三角形内切圆教案

时间:2021-01-29 19:10:31 数学教案 我要投稿

三角形内切圆教案

  1、教材分析

三角形内切圆教案

  (1)知识结构

  (2)重点、难点分析

  重点:三角形内切圆的概念及内心的性质.因为它是三角形的重要概念之一.

  难点:①难点是“接”与“切”的含义,学生容易混淆;②画三角形内切圆,学生不易画好.

  2、教学建议

  (1)在教学中,组织学生自己画图、类比、分析、深刻理解三角形内切圆的概念及内心的性质;

  (2)在教学中,类比“三角形外接圆的画图、概念、性质”,开展活动式教学.

  教学目标:

  1、使学生了解尺规作三角形的内切圆的方法,理解三角形和多边形的内切圆、圆的外切三角形和圆的外切多边形、三角形内心的概念;

  2、应用类比的数学思想方法研究内切圆,逐步培养学生的研究问题能力;

  3、激发学生动手、动脑主动参与课堂教学活动.

  教学重点:

  三角形内切圆的作法和三角形的内心与性质.

  教学难点:

  三角形内切圆的作法和三角形的内心与性质.

  教学活动设计

  (一)提出问题

  1、提出问题:如图,你能否在△ABC中画出一个圆?画出一个最大的圆?想一想,怎样画?

  2、分析、研究问题:

  让学生动脑筋、想办法,使学生认识作三角形内切圆的实际意义.

  3、解决问题:

 

1 作圆,使它和已知三角形的各边都相切.

  引导学生结合图,写出已知、求作,然后师生共同分析,寻找作法.

  提出以下几个问题进行讨论:

  ①作圆的关键是什么?

  ②假设⊙I是所求作的圆,⊙I和三角形三边都相切,圆心I应满足什么条件?

  ③这样的点I应在什么位置?

  ④圆心I确定后半径如何找.

  A层学生自己用直尺圆规准确作图,并叙述作法;B层学生在老师指导下完成.

  完成这个题目后,启发学生得出如下结论: 和三角形的各边都相切的圆可以作一个且只可以作出一个.

  (二)类比联想,学习新知识.

  1、概念:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.

  2、类比:

名称

确定方法

图形

性质

外心(三角形外接圆的圆心)

三角形三边中垂线的交点

(1)OA=OB=OC;

(2)外心不一定在三角形的内部.

内心(三角形内切圆的圆心)

三角形三条角平分线的交点

(1)到三边的距离相等;

(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB;

(3)内心在三角形内部.

  3、概念推广:和多边形各边都相切的`圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.

  4、概念理解:

  引导学生理解三角形的内切圆及圆的外切三角形的概念,并与三角形的外接圆与圆的内接三角形概念相比较,以加深对这四个概念的理解.使学生弄清“内”与“外”、“接”与“切”的含义.“接”与“切”是说明三角形的顶点和边与圆的关系:三角形的顶点都在圆上,叫做“接”;三角形的边都与圆相切叫做“切”.

  (三)应用与反思

例2 如图
,在△ABC中,∠ABC=50°,∠ACB=75°,点O是三角形的内心.

  求∠BOC的度数

分析:要求∠BOC的度数,只要求出∠OBC和∠0CB的度数之和就可,即求∠l十∠3的度数.因为O是△ABC的内心,所以OB和OC分别为∠ABC和∠BCA的平分线,于是有∠1十∠3=
(∠ABC十∠ACB),再由三角形的内角和定理易求出∠BOC的度数. 

【三角形内切圆教案】相关文章:

数学三角形边的关系教案(通用15篇)05-11

相似三角形的性质数学教案2篇12-10

小班数学活动《认识三角形》教案(通用10篇)05-12

三角形的认识数学教案范文(通用5篇)04-13

《三角形的面积》教学设计05-31

三角形的分类教学设计12-02

三角形的认识教学设计03-22

三角形盒子折法图解12-16

三角形信封折法图解12-16

《三角形的内角和》教学设计03-14