高二数学教案

时间:2022-12-28 14:27:38 数学教案 我要投稿
  • 相关推荐

高二数学教案

  作为一名无私奉献的老师,时常需要编写教案,教案是实施教学的主要依据,有着至关重要的作用。写教案需要注意哪些格式呢?以下是小编为大家整理的高二数学教案,希望对大家有所帮助。

高二数学教案

高二数学教案1

  学习目标:

  1、了解本章的学习的内容以及学习思想方法

  2、能叙述随机变量的定义

  3、能说出随机变量与函数的关系,

  4、能够把一个随机试验结果用随机变量表示

  重点:能够把一个随机试验结果用随机变量表示

  难点:随机事件概念的透彻理解及对随机变量引入目的的认识:

  环节一:随机变量的定义

  1.通过生活中的一些随机现象,能够概括出随机变量的定义

  2能叙述随机变量的定义

  3能说出随机变量与函数的区别与联系

  一、阅读课本33页问题提出和分析理解,回答下列问题?

  1、了解一个随机现象的规律具体指的是什么?

  2、分析理解中的两个随机现象的随机试验结果有什么不同?建立了什么样的对应关系?

  总结:

  3、随机变量

  (1)定义:

  这种对应称为一个随机变量。即随机变量是从随机试验每一个可能的结果所组成的

  到的映射。

  (2)表示:随机变量常用大写字母.等表示.

  (3)随机变量与函数的区别与联系

  函数随机变量

  自变量

  因变量

  因变量的范围

  相同点都是映射都是映射

  环节二随机变量的应用

  1、能正确写出随机现象所有可能出现的结果2、能用随机变量的描述随机事件

  例1:已知在10件产品中有2件不合格品。现从这10件产品中任取3件,其中含有的次品数为随机变量的学案.这是一个随机现象。(1)写成该随机现象所有可能出现的结果;(2)试用随机变量来描述上述结果。

  变式:已知在10件产品中有2件不合格品。从这10件产品中任取3件,这是一个随机现象。若Y表示取出的3件产品中的合格品数,试用随机变量描述上述结果

  例2连续投掷一枚均匀的硬币两次,用X表示这两次正面朝上的次数,则X是一个随机变

  量,分别说明下列集合所代表的随机事件:

  (1){X=0}(2){X=1}

  (3){X<2}(4){x>0}

  变式:连续投掷一枚均匀的硬币三次,用X表示这三次正面朝上的次数,则X是一个随机变量,X的可能取值是?并说明这些值所表示的随机试验的结果.

  练习:写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机变量的结果。

  (1)从学校回家要经过5个红绿灯路口,可能遇到红灯的次数;

  (2)一个袋中装有5只同样大小的球,编号为1,2,3,4,5,现从中随机取出3只球,被取出的球的号码数;

  小结(对标)

高二数学教案2

  一、教学目标

  1、了解函数的单调性和奇偶性的概念,把握有关证实和判定的基本方法、

  (1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念、

  (2)能从数和形两个角度熟悉单调性和奇偶性、

  (3)能借助图象判定一些函数的单调性,能利用定义证实某些函数的单调性;能用定义判定某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程、

  2、通过函数单调性的证实,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从非凡到一般的数学思想、

  3、通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度、

  二、教学建议

  (一)知识结构

  (1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系、

  (2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像、

  (二)重点难点分析

  (1)本节教学的重点是函数的单调性,奇偶性概念的形成与熟悉、教学的难点是领悟函数单调性,奇偶性的本质,把握单调性的证实、

  (2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它、这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫、单调性的证实是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证实,也没有意识到它的重要性,所以单调性的证实自然就是教学中的难点、

  (三)教法建议

  (1)函数单调性概念引入时,可以先从学生熟悉的一次函数,二次函数、反比例函数图象出发,回忆图象的增减性,从这点感性熟悉出发,通过问题逐步向抽象的定义靠拢、如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来、在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的熟悉就可以融入其中,将概念的形成与熟悉结合起来、

  (2)函数单调性证实的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,非凡是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律、

  函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来、经历了这样的过程,再得到等式时,就比较轻易体会它代表的是无数多个等式,是个恒等式、关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件、

高二数学教案3

  一、教学目标

  本课时的教学目标为:①借助直角坐标系建立复平面,掌握复数的几何形式和向量表示;②经历复平面上复数的“形化”过程,理解复数与复平面上的点、向量之间的一一对应关系;③感悟数学的释义:数学是研究空间形式和数量关系的科学、笔者认为,教学目标总体设置得较为适切,符合三维框架、修改:“掌握复数的几何形式和向量表示”改为“掌握在复平面上复数的点表示和向量表示”。

  二、教学重点

  本课时的教学重点为:复数的坐标表示:几何形式与向量表示、教学重点设置得较为适切,部分用词表达配合教学目标一并修改、修改:复数的坐标表示:点表示与向量表示。

  三、教学难点

  本课时的教学难点为:复数的代数形式、几何形式及向量表示的“同一性”、首先,“同一性”说法有待商榷,这个词有着严格的定义,使用时需谨慎、其次,经过思考,复数的代数表示、点表示及向量表示之间的互相转化才是本课时的教学难点。

  四、教学过程

  (一)类比引入

  本环节通过实数在数轴上的“形化”表示,类比至复数,引出复数的“几何形式”:复平面与点、但在设问中,有一提问值得商榷:实数的几何形式是什么?此提问较为唐突,在试讲课与正式课中学生均表示难以理解,原因如下、①学生最近发展区中未具备“实数的几何形式”,②实数的几何形式是教师引导学生对数的一种有高度的认识与表达,属于理解层面、经过思考,修改:①如何“画”实数?;②对学生直接陈述:我们知道,每一个实数都有数轴上唯一确定的一个点和它对应;反过来,数轴上的每一个点也有唯一的一个实数和它对应。

  (二)概念新授

  本环节给出复平面的定义及相关概念,并且帮助学生形成复数与复平面上点两者间的一一对应关系、教学设计中对概念的注释是:表示实数的点都在实轴上,表示纯虚数的点都在虚轴上,表示虚数的点在四个象限或虚轴上,表示实数的点为原点、经过思考,修改:表示实数的点都在实轴上、实轴上的点表示全体实数;表示纯虚数的点都在虚轴上、虚轴上的点表示全体纯虚数与实数;表示虚数的点不在实轴上;实数与原点一一对应。

