小学数学教案

时间:2022-10-28 09:42:14 数学教案 我要投稿

【精选】小学数学教案模板汇编六篇

  作为一名教师,时常需要编写教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。我们应该怎么写教案呢?以下是小编为大家收集的小学数学教案6篇,欢迎阅读与收藏。

【精选】小学数学教案模板汇编六篇

小学数学教案 篇1

  本单元把小数加法和减法合在一起教学,先教学笔算的方法,在掌握笔算的基础上,口算比较容易的小数加、减法。然后教学加法运算律和减法运算性质在小数加、减法里仍然适用,并进行有关的简便计算。教材在编写方面,有以下几个主要特点。

  第一,不以既定的计算法则束缚学生,突出对计算方法的探索和理解。不求算法一步到位,适当展开了算法逐步发展、逐渐完善的过程。加强与整数加、减法的有机联系,帮助学生形成包摄性更大的认知结构。

  第二,练习数量比较充足,练习形式活泼多样,避免机械、被动、乏味的计算训练。学生可能出现的计算错误,引起学生的注意;鼓励学生用计算器进行较繁的加、减计算;利用验算提高正确率,培养良好的计算习惯。

  第三,注重计算知识的实际应用,除了解决购买物品时花钱和找钱的问题外,还有通过计算反映病人体温的变化情况、统计家庭里主要的收入和支出情况、计算水位高度、测量水的深度等内容,对培养应用意识和实践能力有积极的作用。

  1. 因势利导,设计算法的探究过程;由表及里,促进算法的完善发展。

  学生在三年级曾经进行过一位小数的加、减计算,由于两个加数、被减数和减数都是一位小数,他们不自觉地做到了小数点对齐。虽然进行了小数加、减计算,并没有形成计算的法则。本单元的例1和“试一试”“练一练”,通过创设问题情境,营造认知矛盾,因势利导,逐步构建小数加法和减法的计算法则。

  (1) 例1要解决的主要问题是,列加法和减法的竖式,应该把小数点对齐。

  这道例题的教学安排是,先在小数加法中理解“小数点对齐”的问题,再向小数减法迁移。把小数点对齐不是教材和教师告诉学生的,而是学生联系已有经验,经过体会得到的。求小明和小丽一共用了多少元,是两位小数加一位小数的计算。教材先让学生试着列竖式算,预计可能出现两种列法,一种是把两个加数的小数点对齐着列,另一种是把两个加数的末位对齐着列。教材接着让学生研究“两种算法哪一种正确”。这里不是凭“小数点有没有对齐”来评判哪个竖式正确,而是联系已有的经验,分析和体会哪种算法正确。学生可以结合具体数量,4.75元是4元7角5分,3.4元是3元4角,4.75+3.4的竖式应该把表示“元”“角”“分”的数分别对齐着写,才便于相加。也可以从小数的意义进行分析,4.75是4个一、7个0.1和5个0.01,3.4是3个一、4个0.1,根据整数加法的经验,把相同计数单位的数对齐着列竖式,最便于计算。还可以通过估计作出判断,4元多加3元多要超过7元,所以得数是5.09的那个竖式肯定是错的。学生通过上面的思考和交流,形成共识:要把小数点对齐着算。

  在求小明和小丽一共用了多少元的计算中,还有一点也应引起学生注意:十分位上的数相加满10,要向个位进1。这一点可以从“10个0.1是1”得到解释。

  例1的第二个问题是小明比小丽多用多少元。这个问题在教学内容上,从加法计算迁移到减法计算,是一步发展。在学生认知过程上,从理解方法到独立进行计算,可以内化算法。教学这个问题,只要突出一点,即竖式怎样写。

  (2) “试一试”教学的主要内容是,和或差的小数末尾如果有“0”,应该化简。

  求小明和小芳一共用了多少元和小芳比小明少用多少元,都要列竖式计算。“试一试”的第一个教学任务是巩固“小数点对齐”这个必须遵循的写竖式的规则,让学生独立计算就能达到这一教学目的。第二个教学任务是化简计算结果。小明和小芳一共用了7.40元,小芳比小明少用1.10元,和与差的小数末尾都有“0”。在教学小数的性质时,教材中曾经指出:根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。现在要应用小数的性质化简计算的结果。教学时要注意两点: 第一,计算的结果,如果小数末尾的“0”没有去掉,计算是正确的,不能仅以没有把小数化简而判定计算是错误的;第二,要引导学生自觉地应用小数性质,把得数里小数末尾的“0”去掉。去掉的方法是,在竖式上把这些小数末尾的“0”逐个划掉。

