后项是互质数。

  (3)求比值与化简比的不同点。

  学生讨论后汇报:

  预设

  生1:方法不同,求比值是根据比值的意义,用比的前项除以比的后项;化简比是根据比的基本性质,把比的前项和后项都乘或除以相同的数(0除外)。

  生2:求比值的结果是一个数;化简比的结果是一个最简比。

  4.按比分配。

  (1)按比分配的意义。

  把一个数量按照一定的比分成几部分,叫做按比分配。

  (2)按比分配的方法。

  首先求出各部分数量占总量的几分之几,然后分别求出总量的几分之几是多少。

  ⊙典型例题解析

  1.课件出示例1。

  求下面各比的比值。

  (1)24∶36(2)0.25∶(3)2吨∶450千克

  解析本题考查的是学生求比值的能力。用比的前项除以后项可求出各比的比值,求比值时应注意比的前项与后项的单位要统一,且比值可以是整数、小数或分数,但不能是一个比。

  解答(1)24∶36=24÷36=

  (2)0.25∶=÷=

  (3)2吨∶450千克=20xx千克∶450千克=20xx÷450=4

《比和比例》数学教案3

  教学目标

  1.理解比和比例的意义及性质.

  2.理解比例尺的含义.

  教学重点

  整理比和比例、求比值及比例尺.

  教学难点

  正、反比例概念和判断及应用.

  教学步骤

  一、基本训练

  43-27

  5。65+0。5 4。8÷0。4 1。25÷ 100×1%

  0。25×40

  二、归纳整理

  (一)比和比例的意义及性质.

  1.回忆所学知识,填写表格【演示课件“比和比例”】

  2.分组讨论:

  比和分数、除法有什么联系?

  比的基本性质有什么作用?比例的基本性质呢?

  3.总结几种比的化简方法.【继续演示课件“比和比例”】

  比

  前项

  ∶(比号)

  后项

  比值

  除法

  分数

  (1)整数比化简,比的前项和后项同时除以它们的最大公约数.

  (2)小数比化简,一般是把前项、后项的小数点向右移动相同的位数(位数不够补零),使它成为整数比,再用第一种方法化简.

  (3)分数比化简,一般先把比的前项、后项同时乘上分母的最小公倍数,使它成为整数比,再用第一种方法化简.

  (4)用求比值的方法化简,求出比值后再写成比的形式.

  解比例:12 :x=8 :2

  4.巩固练习

  (1)李师傅昨天6小时做了72个零件,今天8小时做了96个零件.写出李师傅昨天和今天所做零件个数的比和所用时间的比.这两个比能组成比例吗?为什么?

  (2)甲数除以乙数的商是1。4,甲数和乙数的比是多少?

  (3)解比例: ∶ =8∶2

  (二)求比值和化简比.【继续演示课件“比和比例”】

  1.求比值:4∶

  化简比:4∶

  2.比较求比值和化简比的区别.

  一般方法

  结果

  求比值

  根据比值的意义,用前项除以后项是一个商,可以是整数、小数或分数

  化简比

  根据比的基本性质,把比的前项和后项都乘以或者除以相同的数(零除外)

  是一个比,它的前项和后项都是整数

  3.巩固练习.

  (1)求比值

  45∶72 ∶3

  (2)化简比

  0.7∶0.25

  (三)比例尺【继续演示课件“比和比例”】

  1.出示中国地图

  教师提问:

  (1)这幅地图的比例尺是多少?(比例尺是 )

  (2)什么叫做比例尺?这个比例尺的含义是什么?(表示实际距离是图上距离的6000000倍)

  (3)比例尺除了写成 ,以外,还可以怎样表示?

  2.巩固练习

  在一幅地图上,用3厘米长的线段表示实际距离900千米.这幅地图的比例尺是多少?

  在这幅图上量得A、B两地的距离是2.5厘米,A、B两地的实际距离是多少千米?一条长480千米的高速公路,在这幅地图上是多少厘米?

  (四)正比例和反比例【继续演示课件“比和比例”】

  1.回忆正、反比例意义

  2.巩固练习

  (1)判断下面各题中的两种量是不是成比例.如果成比例,成什么比例.

  ①收入一定,支出和结余

  ②出米率一定,稻谷的重量和大米的重量.

  ③圆柱的侧面积一定,它的底面周长和高.

  (2)木料总量、每件家具的用料和制成家具的件数这三种量

  当( )一定时,( )和( )成正比例;

  当( )一定时,( )和( )成正比例;

  当( )一定时,( )和( )成反比例.

  (3)如果 =8 , 和 成( )比例.

  如果 = , 和 成( )比例.

  (4)在一幅地图上,比例尺一定,图上距离和实际距离是不是成比例?成什么比例?

  三、全课小结

  这节课我们复习了什么?通过这节课的复习你有什么收获?还有哪些不清楚的问题?

  四、课堂练习

  1.填空.

  (l)根据右面的线段图,写出下面的比.

  ①甲数与乙数的比是( ). 甲数:

  ②乙数与甲数的比是( ). 乙数:

  ③甲数与甲乙两数和的比是( ).

  ④乙数与甲乙两数和的比是( ).

  (2)( )24= =24 ∶( )=( )%.

  (3) ∶6的比值是( ).如果前项乘上3,要使比值不变,后项应该( ).如果前项和后项都除以2,比值是( ).

  (4)把(1吨):(250千克)化成最简整数比是( ),它的比值是( ).