  (三)例题体验

  本环节通过三个例题体验,落实本课时的教学重点之一:复数的坐标表示:点表示;突破本课时的教学难点:复数的代数表示、点表示及向量表示之间的互相转化、例题1对课本例题作了改编,此例题的设计意图为从复平面上的点出发,去表示对应的复数,并且蕴含了计数原理中的乘法原理、值得一提的是,在课堂教学实施过程中,学生很清晰地建立起了两者之间的转化关系,并且使用了乘法原理、例题2的设计意图是从复数出发去在复平面上表示对应的点,而例题3的设计意图是从单个复数与其在复平面上的对应点之间的转化到两个复数与其在复平面上对应点之间的互相转化、例题2与例题3的设计符合学生的认知规律,但是在教学过程中没有配以图形来帮助学生理解,这是整个教学过程中的最大不足。

  (四)概念提升

  本环节继复数在复平面上的点表示之后,给出复数的向量表示,呈现了完整的复数的坐标表示、学生已经建构起复数集中的复数与复平面上的点之间的一一对应关系,结合他们的最近发展区:建立了直角坐标系的平面中的任意点均与唯一的位置向量一一对应,从而较为顺利地架构起复数与向量的一一对应关系、设计的例题是由笔者改编的,整合了向量与复数、点与复数以及向量与点之间的互相转化,巩固三者之间的一一对应关系、值得一提的是,设计的第3小问具有开放性,启发学生去探究由向量加法的坐标表示引出复数加法法则,在课堂教学实践中,已有学生产生这样的思考。

  在之后的教研组研评课中,老师们给出了对这节课的认可与中肯的建议,让笔者受益匪浅,笔者经过思考已经在上文中的各环节修改处得以体现落实、不过仍然有一点困惑,有老师提出甚至笔者备课时也有这样的犹豫:本课时是否将下一课时“复数的模”一并给出、笔者在不断思考教材分割成两课时的用意,结合试讲与上课的两次实践也说明,笔者所在学校的学生更适合这样的分割,第一课时让学生从不同角度感受复数,第二课时用模来巩固深化复数的坐标表示、本课时的课题是复数的坐标表示,蕴含了点坐标表示与向量坐标表示两块,第一课时先打开认识的视角,第二课时通过模来深入体验、

  当然教无定法,根据学情、因材施教,在理解教材设计意图的基础上对教材进行科学合理的改编也是很有必要的。

高二数学教案4

  一、教材分析

  【教材地位及作用】

  基本不等式又称为均值不等式,选自北京师范大学出版社普通高中课程标准实验教科书数学必修5第3章第3节内容。教学对象为高二学生,本节课为第一课时,重在研究基本不等式的证明及几何意义。本节课是在系统的学习了不等关系和掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续进一步了解不等式的性质及运用,研究最值问题奠定基础。因此基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,它也是对学生进行情感价值观教育的好素材,所以基本不等式应重点研究。

  【教学目标】

  依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:

  知识与技能目标:理解掌握基本不等式,理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;

  过程与方法目标:通过探究基本不等式,使学生体会知识的形成过程,培养分析、解决问题的能力;

  情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。

  【教学重难点】

  重点:理解掌握基本不等式,能借助几何图形说明基本不等式的意义。

  难点:利用基本不等式推导不等式.

  关键是对基本不等式的理解掌握.

  二、教法分析

  本节课采用观察——感知——抽象——归纳——探究;启发诱导、讲练结合的教学方法,以学生为主体,以基本不等式为主线,从实际问题出发,放手让学生探究思索。利用多媒体辅助教学,直观地反映了教学内容,使学生思维活动得以充分展开,从而优化了教学过程,大大提高了课堂教学效率.

  三、学法指导

  新课改的精神在于以学生的发展为本,把学习的主动权还给学生,倡导积极主动,勇于探索的学习方法,因此,本课主要采取以自主探索与合作交流的学习方式,通过让学生想一想,做一做,用一用,建构起自己的知识,使学生成为学习的主人。

  四、教学过程

  教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。

  具体过程安排如下:

  (一)基本不等式的教学设计创设情景,提出问题

  设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实.基于此,设置如下情境:

  上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。

  [问题1]请观察会标图形,图中有哪些特殊的几何图形?它们在面积上有哪些相等关系和不等关系?(让学生分组讨论)

  (二)探究问题,抽象归纳

  基本不等式的教学设计1.探究图形中的不等关系

  形的角度----(利用多媒体展示会标图形的变化,引导学生发现四个直角三角形的面积之和小于或等于正方形的面积.)

  数的角度

  [问题2]若设直角三角形的两直角边分别为a、b,应怎样表示这种不等关系?

  学生讨论结果:。

  [问题3]大家看,这个图形里还真有点奥妙。我们从图中找到了一个不等式。这里a、b的取值有没有什么限制条件?不等式中的等号什么时候成立呢?(师生共同探索)

  咱们再看一看图形的变化,(教师演示)

  (学生发现)当a=b四个直角三角形都变成了等腰直角三角形,他们的面积和恰好等于正方形的面积,即.探索结论:我们得到不等式,当且仅当时等号成立。

  设计意图:本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式基本不等式的教学设计。在此基础上,引导学生认识基本不等式。

  2.抽象归纳:

  一般地,对于任意实数a,b,有,当且仅当a=b时,等号成立。

  [问题4]你能给出它的证明吗?

  学生在黑板上板书。

  [问题5]特别地,当时,在不等式中,以、分别代替a、b,得到什么?

  学生归纳得出。

  设计意图:类比是学习数学的一种重要方法,此环节不仅让学生理解了基本不等式的来源,突破了重点和难点,而且感受了其中的函数思想,为今后学习奠定基础.

  【归纳总结】

  如果a,b都是非负数,那么,当且仅当a=b时,等号成立。

  我们称此不等式为基本不等式。其中称为a,b的算术平均数,称为a,b的几何平均数。

  3.探究基本不等式证明方法:

  [问题6]如何证明基本不等式?