  (3) 引导学生反思算法,构建计算法则。

  在例1和“试一试”里,学生经历了两次小数加法计算和两次小数减法计算,初步知道小数加、减法的竖式应该怎样算,还知道计算的结果要根据小数的性质化简。这些都是他们在探索学习过程中的体验,在此基础上,要引导学生算法。“试一试”下面的两个问题,先引发学生回顾反思,再通过交流形成法则。这两个问题不是简单地回忆“是怎样”和“要怎样”,而是寻找小数加、减法和整数加、减法在计算时的相同点,从“相同数位上的数对齐”的高度认识“小数点对齐”,把已有的整数加、减法的计算法则推广到小数加、减法,并进一步加强对整数加、减法法则的理解和应用。至于“小数计算的结果,要根据小数性质进行化简”是小数计算的个性特点,与整数计算不同。教材再一次引起学生注意,作为小数加、减计算法则的补充内容。尽管教材里没有呈现小数加法和减法的计算法则,事实上法则已存在于学生的认知结构里了。学生经过自己的努力,得出这样的认识与方法,就是探索和创新。

  (4) 在“练一练”里帮助学生澄清一些认识。

  第1题让学生在已经列出的竖式上计算,有两处要引起学生注意,一是24加9.9是整数加小数,也应该把小数点对齐着算。可以让学生看一看、想一想,竖式是怎样列的?小数点对齐没有?为什么?二是7.56减4.56的差的小数部分是0,可以让学生说一说,差应该怎样化简?差是多少。第2题选择了学生初学小数加、减法时往往发生的错误,通过指出并改正错误,引起学生的重视。随着上面一些认识的澄清,学生将更好地理解和掌握小数加法和减法的计算方法。

  2. 集中力量解决计算中的难点问题,因人制宜,允许学生选择自己需要的方式。

  在计算小数减法时,如果被减数小数部分的位数比减数小数部分的位数少, 学生往往发生错误。教材把这种情况视作计算中的难点问题,安排例2加以解决。其实,这个问题的解决不是例2才开始,在前面已有铺垫。

  (1) 在教学计算法则时,已经出现了两个加数的小数部分位数不同、被减数的小数位数比减数多的情况。

  例1计算4.75+3.4的竖式,百分位上怎样算?这一位上不是把“5”移下去,是算5+0=5,“0”是根据小数的性质,在3.4的末尾添上的。同样,4.75-3.4的百分位上是算5-0=5,也可以根据小数性质,在3.4的末尾添上“0”。这些可以添上的“0”只是没有写出来,把它想在脑里了。类似的情况在第48页“练一练”里和练习八第2题里也多次出现,如果教学时注意到这些,那么已经为例2的教学作了很好的铺垫。

  (2) 在例2和“试一试”里集中力量突破难点。

  例2的竖式中,3.4的末尾有红色的“0”,并加了虚线框。这个“0”不是一开始就写出来的,是在计算情境中出现的。依据3.4-2.65写出的竖式,被减数百分位上空着。这一位上是几减几?由此联想小数的性质,可以在3.4的末尾添上一个“0”。写出了这个“0”,百分位上怎样算就清楚了。教材把“0”加红色,意在把精力集中到这个“0”上,着重解决两个问题:这个“0”是哪来的?这个“0”对计算有什么作用?把“0”套上虚线框的意思是,这个“0”一般不写出来,只要把它想在脑里。这是对多数学生的导向。至于部分计算能力较弱的学生,仍允许他们把这个“0”写出来,能防止算错。

  “试一试”计算8-2.65,这是整数减两位小数,计算难度比例2大一些。教材让学生独立计算,应用例2中学到的方法。在他们计算时,通过大卡通的提问给予适当启示。如果有些学生把被减数十分位、百分位上的“0”写出来,要指导他们先在被减数个位的右下方点上小数点,再在小数的末尾添“0”。

