高一数学教案

时间:2023-02-04 15:48:05 数学教案 我要投稿

高一数学教案

  作为一名教师,总不可避免地需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。来参考自己需要的教案吧!下面是小编为大家收集的高一数学教案,仅供参考,欢迎大家阅读。

高一数学教案

高一数学教案1

  学习目标

  1、掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质

  2、掌握标准方程中的几何意义

  3、能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题

  一、预习检查

  1、焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程为、

  2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为、

  3、双曲线的渐进线方程为、

  4、设分别是双曲线的.半焦距和离心率,则双曲线的一个顶点到它的一条渐近线的距离是、

  二、问题探究

  探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同、

  探究2、双曲线与其渐近线具有怎样的关系、

  练习:已知双曲线经过,且与另一双曲线,有共同的渐近线,则此双曲线的标准方程是、

  例1根据以下条件,分别求出双曲线的标准方程、

  (1)过点,离心率、

  (2)、是双曲线的左、右焦点,是双曲线上一点,且,,离心率为、

  例2已知双曲线,直线过点,左焦点到直线的距离等于该双曲线的虚轴长的,求双曲线的离心率、

  例3(理)求离心率为,且过点的双曲线标准方程、

  三、思维训练

  1、已知双曲线方程为,经过它的右焦点,作一条直线,使直线与双曲线恰好有一个交点,则设直线的斜率是、

  2、椭圆的离心率为,则双曲线的离心率为、

  3、双曲线的渐进线方程是,则双曲线的离心率等于=、

  4、(理)设是双曲线上一点,双曲线的一条渐近线方程为、分别是双曲线的左、右焦点,若,则、

  四、知识巩固

  1、已知双曲线方程为,过一点(0,1),作一直线,使与双曲线无交点,则直线的斜率的集合是、

  2、设双曲线的一条准线与两条渐近线交于两点,相应的焦点为,若以为直径的圆恰好过点,则离心率为、

  3、已知双曲线的左,右焦点分别为,点在双曲线的右支上,且,则双曲线的离心率的值为、

  4、设双曲线的半焦距为,直线过、两点,且原点到直线的距离为,求双曲线的离心率、

  5、(理)双曲线的焦距为,直线过点和,且点(1,0)到直线的距离与点(-1,0)到直线的距离之和、求双曲线的离心率的取值范围、

高一数学教案2

  教学目标:

  (1)了解集合的表示方法;

  (2)能正确选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;

  教学重点:掌握集合的表示方法;

  教学难点:选择恰当的表示方法;

  教学过程:

  一、复习回顾:

  1.集合和元素的定义;元素的三个特性;元素与集合的关系;常用的数集及表示。

  2.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分别是什么?有何关系

  二、新课教学

  (一).集合的表示方法

  我们可以用自然语言和图形语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

  (1) 列举法:把集合中的元素一一列举出来,并用花括号“ ”括起来表示集合的方法叫列举法。

  如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;

  说明:1.集合中的元素具有无序性,所以用列举法表示集合时不必考

  虑元素的顺序。

  2.各个元素之间要用逗号隔开;

  3.元素不能重复;

  4.集合中的元素可以数,点,代数式等;

  5.对于含有较多元素的.集合,用列举法表示时,必须把元素间的规律显示清楚后方能用省略号,象自然数集N用列举法表示为

  例1.(课本例1)用列举法表示下列集合:

  (1)小于10的所有自然数组成的集合;

  (2)方程x2=x的所有实数根组成的集合;

  (3)由1到20以内的所有质数组成的集合;

  (4)方程组 的解组成的集合。

  思考2:(课本P4的思考题)得出描述法的定义:

  (2)描述法:把集合中的元素的公共属性描述出来,写在花括号{ }内。

  具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

  一般格式:

  如:{x|x-3>2},{(x,y)|y=x2+1},{x|直角三角形},…;

  说明:

  1.课本P5最后一段话;

  2.描述法表示集合应注意集合的代表元素,如{(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}是不同的两个集合,只要不引起误解,集合的代表元素也可省略,例如:{x|整数},即代表整数集Z。

  辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。

  例2.(课本例2)试分别用列举法和描述法表示下列集合:

  (1)方程x2—2=0的所有实数根组成的集合;

  (2)由大于10小于20的所有整数组成的集合;

  (3)方程组 的解。

  思考3:(课本P6思考)

  说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

  (二).课堂练习:

  1.课本P6练习2;

  2.用适当的方法表示集合:大于0的所有奇数

  3.集合A={x| ∈Z,x∈N},则它的元素是 。

  4.已知集合A={x|-3

  归纳小结:

  本节课从实例入手,介绍了集合的常用表示方法,包括列举法、描述法。

  作业布置:

  1. 习题1.1,第3.4题;

  2. 课后预习集合间的基本关系.