  设计意图:在于引领学生从感性认识基本不等式到理性证明,实现从感性认识到理性认识的升华,前面是从几何图形中的面积关系获得不等式的,下面用代数的思想,利用不等式的性质直接推导这个不等式。

  方法一:作差比较或由基本不等式的教学设计展开证明。

  方法二:分析法

  要证

  只要证2

  要证,只要证2

  要证,只要证

  显然,是成立的。当且仅当a=b时,中的等号成立。

  4.理解升华

  1)文字语言叙述:

  两个正数的算术平均数不小于它们的几何平均数。

  2)符号语言叙述:

  若,则有,当且仅当a=b时,。

  [问题7]怎样理解“当且仅当”?(学生小组讨论,交流看法,师生总结)

  “当且仅当a=b时,等号成立”的含义是:

  当a=b时,取等号,即;

  仅当a=b时,取等号,即。

  3)探究基本不等式的几何意义:

  基本不等式的教学设计借助初中阶段学生熟知的几何图形,引导学生探究不等式的几何解释,通过数形结合,赋予不等式几何直观。进一步领悟不等式中等号成立的条件。

  如图:AB是圆的直径,点C是AB上一点,

  CD⊥AB,AC=a,CB=b,

  [问题8]你能利用这个图形得出基本不等式的几何解释吗?

  (教师演示,学生直观感觉)

  易证RtACDRtDCB,那么CD2=CA·CB

  即CD=.

  这个圆的半径为,显然,它大于或等于CD,即,其中当且仅当点C与圆心重合,即a=b时,等号成立.

  因此:基本不等式几何意义可认为是:在同一半圆中,半径不小于半弦(直径是最长的弦);或者认为是,直角三角形斜边的一半不小于斜边上的高.

  4)联想数列的知识理解基本不等式

  从形的角度来看,基本不等式具有特定的几何意义;从数的角度来看,基本不等式揭示了“和”与“积”这两种结构间的不等关系.

  [问题9]回忆一下你所学的知识中,有哪些地方出现过“和”与“积”的结构?

  归纳得出:

  均值不等式的代数解释为:两个正数的等差中项不小它们的等比中项.

  基本不等式的教学设计(四)体会新知,迁移应用

  例1:(1)设均为正数,证明不等式:基本不等式的教学设计

  (2)如图:AB是圆的直径,点C是AB上一点,设AC=a,CB=b,

  ,过作交于,你能利用这个图形得出这个不等式的一种几何解释吗?

  设计意图:以上例题是根据基本不等式的使用条件中的难点和关键处设置的,目的是利用学生原有的平面几何知识,进一步领悟到不等式成立的条件,及当且仅当时,等号成立。这里完全放手让学生自主探究,老师指导,师生归纳总结。

  (五)演练反馈,巩固深化

  公式应用之一:

  1.试判断与与2的大小关系?

  问题:如果将条件“x>0”去掉,上述结论是否仍然成立?

  2.试判断与7的大小关系?

  公式应用之二:

  设计意图:新颖有趣、简单易懂、贴近生活的问题,不仅极大地增强学生的兴趣,拓宽学生的视野,更重要的是调动学生探究钻研的兴趣,引导学生加强对生活的关注,让学生体会:数学就在我们身边的生活中

  (1)用一个两臂长短有差异的天平称一样物品,有人说只要左右各秤一次,将两次所称重量相加后除以2就可以了.你觉得这种做法比实际重量轻了还是重了?

  (2)甲、乙两商场对单价相同的同类产品进行促销.甲商场采取的促销方式是在原价p折的基础上再打q折;乙商场的促销方式则是两次都打折.对顾客而言,哪种打折方式更合算?(0≠q)

  (五)反思总结,整合新知:

  通过本节课的学习你有什么收获?取得了哪些经验教训?还有哪些问题需要请教?

  设计意图:通过反思、归纳,培养概括能力;帮助学生总结经验教训,巩固知识技能,提高认知水平.从各种角度对均值不等式进行总结,目的是为了让学生掌握本节课的重点,突破难点

  老师根据情况完善如下:

  知识要点:

  (1)重要不等式和基本不等式的条件及结构特征

  (2)基本不等式在几何、代数及实际应用三方面的意义

  思想方法技巧:

  (1)数形结合思想、“整体与局部”

  (2)归纳与类比思想

  (3)换元法、比较法、分析法

  (七)布置作业,更上一层

  1.阅读作业:预习基本不等式的教学设计

  2.书面作业:已知a,b为正数,证明不等式基本不等式的教学设计

  3.思考题:类比基本不等式,当a,b,c均为正数,猜想会有怎样的不等式?

  设计意图:作业分为三种形式,体现作业的巩固性和发展性原则,同时考虑学生的差异性。阅读作业是后续课堂的铺垫,而思考题不做统一要求,供学有余力的学生课后研究。

  五、评价分析

  1.在建立新知的过程中,教师力求引导、启发,让学生逐步应用所学的知识来分析问题、解决问题,以形成比较系统和完整的知识结构。每个问题在设计时,充分考虑了学生的具体情况,力争提问准确到位,便于学生思考和回答。使思考和提问持续在学生的最近发展区内,学生的思考有价值,对知识的理解和掌握在不断的思考和讨论中完善和加深。

  2.本节的教学中要求学生对基本不等式在数与形两个方面都有比较充分的认识,特别强调数与形的统一,教学过程从形得到数,又从数回到形,意图使学生在比较中对基本不等式得以深刻理解。“数形结合”作为一种重要的数学思想方法,不是教师提一提学生就能够掌握并且会用的,只有学生通过实践,意识到它的好处之后,学生才会在解决问题时去尝试使用,只有通过不断的使用才能促进学生对这种思想方法的再理解,从而达到掌握它的目的。

高二数学教案5

  一、课前预习目标

  理解并掌握双曲线的几何性质,并能从双曲线的标准方程出发,推导出这些性质,并能具体估计双曲线的形状特征。

  二、预习内容

  1、双曲线的几何性质及初步运用。

  类比椭圆的几何性质。

  2。双曲线的渐近线方程的导出和论证。

  观察以原点为中心,2a、2b长为邻边的矩形的两条对角线,再论证这两条对角线即为双曲线的渐近线。

  三、提出疑惑

  同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中

  课内探究

  1、椭圆与双曲线的几何性质异同点分析

  2、描述双曲线的渐进线的作用及特征

  3、描述双曲线的离心率的作用及特征

  4、例、练习尝试训练:

  例1。求双曲线9y2—16x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程。

  解:

  解:

  5、双曲线的第二定义

  1)。定义(由学生归纳给出)

  2)。说明

  (七)小结(由学生课后完成)

  将双曲线的几何性质按两种标准方程形式列表小结。

  作业:

  1。已知双曲线方程如下,求它们的两个焦点、离心率e和渐近线方程。

  (1)16x2—9y2=144;

  (2)16x2—9y2=—144。

  2。求双曲线的标准方程:

  (1)实轴的长是10,虚轴长是8,焦点在x轴上;

  (2)焦距是10,虚轴长是8,焦点在y轴上;

  曲线的方程。

  点到两准线及右焦点的距离。

高二数学教案6

  一、课前准备:

  【自主梳理】

  1.对数:

  (1) 一般地,如果 ,那么实数 叫做________________,记为________,其中 叫做对数的_______, 叫做________.