  教材要求“再选择两种物品,算出它们的单价相差多少元”扩大“试一试”的容量。要有意识地让学生计算8-3.4、8-4.75、4.75-3.4等被减数与减数的小数位数不同的题,消化学习的新知识。

  “练一练”里大多数题的被减数小数位数比减数少,让学生巩固并掌握新知识。也有少量两位小数减一位小数、两位小数减两位小数的题,有利于学生把新旧知识融合起来,既把新学习的计算纳入已有的法则,又充实了计算的技能。

  练习八里的小数加、减法口算,是在初步掌握笔算的基础上进行的,通过这些口算进一步掌握小数加、减法的计算法则。本单元安排的小数加、减法口算题,把相同数位上的数对齐以后,进行的计算能够和整数的两位数加一位数、整十数或两位数的口算相衔接。第5题对小数加、减计算进行验算,要把整数加、减法的验算方法迁移过来。加法的验算一般应用加法交换律进行,减法的验算一般应用减数加差等于被减数这个关系。

  3. 把整数加法的运算律和减法的运算性质向小数加法和减法扩展。

  在四年级(上册)教学了加法交换律、结合律以及减法的运算性质。学生已经理解了这些运算律和运算性质的内容,并能应用于整数加、减计算。整数加法的运算律和减法的运算性质对小数加、减法是不是适用?这是本单元例3和练习九第2题要解决的问题。

  “同样适用”包括两层意思: 同样存在和同样应用。例3让学生计算四个小数相加的和,列出算式以后,有些学生会按运算顺序依次相加,也会有学生调换加数的位置,另行组织相加的顺序。各种算法的最后得数相同,说明了两点:一是小数连加也可以交换加数的位置,也可以把加数结合相加,计算结果不会改变。即小数加法同样有交换律和结合律。二是各种算法的简便程度不同,依次相加比较麻烦,需要列竖式笔算。应用运算律使算法简便,只要口算。这两点共同表明,整数加法的运算律,对小数加法也同样适用。“同时存在”和“同样应用”的认知方式不同,前者是发现、验证,后者是迁移。教材把这两点教学内容设计在一个载体里,通过计算四个小数相加的和,既验证了存在,又体会到原有的应用经验可以迁移过来。这些都是“练一练”的基础和知识基础。

  教学减法的运算性质也作了类似的安排。练习九第2题通过两组式子的算一算、比一比,发现整数减法的运算性质在小数减法里同样存在,因此,也可以用于小数减法的简便运算。

  4. 使用计算器计算小数加法和减法,体会计算工具方便了计算。

  例4教学使用计算器进行小数加、减法计算。教学过程大致分成两段: 第一段以0.8为例,让学生在操作计算器的活动中,学会往计算器里输入小数的方法,体会到输入小数的方法和输入整数的方法基本相同,只是多按一个小数点的键;第二段是计算五种物品的总价和付出100元应找回的`钱数。一方面熟练使用计算器的方法,另一方面感觉到用计算器算比笔算方便得多。

  “练一练”里都是小数加、减计算和混合运算。像这些比较繁的计算没有笔算要求,都可以用计算器算。练习九第8题算出各次收入或支出后的余额,计算量很大,而且比较繁。这些练习都能使学生体会使用计算器的好处。

小学数学教案 篇2

  一、 问题情景,引入新课

  师:请同学们仔细观察老师手中的两根不同颜色的线绳,你觉得哪根长一点呢?

  师:哪位同学能想出办法,有根据的说出哪根长点,哪根短点?

  (引出尺子)

  师:非常好,为了准确,方便地表示物体的长度,我们的祖先啊,就发明了带有刻度的尺子。那么,到底怎样用尺子量呢?下面,我们就一起来学习用尺量的方法,然后再来解决这个问题,好吗?

  二、 观察操作,探索新知

  1、认识厘米

  师:请同学们拿出自己的直尺,仔细观察,你发现了什么?