高一数学教案3

  学习目标

  1. 根据具体函数图象,能够借助计算器用二分法求相应方程的近似解;

  2. 通过用二分法求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.

  旧知提示 (预习教材P89~ P91,找出疑惑之处)

  复习1:什么叫零点?零点的等价性?零点存在性定理?

  对于函数 ,我们把使 的实数x叫做函数 的零点.

  方程 有实数根 函数 的图象与x轴 函数 .

  如果函数 在区间 上的图象是连续不断的一条曲线,并且有 ,那么,函数 在区间 内有零点.

  复习2:一元二次方程求根公式? 三次方程? 四次方程?

  合作探究

  探究:有12个小球,质量均匀,只有一个是比别的球重的,你用天平称几次可以找出这个球的,要求次数越少越好.

  解法:第一次,两端各放 个球,低的那一端一定有重球;

  第二次,两端各放 个球,低的那一端一定有重球;

  第三次,两端各放 个球,如果平衡,剩下的就是重球,否则,低的就是重球.

  思考:以上的方法其实这就是一种二分法的思想,采用类似的方法,如何求 的零点所在区间?如何找出这个零点?

  新知:二分法的思想及步骤

  对于在区间 上连续不断且 0的函数 ,通过不断的把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫二分法(bisection).

  反思: 给定精度,用二分法求函数 的零点近似值的步骤如何呢?

  ①确定区间 ,验证 ,给定精度

  ②求区间 的中点 ;[]

  ③计算 : 若 ,则 就是函数的零点; 若 ,则令 (此时零点 ); 若 ,则令 (此时零点 );

  ④判断是否达到精度即若 ,则得到零点零点值a(或b);否则重复步骤②~④.

  典型例题

  例1 借助计算器或计算机,利用二分法求方程 的近似解.

  练1. 求方程 的`解的个数及其大致所在区间.

  练2.求函数 的一个正数零点(精确到 )

  零点所在区间 中点函数值符号 区间长度

  练3. 用二分法求 的近似值.

  课堂小结

  ① 二分法的概念;②二分法步骤;③二分法思想.

  知识拓展

  高次多项式方程公式解的探索史料

  在十六世纪,已找到了三次和四次函数的求根公式,但对于高于4次的函数,类似的努力却一直没有成功,到了十九世纪,根据阿贝尔(Abel)和伽罗瓦(Galois)的研究,人们认识到高于4次的代数方程不存在求根公式,亦即,不存在用四则运算及根号表示的一般的公式解.同时,即使对于3次和4次的代数方程,其公式解的表示也相当复杂,一般来讲并不适宜作具体计算.因此对于高次多项式函数及其它的一些函数,有必要寻求其零点近似解的方法,这是一个在计算数学中十分重要的课题.

  学习评价

  1. 若函数 在区间 上为减函数,则 在 上( ).

  A. 至少有一个零点 B. 只有一个零点

  C. 没有零点 D. 至多有一个零点

  2. 下列函数图象与 轴均有交点,其中不能用二分法求函数零点近似值的是().

  3. 函数 的零点所在区间为( ).

  A. B. C. D.

  4. 用二分法求方程 在区间[2,3]内的实根,由计算器可算得 , , ,那么下一个有根区间为 .

  课后作业

  1.若函数f(x)是奇函数,且有三个零点x1、x2、x3,则x1+x2+x3的值为()

  A.-1 B.0 C.3 D.不确定

  2.已知f(x)=-x-x3,x[a,b],且f(a)f(b)0,则f(x)=0在[a,b]内()

  A.至少有一实数根 B.至多有一实数根

  C.没有实数根 D.有惟一实数根

  3.设函数f(x)=13x-lnx(x0)则y=f(x)()

  A.在区间1e,1,(1,e)内均有零点 B.在区间1e,1, (1,e)内均无零点

  C.在区间1e,1内有零点;在区间(1,e)内无零点[]

  D.在区间1e,1内无零点,在区间(1,e)内有零点

  4.函数f(x)=ex+x-2的零点所在的一个区间是()

  A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2)