  (5) 与3。6的最简整数比是( ),比值是( ).

  (6)如果a×3=b×5,那么a∶b=( )∶( ).

  (7)如果a∶4=0。2∶7,那么a=( ).

  (8)把线段比例尺 改写成数值比例尺是( ).

  (9)甲数乙数的.比是4∶5,甲数就是乙数的( ).

  (10)甲数的 等于乙数的 ,甲乙两数的比是( ).

  2.选择正确答案的序号填在( )里.

  (1)1克药放入100克水中,药与药水的比是( ).

  ①1∶99 ②1∶100 ③1∶101 ④100∶101

  (2)一项工程,甲队单独做要10天,乙队单独做要8天.甲队和乙队工作效率的最简整数比是( ).

  ①10∶8 ② 5∶4 ③4、∶5 ④ ∶

  (3)在下面各比中,与 ∶ 能组成比例的是( ).

  ①4∶3 ②3∶4 ③ ∶3 ④ ∶

  (4)有一无,某班的出勤率是90%,出勤人数和缺勤人数的比是( ).

  ①9∶10 ②10∶9 ③1∶9 ④9∶1

  (5)在一幅地图上用1厘米的线段表示5千米的实际距离,这幅地图的比例尺是( ).

  ①1∶5 ②1∶5000 ③1∶500000

  (6)用3、5、9、15这四个数组成的比例式是( ).

  ①15∶3=5∶9 ②3∶15 ③15∶9=5∶3 ④9∶3=5∶15

  (7)在比例尺 的地图上,2厘米表示( ).

  ①0.4千米 ②4千米 ③40千米

  (8)大小两圆半径的比是3∶2,它们的面积的比是( ).

  ①3∶2 ②6∶4 ③9∶4

  五、布置作业

  1.化简下面各比

  0.12∶56

  2.写出两个比值都是3的比,并组成比例

  3.写出一个比例,使它两个内项的积是12

  4.如图是用1∶20的比例尺画的一个机器零件的截面图,量出图中两个圆的半径,并计算这个零件截面的实际面积.

  六、板书设计

  比和比例

《比和比例》数学教案4

  教学内容:人教版六年制小学数学第十二册P95-99页内容。

  教学目标:

  1、情感目标:在复习活动中让同学体验数学与生活实际的密切联系,培养同学的数学应用意识,激发同学胜利学习数学和自信心和创新意识,渗透事物间是相互联系的辩证唯物主义观点。

  2、能力目标:通过小组合作整理知识框架,提高学习的系统性,培养同学归纳、总结等自我复习能力和团队合作精神,加强生与生之间的合作学习能力和综合运用数学知识解决实际生活问题的能力。

  3、知识目标:(1)使同学进一步掌握比和比例的意义、性质,能正确迅速地解比例、化简比和求比值。(2)进一步理解比例尺的意义,能应用比例尺的知识求出平面图的`比例尺以和根据比例尺求图上距离和实际距离。

  教学重点:理解比和比例的意义、性质,掌握关于比和比例的一些实际运用和计算。

  教学难点:能理清知识间的联系,建构起知识网络。

  设计思路:

  担任了几年毕业班的数学教学,到六年级的下学期,将有一半以上的课程是在复习和整理,保守的复习课让习题一道道出现,让同学仅仅停滞在"会"的目标上,这复习课究竟应该如何去上好,应该如何让同学感受学习的快乐和数学的魅力一直是我们思索的问题。在一次班会课上,同学自身组织了班会活动,他们采用了电视上娱乐节目的形式,玩得非常高兴,一瞬间,我就想,这样的形式是否可以植入我的数学课堂?这样是不是数学课上的我也可以和班会课一样成为同学的组织者,引导者和合作者,而不是课堂上的"权威"?本着"体现新理念,用活教材,练活习题,激活课堂"的思想,针对本节课的教学目标,我采用让同学分组竞赛的方法,把复习活动贯穿到课前、课中、课后,让同学在合作与竞争中理解本课重点,疏通知识脉络,建构知识网络,掌握复习方法。

  课前准备:

  1、把同学分成四大组,让同学给自身组取名(如精灵队、快乐队等),把比和比例分成"比和比例的意义"、"比和比例的性质"、"求比例和化简比"、"比例尺"四大块,让每一组抽签确定本组的一个研究主题,然后分组研究本局部的知识包括哪些我们需要掌握的内容,有哪些重点和难点,最后拟定五个问题。要求这五个问题反映本组全体同学的水平,它们要能基本概括你们所研究主题的全部内容以和重点难点,而且为了本组能取得好成果,提出的问题要有价值,要有一定的考虑性。然后依次向其它小组提问,请他们作答。

  2、教师准备地图一张、投影片、小黑板若干。

  3、每一小组有一信封,信封内装有比和比例各局部知识名称和一张白纸。

【《比和比例》数学教案】相关文章:

比和比例的优秀数学教案(精选10篇)11-27

《比例的意义和基本性质》教学设计05-16

《比例的整理和复习》的教学设计(通用8篇)04-18

《用比例解决问题》数学教案(通用5篇)10-25

小学六年级下册正比例和反比例的知识点10-18

小班数学教案《方方和圆圆》10-25

比例的意义教学设计05-11

大班《认识“﹥”、“﹤”和 “=” 》数学教案(通用6篇)10-07

小班数学教案:《认识1和许多》07-19

小班数学教案《1和许多》优秀10-30