  生:……

  ■ “0”表示起点,就像我们赛跑时都要从起点开始跑,那我们用尺子量物体长度时,也要从“0”开始量。

  ■ 刻度线有长有短。

  ■ 尺子上还有很多数字,这些数字都对着一根长的刻度线,所以数字几,我们就把它叫做刻度几,而且这些数字都是按顺序排列的。尺子长些,数字就多些;尺子短些,数字就少些。

  2、认识、感受1厘米

  师:同学们,你们知道自己食指的宽度吗?把你们食指摁在尺子上,你发现了什么呢?(引出1厘米)

  师:请同学们找找,自己尺子上,还有哪些是1厘米的。

  生:从刻度2到3,或者3到4……都1厘米。

  师:这说明了什么呢?

  l 尺子上每相邻的两条长刻度线之间的一大格的长度都是1厘米。

  师:我们大家现在一起用手比划一下,1厘米多长。互相看一下,计住了吗?闭上眼睛想一想,1厘米有多长。

  3、认识几厘米

  师:我们现在知道1厘米有多长了,那3厘米又有多长呢?

  师:同学们还能在尺子上找到其他3厘米的长度吗?

  4、用厘米量

  师:刚才上课时,老师展示的2根线绳,到底哪一根长一点呢?现在,同学们先估计一下这两根线绳各自多长,然后在测量比较一下,好吗?

  师:结果是哪根线绳长一点呢?能说说你是怎么量的吗?

  三、 知识拓展

  1、师:老师这里有一把尺子,可是它断了一节,没有刻度“0”,只剩下刻度3到刻度10,那么这把尺子能不能用来量物体的长度啊?同学们能不能帮老师想一想办法,好吗?

  2、其他测量长度的工具(课件展示)

  卷尺、米尺、皮尺

  3、其他的长度单位

  尺、寸、英寸、米、公里、码、里、海里

  4、《买鞋》的故事

  四、 总结

  这节课,同学们学到了什么啊?这些知识有些吗?我们能不能象那个“买鞋的”一样啊,为什么啊?

  五、 教学反思

  第三课时 认识米,用米量

  教学目标

  (一)使学生初步认识长度单位米,初步建立1米的长度观念.

  (二)根据1厘米和1米的实际长度,知道“1米=100厘米”.

  (三)通过同学的合作,能用米尺度量整米长度的物体,培养学生的动手操作能力.

  教学重点和难点

  重点:掌握1米的实际长度.

  难点:用米尺量较长物体的长度.

  教具和学具

  教具:1米的直尺、折尺、卷尺,4厘米、6厘米长的纸条.

  学具:1米的卷尺,1根较长的绳子.

  教学过程设计

  (一)复习准备

  1.提问

  (1)量物体的长度用什么工具?已经学过的长度单位是什么?用两个手指比一比1厘米有多长?2厘米,3厘米呢?

  (2)用刻度尺量物体的长度应注意什么?指名两名学生量下面纸条的长度.

  (3)现在我请一位同学来量讲台桌的长(学生用自己的刻度尺量,很不方便,不容易得出结果).因此,量比较长的物体或者距离,如操场东边到西边有多远,通常用米作单位.板书课题,今天我们学习认识米、用米量.

  (二)学习新课

  1.认识米

  ■出示米尺,这是一把米尺,观察它的刻度都是以10厘米为单位.

  ■让学生观察自己带来的1米长的卷尺,和教师1米直尺的刻度是一样的.

  那么1米到底有多长呢?教师用1米的直尺,量一量从地面到讲台桌的什么地方是1米,让学生观察1米有多高.再在黑板上画1米长的一条线段,让学生观察1米有多长.

  ■让学生用自己的卷尺,把两臂伸开,看一看到什么地方是1米,两人互相量一量身高,从地面到身体的什么部位是1米,你的身高比1米高,还是不到1米.同学们看到在公共汽车或电车的车门口有一个1米的标记,不足1米高的儿童可以不买车票,超过1米则要买票,同学们乘车要自觉遵守这一规定.

  以小组为单位,量出1米,2米,……给大家看.

  2.厘米和米之间的关系

  ■上节课我们学习了厘米,1厘米有多长呢?同学用两手指比一下,教师在黑板上1米长的线段的上面并排画出1厘米.1米有多长呢?同学们用两手比一下.那么米和厘米之间有什么关系呢?