  5.若方程x2-3x+mx+m=0的两根均在(0,+)内,则m的取值范围是()

  A.m1 B.01 D.0

  6.函数f(x)=(x-1)ln(x-2)x-3的零点有()

  A.0个 B.1个 C.2个 D.3个

  7.函数y=3x-1x2的一个零点是()

  A.-1 B.1 C.(-1,0) D.(1,0)

  8.函数f(x)=ax2+bx+c,若f(1)0,f(2)0,则f(x)在(1,2)上零点的个数为( )

  A.至多有一个 B.有一个或两个 C.有且仅有一个 D.一个也没有

  9.根据表格中的数据,可以判定方程ex-x-2=0的一个根所在的区间为()

  x -1 0 1 2 3

  ex 0.37 1 2.72 7.39 20.09

  A.(-1,0) B.(0,1) C.(1,2) D.(2,3)

  10.求函数y=x3-2x2-x+2的零点,并画出它的简图.

  【总结】

  20xx年数学网为小编在此为您收集了此文章高一数学教案:用二分法求方程的近似解,今后还会发布更多更好的文章希望对大家有所帮助,祝您在数学网学习愉快!

高一数学教案4

  学习是一个潜移默化、厚积薄发的过程。编辑老师编辑了高一数学教案:数列,希望对您有所帮助!

  教学目标

  1.使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.

  (1)理解数列是按一定顺序排成的一列数,其每一项是由其项数唯一确定的.

  (2)了解数列的各种表示方法,理解通项公式是数列第项与项数的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式.

  (3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的前几项.

  2.通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.

  3.通过由求的过程,培养学生严谨的科学态度及良好的思维习惯.

  教学建议

  (1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的.计算等.

  (2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系.在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列.函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法.由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法.

  (3)由数列的通项公式写出数列的前几项是简单的代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助.

  (4)由数列的前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用来调整等.如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系.

  (5)对每个数列都有求和问题,所以在本节课应补充数列前项和的概念,用表示的问题是重点问题,可先提出一个具体问题让学生分析与的关系,再由特殊到一般,研究其一般规律,并给出严格的推理证明(强调的表达式是分段的);之后再到特殊问题的解决,举例时要兼顾结果可合并及不可合并的情况.

  (6)给出一些简单数列的通项公式,可以求其最大项或最小项,又是函数思想与方法的体现,对程度好的学生应提出这一问题,学生运用函数知识是可以解决的.

  上述提供的高一数学教案:数列希望能够符合大家的实际需要!

高一数学教案5

  一:【课前预习】

  (一):【知识梳理】

  1.直角三角形的边角关系(如图)

  (1)边的关系(勾股定理):AC2+BC2=AB2;

  (2)角的关系:B=

  (3)边角关系:

  ①:

  ②:锐角三角函数:

  A的正弦= ;

  A的余弦= ,

  A的正切=

  注:三角函数值是一个比值.

  2.特殊角的三角函数值.

  3.三角函数的关系

  (1) 互为余角的三角函数关系.

  sin(90○-A)=cosA, cos(90○-A)=sin A tan(90○-A)= cotA

  (2) 同角的三角函数关系.

  平方关系:sin2 A+cos2A=l

  4.三角函数的大小比较

  ①正弦、正切是增函数.三角函数值随角的增大而增大,随角的减小而减小.

  ②余弦是减函数.三角函数值随角的增大而减小,随角的减小而增大。

  (二):【课前练习】

  1.等腰直角三角形一个锐角的余弦为( )

  A. D.l

  2.点M(tan60,-cos60)关于x轴的对称点M的坐标是( )

  3.在 △ABC中,已知C=90,sinB=0.6,则cosA的值是( )

  4.已知A为锐角,且cosA0.5,那么( )

  A.060 B.6090 C.030 D.3090

  二:【经典考题剖析】

  1.如图,在Rt△ABC中,C=90,A=45,点D在AC上,BDC=60,AD=l,求BD、DC的长.

  2.先化简,再求其值, 其中x=tan45-cos30

  3. 计算:①sin248○+ sin242○-tan44○tan45○tan 46○ ②cos 255○+ cos235○

  4.比较大小(在空格处填写或或=)

  若=45○,则sin________cos

  若45○,则sin cos

  若45,则 sin cos.

  5.⑴如图①、②锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值变化的.规律;

  ⑵根据你探索到的规律,试比较18○、34○、50○、61○、88○这些锐角的正弦值的大小和余弦值的大小.