  (2)以10为底的对数记为________,以 为底的对数记为_______.

  (3) , .

  2.对数的运算性质:

  (1)如果 ,那么 ,

  .

  (2)对数的换底公式: .

  3.对数函数:

  一般地,我们把函数____________叫做对数函数,其中 是自变量,函数的定义域是______.

  4.对数函数的图像与性质:

  a1 0

  图象性

  质 定义域:___________

  值域:_____________

  过点(1,0),即当x=1时,y=0

  x(0,1)时_________

  x(1,+)时________ x(0,1)时_________

  x(1,+)时________

  在___________上是增函数 在__________上是减函数

  【自我检测】

  1. 的定义域为_________.

  2.化简: .

  3.不等式 的解集为________________.

  4.利用对数的换底公式计算: .

  5.函数 的.奇偶性是____________.

  6.对于任意的 ,若函数 ,则 与 的大小关系是___________________________.

  二、课堂活动:

  【例1】填空题:

  (1) .

  (2)比较 与 的大小为___________.

  (3)如果函数 ,那么 的最大值是_____________.

  (4)函数 的奇偶性是___________.

  【例2】求函数 的定义域和值域.

  【例3】已知函数 满足 .

  (1)求 的解析式;

  (2)判断 的奇偶性;

  (3)解不等式 .

  课堂小结

  三、课后作业

  1. .略

  2.函数 的定义域为_______________.

  3.函数 的值域是_____________.

  4.若 ,则 的取值范围是_____________.

  5.设 则 的大小关系是_____________.

  6.设函数 ,若 ,则 的取值范围为_________________.

  7.当 时,不等式 恒成立,则 的取值范围为______________.

  8.函数 在区间 上的值域为 ,则 的最小值为____________.

  9.已知 .

  (1)求 的定义域;

  (2)判断 的奇偶性并予以证明;

  (3)求使 的 的取值范围.

  10.对于函数 ,回答下列问题:

  (1)若 的定义域为 ,求实数 的取值范围;

  (2)若 的值域为 ,求实数 的取值范围;

  (3)若函数 在 内有意义,求实数 的取值范围.

  四、纠错分析

  错题卡 题 号 错 题 原 因 分 析

  高二数学教案:对数与对数函数

  一、课前准备:

  【自主梳理】

  1.对数

  (1)以 为底的 的对数, ,底数,真数.

  (2) , .

  (3)0,1.

  2.对数的运算性质

  (1) , , .

  (2) .

  3.对数函数

  , .

  4.对数函数的图像与性质

  a1 0

  图象性质 定义域:(0,+)

  值域:R

  过点(1,0),即当x=1时,y=0

  x(0,1)时y0

  x(1,+)时y0 x(0,1)时y0

  x(1,+)时y0

  在(0,+)上是增函数 在(0,+)上是减函数

  【自我检测】

  1. 2. 3.

  4. 5.奇函数 6. .

  二、课堂活动:

  【例1】填空题:

  (1)3.

  (2) .

  (3)0.

  (4)奇函数.

  【例2】解:由 得 .所以函数 的定义域是(0,1).

  因为 ,所以,当 时, ,函数 的值域为 ;当 时, ,函数 的值域为 .

  【例3】解:(1) ,所以 .

  (2)定义域(-3,3)关于原点对称,所以

  ,所以 为奇函数.

  (3) ,所以当 时, 解得

  当 时, 解得 .

高二数学教案7

  一、教学内容分析

  圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象、恰当地利用xx解题,许多时候能以简驭繁。因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

  二、学生学习情况分析

  我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

  三、设计思想

  由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情、在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率、

  四、教学目标

  1、深刻理解并熟练掌握圆锥曲线的定义,能灵活应用xx解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

  2、通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

  3、借助多媒体辅助教学,激发学习数学的兴趣、

  五、教学重点与难点:

  教学重点

  1、对圆锥曲线定义的理解

  2、利用圆锥曲线的定义求“最值”

  3、“定义法”求轨迹方程

  教学难点:

  巧用圆锥曲线xx解题

  六、教学过程设计

  【设计思路】

  开门见山,提出问题

  例题:

  (1)已知a(-2,0),b(2,0)动点m满足|ma|+|mb|=2,则点m的轨迹是()。

  (a)椭圆(b)双曲线(c)线段(d)不存在

  (2)已知动点m(x,y)满足(x1)2(y2)2|3x4y|,则点m的轨迹是()。

  (a)椭圆(b)双曲线(c)抛物线(d)两条相交直线

  【设计意图】

  定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。

  为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。

  【学情预设】

  估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折——如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)2这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。

  在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是,实轴长为,焦距为。以深化对概念的理解。

高二数学教案8

  教学准备

  教学目标

  熟练掌握三角函数式的求值

  教学重难点

  熟练掌握三角函数式的求值

  教学过程

  【知识点精讲】

  三角函数式的求值的关键是熟练掌握公式及应用,掌握公式的逆用和变形

  三角函数式的求值的类型一般可分为:

  (1)“给角求值”:给出非特殊角求式子的值。仔细观察非特殊角的特点,找出和特殊角之间的关系,利用公式转化或消除非特殊角

  (2)“给值求值”:给出一些角得三角函数式的值,求另外一些角得三角函数式的值。找出已知角与所求角之间的某种关系求解

  (3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。

  (4)“给式求值”:给出一些较复杂的三角式的值,求其他式子的值。将已知式或所求式进行化简,再求之

  三角函数式常用化简方法:切割化弦、高次化低次

  注意点:灵活角的变形和公式的变形

  重视角的范围对三角函数值的影响,对角的范围要讨论

  【例题选讲】

  课堂小结】

  三角函数式的求值的关键是熟练掌握公式及应用,掌握公式的逆用和变形

  三角函数式的求值的类型一般可分为:

  (1)“给角求值”:给出非特殊角求式子的值。仔细观察非特殊角的特点,找出和特殊角之间的关系,利用公式转化或消除非特殊角

  (2)“给值求值”:给出一些角得三角函数式的值,求另外一些角得三角函数式的值。找出已知角与所求角之间的某种关系求解

  (3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。

  (4)“给式求值”:给出一些较复杂的三角式的值,求其他式子的值。将已知式或所求式进行化简,再求之

  三角函数式常用化简方法:切割化弦、高次化低次

  注意点:灵活角的变形和公式的变形

  重视角的范围对三角函数值的影响,对角的范围要讨论

高二数学教案9

  第06课时

  2、2、3 直线的参数方程

  学习目标

  1.了解直线参数方程的条件及参数的意义;

  2. 初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。

  学习过程

  一、学前准备

  复习:

  1、若由 共线,则存在实数 ,使得 ,

  2、设 为 方向上的 ,则 =︱ ︱ ;

  3、经过点 ,倾斜角为 的直线的普通方程为 。

  二、新课导学

  探究新知(预习教材P35~P39,找出疑惑之处)

  1、选择怎样的参数,才能使直线上任一点M的坐标 与点 的坐标 和倾斜角 联系起来呢?由于倾斜角可以与方向联系, 与 可以用距离或线段 数量的大小联系,这种方向有向线段数量大小启发我们想到利用向量工具建立直线的参数方程。

  如图,在直线上任取一点 ,则 = ,

  而直线

  的单位方向

  向量

  =( , )

  因为 ,所以存在实数 ,使得 = ,即有 ,因此,经过点

  ,倾斜角为 的直线的参数方程为:

  2.方程中参数的几何意义是什么?

  应用示例

  例1.已知直线 与抛物线 交于A、B两点,求线段AB的长和点 到A ,B两点的距离之积。(教材P36例1)

  解:

  例2.经过点 作直线 ,交椭圆 于 两点,如果点 恰好为线段 的中点,求直线 的方程.(教材P37例2)

  解:

  反馈练习

  1.直线 上两点A ,B对应的参数值为 ,则 =( )

  A、0 B、

  C、4 D、2

  2.设直线 经过点 ,倾斜角为 ,

  (1)求直线 的参数方程;

  (2)求直线 和直线 的交点到点 的距离;

  (3)求直线 和圆 的两个交点到点 的距离的和与积。

  三、总结提升

  本节小结

  1.本节学习了哪些内容?

  答:1.了解直线参数方程的条件及参数的意义;

  2. 初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。

  学习评价

  一、自我评价

  你完成本节导学案的情况为( )

  A.很好 B.较好 C. 一般 D.较差

  课后作业

  1. 已知过点 ,斜率为 的直线和抛物线 相交于 两点,设线段 的中点为 ,求点 的坐标。

  2.经过点 作直线交双曲线 于 两点,如果点 为线段 的中点,求直线 的方程

  3.过抛物线 的焦点作倾斜角为 的弦AB,求弦AB的长及弦的中点M到焦点F的距离。

高二数学教案10

  ●三维目标

  (1)知识与技能:

  掌握归纳推理的技巧,并能运用解决实际问题。

  (2)过程与方法:

  通过“自主、合作与探究”实现“一切以学生为中心”的理念。

  (3)情感、态度与价值观:

  感受数学的人文价值,提高学生的学习兴趣,使其体会到数学学习的美感。

  ●教学重点

  归纳推理及方法的总结。

  ●教学难点

  归纳推理的含义及其具体应用。

  ●教具准备

  与教材内容相关的资料。

  ●课时安排

  1课时

  ●教学过程

  一.问题情境

  (1)原理初探

  ①引入:“阿基米德曾对国王说,给我一个支点,我将撬起整个地球!”

  ②提问:大家认为可能吗?他为何敢夸下如此海口?理由何在?

  ③探究:他是怎么发现“杠杆原理”的?

  从而引入两则小典故:

  A:一个小孩,为何轻轻松松就能提起一大桶水?

  B:修筑河堤时,奴隶们是怎样搬运巨石的?

高二数学教案11

  教学目标:

  通过生动有趣的“数学乐园”活动,使学生加深对10以内数的认识,进一步巩固10以内的加减法,充分感受数学与日常生活的密切联系。使学生在理解和掌握知识的同时,感受到学习数学的乐趣,提高学习数学的兴趣。教学准备:

  1.数字迷宫图十幅,信箱四个,口算卡片40张

  2.自制教学课件,教室场景布置,学生坐成4行。

  教学过程:

  一、导入:小朋友们,今天老师带大家到“数学乐园”去玩(老师指“数学乐园”场景布置)。大家想不想去呀可是在“数学乐园”的门口有四个信箱,需要每个小朋友当一回“小小邮递员”,把“数字娃娃”藏在你们抽屉里的“信”送到正确的信箱里,就能进人数学乐园,大家有没有信心

  二、活动送信游戏

  1.分组送信。教室讲台上放四个标有数字的信箱,老师问:怎样才能把“信”送到正确的信箱里呢只要把“信”(即口算卡片)上的题目得数算出来,得数是几,就把“信”送到标有这个数的信箱里。每个学生从抽屉里拿出一封“信”(即口算卡片),在音乐声中分组走上讲台送“信”。注意:有的卡片上面的得数不是信箱的标号,是没法送出的信。对于没有送出的信,让学生说说为什么送不出去。

  2.检查送信游戏的正确性。学生投完信后,老师把四个信箱分发到四个小组(课前学生坐成四行),由小组长主持检查每个信箱里的口算卡片是否送对了,学生做手势表示对错进行检查,看有没有送错的信。对于送错的信,让学生说说为什么送错了。各组检查完后,小组长向老师汇报检查结果。

  三、活动二起立游戏

  好啊,我们进人数学乐园啦!看,数学乐园里有很多小动物在等着我们呢!老师出示包括乖乖虎、皮卡丘、机器猫的画面(课件),你们喜欢它们吗让学生分组选择喜欢的小动物。全班坐成四行,每行10人,各行报数(同时进行)。

  老师根据学生的选择点击小动物图案,出示下列四题:

  1.请这一组的前面四个小朋友站起来。请第四个小朋友拍四下手。从前往后数你是第几个从后往前数你是第几个

  2.请从前往后数第五个小朋友站起来,:你前面有几个小朋友后面有几个小朋友你这一组有几个小朋友你是怎么知道的

  3.请从前往后数第六个小朋友站起来。不许往后看,你知道你后面有几个小朋友吗你是怎么知道的

  4.请从后往前数第二个小朋友站起来。你这一组有几个男孩有几个女孩合起来一共有几个小朋友你是怎么知道的

  四、活动三数字迷宫

  前后左右四人为一个小组,每组发“数字迷宫”图一幅。说明:“数字迷宫”有一个人口,两个出口,由数字1-9组成,从人口到出口必须按1、2、3、……9的顺序走。四个小朋友讨论不同的路线,用不同颜色的水彩笔画出路线图,比一比看哪组想的路线最多画完后,分组统计出本组所画路线的条数,用水彩笔写在图的右下角,然后与别组交换统计路线的条数。

  老师把每组的迷宫图贴在黑板上进行评比,小黑板上出示条形统计图的网格.每组组长上台,根据本组画的条数的多少,用小正方形贴出直条。

  全班看图讨论下列问题:看___组想出的路线最多,第一名是二___组,画了___种方法;第二名是___组,画了___种方法;第三名是___组,画了___种方法;一组和___组画的同样多;___组比___组多画___条;___组比___组少画___条;

  五、总结:

  今天,大家在“数学乐园”里玩得开不开心在我们玩的游戏中运用了前面所学的10以内数的认识和加减法的知识。以后我们学会了更多的知识,老师再带大家到“数学乐园”里来玩。

  评析:

  在这篇教学设计中我们看到新课程理念的存在,并感受到它的冲击力。新课程不再过分注重知识的传授,学生获得知识与技能的过程同时成为学会学习和形成正确价值观的过程。不再过分强调学科本位,不再偏重书本知识,加强了课程内容与学生生活以及现代社会发展的联系,关注学生的学习兴趣和经验,注重学生终身学习必备的基础知识和技能,同时更为关注学生在情感、态度、价值观和一般能力等全面发展。倡导学生主动参与,乐于探究,勤于动手,培养学生搜集和处理信息的能力,分析和解决问题的能力,以及交流、合作的能力。

  数学活动课是集知识性、趣味性和娱乐性于一体的课程,它重在学生参与,重在学生实践,旨在巩固知识、运用知识。在这里,数学得到了升华。数学的教育功能得到充分的体现。课程标准指出:“随着社会的发展,‘终身学习’和‘持续、和谐发展’等教育理念进一步得到人们的认同,数学教育观面临着重大变革,作为教育内容的数学,有着自身的特点与规律,它的基本出发点是促进学生的发展。因此,义务教育阶段数学课程不仅要考虑数学自身的特点,而且更应当遵循学生学习数学的心理规律,关注每一个学生在情感态度,思维能力,自我意识等多方面的进步和发展。”我想,这篇教学设计,对课程标准中的基本理念作了最好的解读。课堂教学从课内延伸到课外,从只注重学生知识结构的培养和认知图式的建构,到关注学生的具体生活和直接经验,并真正地深入学生的精神世界,从而使教学活动的基础性,发展性和创造性达到了统一,体现了“学习不是为了‘占有’别人的知识,而是为了‘生长’自己的知识”这种现代教育观。由此我们也看到了新课程强大的生命力,它正在促进学生有意义的学习方式和转变教师的教学行为。促进学生和教师共同成长。

  我所执教的这节一年级《数学乐园》活动课除体现了以上宗旨外,还具备以下几个特点:

  1、以游戏为主线,层层递进。随着时代的发展,教育面临的挑战,各国都在进行教学改革,其重心就是探讨“乐学”,提高教学效率。游戏教学在贯注“乐学”思想方面是独领风骚的。它依据教学内容创设情境,就是为了从根本上解决学生的“乐学”问题。教学游戏,是学生乐于学习之“源”。在这个“源”中,既有学生看得见、摸得着的实体形象,唤起学生学习的愉悦;又展现了学习的智力背景,鼓舞学生自动求知。它有感性认识的坚实基础,也有促使学生理性认识的桥梁;它调动学生智力因素与非智力因素的积极参与,也有着学生生理感官与心理需求的快乐与满足。它调动与调节学生左、右脑同时投人学习,激发学生以情感需要为核心的一切生理和心理上的因素,以此推动学生认真学习,顺利开展认知活动。教学开始,便以“玩”导人,先“玩”“送信游戏”,再“玩”“起立游戏”,接着“玩”走“数字迷宫”,最后结束时还许诺下次带学生到“数学乐园”里来玩。这一系列的“玩”做到了有序牵引,层层递进,激发了学生的“玩兴”,愉快而轻松地复习了10以内数的有关知识,真正做到了寓教于乐,寓学于乐,“乐”在活动中。

  2、以学生为主体,人人参与。皮亚杰认为:儿童学习的最根本途径应该是活动。活动是联系主客观的桥梁,是认识发展的直接源泉。因此教师在课堂教学中要改变那种重教法、轻学法的状况,加强对学生学法的指导。在课堂上要给学生提供丰富的、充足的、典型的、较为完整的感性材料,有目的地创设学生活动的空间,调动学生的多种感官,放手让学生动手、动口、动脑全方位参与教学活动。使学生在生动活泼的实践中去发现、认识、理解、掌握所学知识,发展自己的认知结构。在教学中,把抽象的数学知识同具体的实物结合起来,化难为易,化抽象为具体。而活动课,更应让全体学生“动”起来,做到人人参与,这节课便体现了这一点。第一个活动,全班学生参与“投信”,立即形成了热烈的气氛,学生的兴奋情绪受到激发。在第二个活动中,虽不是人人火爆,但做到了:一人表演,全班监督;一组参与,全班评价。第三个活动,处于“静态”的活动中,全班分组,人人以“笔”代“走”,画出走迷宫的路线。这样,这节课的学生参与率为百分之百,做到了参与内容广,参与时间长,教学效果好。