  ■教师出示折尺,这是一把折尺,伸直正好是1米,与1米的直尺相比,一样长.看一看这把尺上有多少厘米.10厘米、20厘米、30厘米、……、100厘米.再看看这把1米的直尺,1米里面有100厘米;请同学们看看你的卷尺,1米里面也是有100厘米.同时,教师在黑板1米长的线段上,以10厘米为单位,分成10份(如图11).

  同时板书: 1米= 100厘米

  3.用卷尺量较长的距离

  教师出示卷尺,并说明量比较长的距离,一般用卷尺.用卷尺量物体的长度时,一定要从物体的一头开始,由学生拿住卷尺的一端,对齐要量物体的一端,尺子要放平拉直,再看另一端在尺子的什么刻度上,这样才能量出准确的长度.

  (三)巩固反馈

  1.两人互相量身高,_______米______厘米

  2.以4人小组为单位,利用4个人用1米长的卷尺,分工量下面的长度(每组量一项):前面黑板的长,后面板报的长,教室地面的长、宽,四周墙壁的长等.测量后,每组派代表向全班交流.

  3.在( )内填写合适的长度单位米或厘米.

  教室长6( )黑板长2( )

  小明身高124( )课桌长50( )

  第四课时 认识线段

  教学目标:

  1、让学生自己观察、感知线段,体验线段的两个特征:直的和可度量。

  2、通过实践活动,使学生学会量线段、画线段的方法。

  3、培养学生的观察、想象、操作能力、合作意识以及运用知识解决实际问题能力。

  教学重难点:学生学会量线段、画线段的方法。

  教学用具:刻度尺,各种弯的、直的实物若干,如:牙膏盒、吸管、绳子等。

  教学过程设计:

小学数学教案 篇3

  教学内容:比例的意义、基本性质,比例各部分名称,组比例。

  教学目标:

  1. 使学生理解比例的意义,认识比例各部分的名称。

  2. 能运用比例的意义判断两个比能否组成比例,并会组比例。理解并掌握比例的基本性质。

  教学重点:比例的意义和基本性质。

  教学难点:理解比例的基本性质。

  教学过程:

  一、 复习

  1、 提问:什么是比?一辆汽车4小时行160千米,说出路程和时间的比。

  2、 求下面各比的比值,哪些比的比值相等?

  12:16 : 4.5:2.7 10:6

  二、 新授

  提示课题:这节课我们在过去学过比的知识的基础上,学一个的知识:比例的意义和基本性质。

  1、 比例的意义

  出示例1:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:

  时间(时) 2 5

  路程(千米) 80 200

  从上不中可以看到,这辆汽车:

  第一次所行台的路程和时间的比是____;

  第二次所行驶的路程和时间的比是____;

  这两个比的比值各是多少?它们有什么关系?

  (1) 根据学生回答,师板书结果后,师指出:这两个比的比值都是40,所以这两个比是相等的,可以用等号将两个比连起来写成下面的等式。

  板书:80:2=200:5 或 =

  师:这样的式子,我们给它一个名字叫做比例。

  (2) 口答

  A、把复习第2题中两个比值相等的比用等号连起来。

  B、用等号连接起来的式子叫做什么?

  C、根据刚才的回答,你能说出什么叫比例吗?

  (3) 小结。

  A、表示两个比相等的式子叫做比例,两个比的比值相等也就是这两个比相等。

  B、要判断两个比能否组成比例,可以看这两个比的比值是否相等。比值相等的两个比可以组成比例,比值不相等的两个比就不能组成比例。

  (4) 练习,课本第10页做一做。

  2、 比例的基本性质。

  (1) 比例各部分的名称。

  引导学生观察黑板上的例题:80:2=200:5

  并自学课本

  提问:什么叫做比例的项?什么叫前项?什么叫后项?什么叫内项?什么叫外项?这四项分别在等号的什么位置?

  (2) 说出下面各比例的外项和内项?

  6:10=9:15 8:3=3.2:1.2 1/3:1/6=16:8

  (3) 计算:上面比例中的外项积与内项积。

  (4) 引导学生观察每个比例中的计算结果,发现这两个乘积有怎样的关系?