  三:【课后训练】

  1. 2sin60-cos30tan45的结果为( )

  A. D.0

  2.在△ABC中,A为锐角,已知 cos(90-A)= ,sin(90-B)= ,则△ABC一定是( )

  A.锐角三角形;B.直角三角形;C.钝角三角形;D.等腰三角形

  3.如图,在平面直角坐标系中,已知A(3,0)点B(0,-4),则cosOAB等于__________

  4.cos2+sin242○ =1,则锐角=______.

  5.在下列不等式中,错误的是( )

  A.sin45○sin30○;B.cos60○tan30○;D.cot30○

  6.如图,在△ABC中,AC=3,BC=4,AB=5,则tanB的值是()

  7.如图所示,在菱形ABCD中,AEBC于 E点,EC=1,B=30,求菱形ABCD的周长.

  8.如图所示,在△ABC中,ACB=90,BC=6,AC=8 ,CDAB,求:①sinACD 的值;②tanBCD的值

  9.如图 ,某风景区的湖心岛有一凉亭A,其正东方向有一棵大树B,小明想测量A/B之间的距离,他从湖边的C处测得A在北偏西45方向上,测得B在北偏东32方向上,且量得B、C之间的距离为100米,根据上述测量结果,请你帮小明计算A山之间的距离是多少?(结果精确至1米.参考数据:sin32○0.5299,cos32○0.8480)

  10.某住宅小区修了一个塔形建筑物AB,如图所示,在与建筑物底部同一水平线的C处,测得点A的仰角为45,然后向塔方向前进8米到达D处,在D处测得点A的仰角为60,求建筑物的高度.(精确0.1米)

高一数学教案6

  教学目标

  (1)正确理解充分条件、必要条件和充要条件的概念;

  (2)能正确判断是充分条件、必要条件还是充要条件;

  (3)培养学生的逻辑思维能力及归纳总结能力;

  (4)在充要条件的教学中,培养等价转化思想.

  教学建议

  (一)教材分析

  1.知识结构

  首先给出推断符号“”,并引出的意义,在此基础上讲述了充要条件的初步知识.

  2.重点难点分析

  本节的重点与难点是关于充要条件的判断.

  (1)充分但不必要条件、必要但不充分条件、充要条件、既不充分也不必要条件是重要的数学概念,主要用来区分命题的条件和结论之间的因果关系.

  (2)在判断条件和结论之间的因果关系中应该:

  ①首先分清条件是什么,结论是什么;

  ②然后尝试用条件推结论,再尝试用结论推条件.推理方法可以是直接证法、间接证法(即反证法),也可以举反例说明其不成立;

  ③最后再指出条件是结论的什么条件.

  (3)在讨论条件和条件的关系时,要注意:

  ①若,但,则是的充分但不必要条件;

  ②若,但,则是的必要但不充分条件;

  ③若,且,则是的充要条件;

  ④若,且,则是的充要条件;

  ⑤若,且,则是的既不充分也不必要条件.

  (4)若条件以集合的形式出现,结论以集合的形式出现,则借助集合知识,有助于充要条件的理解和判断.

  ①若,则是的充分条件;

  显然,要使元素,只需就够了.类似地还有:

  ②若,则是的必要条件;

  ③若,则是的充要条件;

  ④若,且,则是的既不必要也不充分条件.

  (5)要证明命题的条件是充要条件,就既要证明原命题成立,又要证明它的逆命题成立.证明原命题即证明条件的充分性,证明逆命题即证明条件的必要性.由于原命题逆否命题,逆命题否命题,当我们证明某一命题有困难时,可以证明该命题的逆否命题成立,从而得出原命题成立.

  (二)教法建议

  1.学习充分条件、必要条件和充要条件知识,要注意与前面有关逻辑初步知识内容相联系.充要条件中的,与四种命题中的,要求是一样的.它们可以是简单命题,也可以是不能判断真假的语句,也可以是含有逻辑联结词或“若则”形式的复合命题.

  2.由于这节课概念性、理论性较强,一般的教学使学生感到枯燥乏味,为此,激发学生的学习兴趣是关键.教学中始终要注意以学生为主,让学生在自我思考、相互交流中去结概念“下定义”,去体会概念的本质属性.

  3.由于“充要条件”与命题的真假、命题的条件与结论的相互关系紧密相关,为此,教学时可以从判断命题的真假入手,来分析命题的条件对于结论来说,是否充分,从而引入“充分条件”的概念,进而引入“必要条件”的概念.