  3、以知识为主流,面面俱到。活动课仅只是一种课堂形式,其内容才是活动课的实质。这节课为加深学生对10以内数的有关概念和计算的认识,把有关知识有机地、有序地分布在每个游戏中。第一个送信游戏,以计算为主,根据计算结果选择对应的信箱,一部分“死信”(结果无对应信箱)需作出不可投的判断,对误投的要订正处理,对投信的质量全班作出评价。第二个活动,巧妙地把前面与后面的位置问题、基数与序数的问题、加法和连加的问题,都安排在直观的对比中和活动的氛围中进行处理和巩固。第三个活动是知识的综合性运用,以顺序的认识为根本,走出不同的路线,认识不变中有变,并辅以简单的统计,复习最多与最少、同样多与多(少)几。这三个活动中的每个环节,都孕伏了所学的知识。在活动中,大容量的复习巩固已学过的知识。

  4、以媒体为主向,项项直观。活动课是一种实践,实践需要媒体、需要直观,这一节课充分的体现了媒体和直观。执教者首先考虑了活动课的氛围,精心布置了场景,使学生亲临其境;其次,打破教室组织结构,去掉桌子,改坐四行,给学生一种新鲜感;第三,准备了不少实物道具,让学生实际操作,调动了学生的积极性;第四,执教者精心设计制作了电脑软件,其形式和形状都新颖、可爱,使学生在现代媒体中接受“美”的教育。

  总之,这是一节生动活泼、情趣盎然、充分体现课程改革理念的低年级数学活动课。

高二数学教案12

  教学目标

  巩固二元一次不等式和二元一次不等式组所表示的平面区域,能用此来求目标函数的最值。

  重点难点

  理解二元一次不等式表示平面区域是教学重点。

  如何扰实际问题转化为线性规划问题,并给出解答是教学难点。

  教学步骤

  【新课引入】

  我们知道,二元一次不等式和二元一次不等式组都表示平面区域,在这里开始,教学又翻开了新的一页,在今后的学习中,我们可以逐步看到它的运用。

  【线性规划】

  先讨论下面的问题

  设,式中变量x、y满足下列条件

  ①求z的值和最小值。

  我们先画出不等式组①表示的平面区域,如图中内部且包括边界。点(0,0)不在这个三角形区域内,当时,,点(0,0)在直线上。

  作一组和平等的直线

  可知,当l在的右上方时,直线l上的点满足。

  即,而且l往右平移时,t随之增大,在经过不等式组①表示的三角形区域内的点且平行于l的直线中,以经过点A(5,2)的直线l,所对应的t,以经过点的直线,所对应的t最小,所以

  在上述问题中,不等式组①是一组对变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,所以又称线性约束条件。

  是欲达到值或最小值所涉及的变量x、y的解析式,叫做目标函数,由于又是x、y的解析式,所以又叫线性目标函数,上述问题就是求线性目标函数在线性约束条件①下的值和最小值问题。

  线性约束条件除了用一次不等式表示外,有时也有一次方程表示。

  一般地,求线性目标函数在线性约束条件下的值或最小值的问题,统称为线性规划问题,满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域,在上述问题中,可行域就是阴影部分表示的三角形区域,其中可行解(5,2)和(1,1)分别使目标函数取得值和最小值,它们都叫做这个问题的解。

高二数学教案13

  一、教学目标

  【知识与技能】

  能正确概述“二面角”、“二面角的平面角”的概念,会做二面角的平面角。

  【过程与方法】

  利用类比的方法推理二面角的有关概念,提升知识迁移的能力。

  【情感态度与价值观】

  营造和谐、轻松的学习氛围,通过学生之间,师生之间的交流、合作和评价达成共识、共享、共进,实现教学相长和共同发展。

  二、教学重、难点

  【重点】

  “二面角”和“二面角的平面角”的概念。

  【难点】

  “二面角的平面角”概念的形成过程。

  三、教学过程

  (一)创设情境,导入新课

  请学生观察生活中的一些模型,多媒体展示以下一系列动画如:

  1.打开书本的过程;

  2.发射人造地球卫星,要根据需要使卫星的轨道平面与地球的赤道平面成一定的角度;

  3.修筑水坝时,为了使水坝坚固耐久,须使水坝坡面与水平面成适当的角度;

  引导学生说出书本的两个面、水坝面与底面,卫星轨道面与地球赤道面均是呈一定的角度关系,引出课题。

  (二)师生互动,探索新知

  学生阅读教材,同桌互相讨论,教师引导学生对比平面角得出二面角的概念

  平面角:平面角是从平面内一点出发的两条射线(半直线)所组成的图形。

  二面角定义:从一条直线出发的两个半面所组成的图形,叫作二面角。这条直线叫作二面角的棱,这两个半平面叫作二面角的面。(动画演示)

  (2)二面角的表示

  (3)二面角的画法

  (PPT演示)

  教师提问:一般地说,量角器只能测量“平面角”(指两条相交直线所成的角.相应地,我们把异面直线所成的角,直线与平面所成的角和二面角,均称为空间角)那么,如何去度量二面角的大小呢?我们以往是如何度量某些角的?教师引导学生将空间角化为平面角.

  教师总结:

  (1)二面角的平面角的定义

  定义:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.

  “二面角的平面角”的定义三个主要特征:点在棱上、线在面内、与棱垂直(动画演示)

  大小:二面角的大小可以用它的平面角的大小来表示。

  平面角是直角的二面角叫做直二面角。

  (2)二面角的平面角的作法

  ①点P在棱上—定义法

  ②点P在一个半平面上—三垂线定理法

  ③点P在二面角内—垂面法

  (三)生生互动,巩固提高

  (四)生生互动,巩固提高

  1.判断下列命题的真假:

  (1)两个相交平面组成的图形叫做二面角。( )

  (2)角的两边分别在二面角的两个面内,则这个角是二面角的平面角。( )

  (3)二面角的平面角所在平面垂直于二面角的棱。( )

  2.作出一下面PAC和面ABC的平面角。

  (五)课堂小结,布置作业

  小结:通过本节课的学习,你学到了什么?