  师:想一想,如果把比例写成分数形式,等号两端的分子分母交叉相乘的积有什么关系?

  (5)你能得出什么结论?

  三、 巩固练习

  1、 完成第2页的做一做。

  2、 完成第3页的做一做第1题。

  四、 总结

  1、 比例的意义和基本性质是什么?

  2、 怎样判断两个比能否组成比例?

  五、 作业

  1、 完成练习四的第1-3题。

小学数学教案 篇4

  教学内容:

  苏教版国标本教材第九册63-64页。

  教学目标:

  1、使学生经历用列举的策略解决简单的实际问题的过程,能通过不遗漏,不重复的列举找到符合要求的所有答案。

  2、 使学生在对解决简单实际问题的过程的反思和交流中,感受一一列举的特点和价值,进一步发展思维的条理性和严密性。

  3、使学生进一步积累解决问题的经验,增强解决问题的信心。

  教学重点:

  能对信息进行分析,用一一列举的策略解决实际问题。

  教学难点:

  能有条理的一一列举,发展思维的条理性和严密性。

  教学过程:

一、谈话导入 回忆策略

  1、谈话:老师先来和大家玩个游戏,怎么样?看,这是什么?(扑克牌)

  老师抽出大王和小王,你们知道一副扑克牌有几种不同的花色吗?(四种)

  老师从中任意抽出一张,猜一猜有多少种不同的结果?(四种)是哪四种呢?(草花,黑桃,红心,方块)

  2、揭题:刚才同学们将这些花色一个一个列举了出来(板书:一一列举),一一列举也是我们解决数学问题时经常要用到的一种策略。今天我们一起来研究这种解决问题的策略(板书课题)。

  二、教学例题 探究列举的方法

  (一)情景创设 呈现问题

  1、师:我校操场东面有一块空地,学校想将把这块空地利用起来,用18根1米长的栅栏围成一个长方形的花圃,有多少种不同的围法?

  (1)从条件中你获得了哪些数学信息?(周长是18米)你是怎么知道的?

  (2)真了不起,你连这隐藏的数学信息也找出来了,周长是18米,那么说明长和宽的和是多少?(课件出示,长+宽=9米)

  (3)长方形的长+宽=9米,那么这个长方形花圃可以怎样围?你能帮老师来设计一下这个长方形花圃吗?

  请拿出准备的小棒,同桌合作摆一摆,并想想有没有不同的围法吗?

  2、学生尝试操作。

  (1)学生操作,教师指导。

  (2)交流反馈:哪个小组先来说说你们的围法?检验是否符合要求。

  其它小组有不同的摆法吗?

小学数学教案 篇5

  教学目标:

  1、 从操作活动中理解因数与倍数的意义,会判断一个数不是另一个数的因数或倍数。

  2、培养学生抽象、概括与观察思考的能力,渗透事物之间相互联系,相互依存的辨证唯物主义观点。

  3、培养学生的合作意识、探索意识,以及热爱数学学习的情感。

  教学重点:

  理解因数和倍数的意义

  教学难点:

  因数和倍数等概念间的联系和区别。

  教学过程:

  一、认识因数与倍数,预习反馈

  1、反馈主题图,根据主题图的不同情况写出乘法算式和除法算式。

  反馈:

  1×12=122×6=123×4=1212×1=126×2=124×3=1212÷1=1212÷2=612÷3=412÷12=112÷6=212÷4=3

  2、观察并回答。

  (1)这三组乘法、除法算式中,都有什么共同点?

  (2)像这样的乘除法算式中的三个数之间还有另一种说法,你想知道吗?

  (3)这样的三个数,我们也可以怎样说?(2和6是12的因数),请大家也像这样把其余的两组数也说一说。

  请看教材12页,2和6与12的关系还可以怎么说?

  (4)也就是说2和6与12的关系是因数和倍数的关系,这几组数中,谁和谁还有因数和倍数的关系?

  (5)提问:能不能说12是12的因数呢?

  (6)小结:上面这三组算式中,我们知道:1、2、3、4、6、12都是12的因数。

  3.讨论:23÷4=5……3,提问:23是4的倍数吗?为什么?

  谁能举一个算式例子,并说说谁是谁的倍数,谁是谁的因数?

  4.讨论:0×3 0×10 0÷3 0÷10

  提问:通过刚才的计算,你有什么发现?

  5.注意:(1)为了方便,在研究因数和倍数的时候,我们所说的数一般指的是整数,但不包括0。(2) 这节课我们研究因数与倍数的关系中所说的因数不是以前乘法算式名称的“因数”,两者不能搞混淆。

  二、巩固新知

  1.下面每一组数中,谁是谁得因数,谁是谁得倍数?

  16和2 4和24 72和8 20和5

  2.下面得说法对吗?说出理由。

  (1)48是6的倍数

  (2)在13÷4==3……1中,13是4的倍数

  (3)因为3×6=18,所以18是倍数,3和6是因数。

  3.在36、4、9、12、3、0这些数中,谁和谁有因数和倍数关系。

  4、完成P15第2题

  学生自己独立完成,讲评时让学生说一说,是怎么想的?

  三、思维训练

  1、判断

  (1)12的因数有:1、2、3、4、6、12。

  (2)整数32的因数共有4个。

  (3)自然数a的最大因数是a,最小因数是1。

  (4)一个数的因数都小于这个数。

  2.游戏。记住自己的学号,听老师说要求,符合要求的同学请举手。

  (1)( )是4的倍数 (2)( )是60的因数

  (3)( )是5的倍数 (4)( )是36的因数

  四、课后小结:

  五、 布置作业

小学数学教案 篇6

  教学目的

  1.通过问题解决,让学生学会“8+?”的进位加法,初步体会计算方法的多样化,并能在实际中应用理解.进一步理解“凑十法”的含义.

  2.组织学生在交流、合作中获得知识和能力.

  3.对学生进行环境保护教育

  教学重点

  通过问题解决,让学生学会“8+?”的进位加法,初步体会计算方法的多样化,并能

  在实际中应用理解.进一步理解“凑十法”的含义.

  教学难点

  初步体会计算方法的多样化.

  教学步骤

  一、情境引入,进行环保教育.

  1.出示图片:主题图

  2.教师谈话

  树林中有一些小树,分两排种植,少先队员大哥哥、大姐姐们要为小数浇水,第一排有8棵树,第二排中了6棵树,你知道大哥哥、大姐姐们工需要为多少棵树浇水吗?

  二、问题摆现,体会计算多样.

  (一)教学“8+?”

  1.根据问题,同学自己思考.

  2.小组交流.

  3.全班讨论.(出示图片:说一说1和说一说2)

  (二)比较

  1.计算对比

  9 + 6 = 15

  8 + 6 = 14

  教师提问:你有什么收获吗?我们再看几组,先计算,如果有收获请你验证你的想法,

  如果没有,请你继续总结.

  2.口算

  9+9 = 9+8 = 9+7 = 9+6 =

  9+5 = 9+4 = 9+3 = 9+2 =

  8+9 = 8+8 = 8+7 = 8+6 =

  8+5 = 8+4 = 8+3 =

  3.小组交流心得.

  4.全班交流小结.

  9加几就减1,8加几就减2.

  5.反馈练习.比一比,谁算得快.(说一道,算一道,并说算的方法)

  8+8 7+8 8+4

  5+8 8+6 8+3

  8+5 2+8 4+8

  8+7 9+8 8+9

  3+8 6+8 8+2

  三、实践应用,拓展延伸

  (一)出示图片:摆一摆,算一算

  (二)出示图片:蝴蝶

  (三)出示图片:蜻蜓

  (四)组织学生到生活中寻找蕴含的数学问题(如:种树问题、游戏问题、银行问题),

  选一些挑战性问题大家进行讨论,并加以解决,使之深刻感受生活与数学的联系.

  四、课外研究.

  7+( ) 6+( )

  有什么办法计算更快?

【小学数学教案】相关文章:

小学数学教案09-16

小学教学的数学教案01-15

小学数学教案模板08-26

小学数学教案反思02-18

小学数学教案电子01-09

小学数学教案课件01-10

小学数学教案的模板01-12

小学数学教案欣赏01-11

人教版小学数学教案07-07

最新小学数学教案07-08