  作业:以正方体为模型请找出一个所成角度为四十五度的二面角,并证明。

高二数学教案14

  教学准备

  教学目标

  1、知识与技能:

  (1)推广角的概念、引入大于角和负角;

  (2)理解并掌握正角、负角、零角的定义;

  (3)理解任意角以及象限角的概念;

  (4)掌握所有与角终边相同的角(包括角)的表示方法;

  (5)树立运动变化观点,深刻理解推广后的角的概念;

  (6)揭示知识背景,引发学生学习兴趣;

  (7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识。

  2、过程与方法:

  通过创设情境:“转体,逆(顺)时针旋转”,角有大于角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习。

  3、情态与价值:

  通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分。角的概念推广以后,知道角之间的关系。理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物。

  教学重难点

  重点:理解正角、负角和零角的定义,掌握终边相同角的表示法。

  难点:终边相同的角的表示。

  教学工具

  投影仪等。

  教学过程

  【创设情境】

  思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1。25小时,你应当如何将它校准?当时间校准以后,分针转了多少度?

  我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于之间,这正是我们这节课要研究的主要内容——任意角。

  【探究新知】

  1、初中时,我们已学习了角的概念,它是如何定义的呢?

  [展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。如图1.1—1,一条射线由原来的位置,绕着它的端点o按逆时针方向旋转到终止位置OB,就形成角a。旋转开始时的射线叫做角的始边,OB叫终边,射线的端点o叫做叫a的顶点。

  2、如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体”(即转体2周),“转体”(即转体3周)等,都是遇到大于的角以及按不同方向旋转而成的角。同学们思考一下:能否再举出几个现实生活中“大于的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢?

  [展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角,这些都说明了我们研究推广角概念的必要性。为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positiveangle),按顺时针方向旋转所形成的角叫负角(negativeangle)。如果一条射线没有做任何旋转,我们称它形成了一个零角(zeroangle)。

  3、学习小结:

  (1)你知道角是如何推广的吗?

  (2)象限角是如何定义的呢?

  (3)你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直线上的角的集合。

  课后习题

  作业:

  1、习题1.1A组第1,2,3题。

  2。多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,

  进一步理解具有相同终边的角的特点。

高二数学教案15

  平面向量共线的坐标表示

  前提条件a=(x1,y1),b=(x2,y2),其中b≠0

  结论当且仅当x1y2-x2y1=0时,向量a、b(b≠0)共线

  [点睛](1)平面向量共线的坐标表示还可以写成x1x2=y1y2(x2≠0,y2≠0),即两个不平行于坐标轴的共线向量的对应坐标成比例;

  (2)当a≠0,b=0时,a∥b,此时x1y2-x2y1=0也成立,即对任意向量a,b都有:x1y2-x2y1=0?a∥b.

  [小试身手]

  1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)

  (1)已知a=(x1,y1),b=(x2,y2),若a∥b,则必有x1y2=x2y1.()

  (2)向量(2,3)与向量(-4,-6)反向.()

  答案:(1)√(2)√

  2.若向量a=(1,2),b=(2,3),则与a+b共线的向量可以是()

  A.(2,1)B.(-1,2)C.(6,10)D.(-6,10)

  答案:C

  3.已知a=(1,2),b=(x,4),若a∥b,则x等于()

  A.-12B.12C.-2D.2

  答案:D

  4.已知向量a=(-2,3),b∥a,向量b的起点为A(1,2),终点B在x轴上,则点B的坐标为________.

  答案:73,0

  向量共线的判定

  [典例](1)已知向量a=(1,2),b=(λ,1),若(a+2b)∥(2a-2b),则λ的值等于()

  A.12B.13C.1D.2

  (2)已知A(2,1),B(0,4),C(1,3),D(5,-3).判断与是否共线?如果共线,它们的方向相同还是相反?

  [解析](1)法一:a+2b=(1,2)+2(λ,1)=(1+2λ,4),2a-2b=2(1,2)-2(λ,1)=(2-2λ,2),由(a+2b)∥(2a-2b)可得2(1+2λ)-4(2-2λ)=0,解得λ=12.

  法二:假设a,b不共线,则由(a+2b)∥(2a-2b)可得a+2b=μ(2a-2b),从而1=2μ,2=-2μ,方程组显然无解,即a+2b与2a-2b不共线,这与(a+2b)∥(2a-2b)矛盾,从而假设不成立,故应有a,b共线,所以1λ=21,即λ=12.

  [答案]A

  (2)[解]=(0,4)-(2,1)=(-2,3),=(5,-3)-(1,3)=(4,-6),

  ∵(-2)×(-6)-3×4=0,∴,共线.

  又=-2,∴,方向相反.

  综上,与共线且方向相反.

  向量共线的判定方法

  (1)利用向量共线定理,由a=λb(b≠0)推出a∥b.

  (2)利用向量共线的坐标表达式x1y2-x2y1=0直接求解.

  [活学活用]

  已知a=(1,2),b=(-3,2),当k为何值时,ka+b与a-3b平行,平行时它们的方向相同还是相反?

  解:ka+b=k(1,2)+(-3,2)=(k-3,2k+2),

  a-3b=(1,2)-3(-3,2)=(10,-4),

  若ka+b与a-3b平行,则-4(k-3)-10(2k+2)=0,

  解得k=-13,此时ka+b=-13a+b=-13(a-3b),故ka+b与a-3b反向.

  ∴k=-13时,ka+b与a-3b平行且方向相反.

  三点共线问题

  [典例](1)已知=(3,4),=(7,12),=(9,16),求证:A,B,C三点共线;

  (2)设向量=(k,12),=(4,5),=(10,k),当k为何值时,A,B,C三点

  共线?

  [解](1)证明:∵=-=(4,8),

  =-=(6,12),

  ∴=32,即与共线.

  又∵与有公共点A,∴A,B,C三点共线.

  (2)若A,B,C三点共线,则,共线,

  ∵=-=(4-k,-7),

  =-=(10-k,k-12),

  ∴(4-k)(k-12)+7(10-k)=0.

  解得k=-2或k=11.

  有关三点共线问题的解题策略

  (1)要判断A,B,C三点是否共线,一般是看与,或与,或与是否共线,若共线,则A,B,C三点共线;

  (2)使用A,B,C三点共线这一条件建立方程求参数时,利用=λ,或=λ,或=λ都是可以的,但原则上要少用含未知数的表达式.

【高二数学教案】相关文章:

高二数学教案范文01-24

人教版高二数学教案01-25

高二数学教案模板01-25

《循环结构》高二的数学教案10-30

上海高二下数学教案01-26

职高高二数学教案(通用8篇)07-21

垂直平分线高二数学教案01-27

职高高二下学期数学教案模板10-16

数学教案12-18

写在高二高二作文03-30