  4.教材中对“充分条件”、“必要条件”的定义没有作过多的解释说明,为了让学生能理解定义的合理性,在教学过程中,教师可以从一些熟悉的命题的条件与结论之间的关系来认识“充分条件”的概念,从互为逆否命题的等价性来引出“必要条件”的概念.

  教学设计示例

  充要条件

  教学目标

  (1)正确理解充分条件、必要条件和充要条件的概念;

  (2)能正确判断是充分条件、必要条件还是充要条件;

  (3)培养学生的逻辑思维能力及归纳总结能力;

  (4)在充要条件的'教学中,培养等价转化思想.

  教学重点难点:

  关于充要条件的判断

  教学用具:

  幻灯机或实物投影仪

  教学过程设计

  1.复习引入

  练习:判断下列命题是真命题还是假命题(用幻灯投影):

  (1)若,则;

  (2)若,则;

  (3)全等三角形的面积相等;

  (4)对角线互相垂直的四边形是菱形;

  (5)若,则;

  (6)若方程有两个不等的实数解,则.

  (学生口答,教师板书.)

  (1)、(3)、(6)是真命题,(2)、(4)、(5)是假命题.

  置疑:对于命题“若,则”,有时是真命题,有时是假命题.如何判断其真假的?

  答:看能不能推出,如果能推出,则原命题是真命题,否则就是假命题.

  对于命题“若,则”,如果由经过推理能推出,也就是说,如果成立,那么一定成立.换句话说,只要有条件就能充分地保证结论的成立,这时我们称条件是成立的充分条件,记作.

  2.讲授新课

  (板书充分条件的定义.)

  一般地,如果已知,那么我们就说是成立的充分条件.

  提问:请用充分条件来叙述上述(1)、(3)、(6)的条件与结论之间的关系.

  (学生口答)

  (1)“,”是“”成立的充分条件;

  (2)“三角形全等”是“三角形面积相等”成立的充分条件;

  (3)“方程的有两个不等的实数解”是“”成立的充分条件.

  从另一个角度看,如果成立,那么其逆否命题也成立,即如果没有,也就没有,亦即是成立的必须要有的条件,也就是必要条件.

  (板书必要条件的定义.)

  提出问题:用“充分条件”和“必要条件”来叙述上述6个命题.

  (学生口答).

  (1)因为,所以是的充分条件,是的必要条件;

  (2)因为,所以是的必要条件,是的充分条件;

  (3)因为“两三角形全等”“两三角形面积相等”,所以“两三角形全等”是“两三角形面积相等”的充分条件,“两三角形面积相等”是“两三角形全等”的必要条件;

  (4)因为“四边形的对角线互相垂直”“四边形是菱形”,所以“四边形的对角线互相垂直”是“四边形是菱形”的必要条件,“四边形是菱形”是“四边形的对角线互相垂直”的充分条件;

  (5)因为,所以是的必要条件,是的充分条件;

  (6)因为“方程的有两个不等的实根”“”,而且“方程的有两个不等的实根”“”,所以“方程的有两个不等的实根”是“”充分条件,而且是必要条件.

  总结:如果是的充分条件,又是的必要条件,则称是的充分必要条件,简称充要条件,记作.

  (板书充要条件的定义.)

  3.巩固新课

  例1(用投影仪投影.)

  (学生活动,教师引导学生作出下面回答.)

  ①因为有理数一定是实数,但实数不一定是有理数,所以是的充分非必要条件,是的必要非充分条件;

  ②一定能推出,而不一定推出,所以是的充分非必要条件,是的必要非充分条件;

  ③、是奇数,那么一定是偶数;是偶数,、不一定都是奇数(可能都为偶数),所以是的充分非必要条件,是的必要非充分条件;

  ④表示或,所以是成立的必要非充分条件;

  ⑤由交集的定义可知且是成立的充要条件;

  ⑥由知且,所以是成立的充分非必要条件;

  ⑦由知或,所以是,成立的必要非充分条件;

  ⑧易知“是4的倍数”是“是6的倍数”成立的既非充分又非必要条件;

  (通过对上述问题的交流、思辩,在争论中得到了正确答案,并加深了对充分条件、必要条件的认识.)

  例2已知是的充要条件,是的必要条件同时又是的充分条件,试与的关系.(投影)

  解:由已知得,

  所以是的充分条件,或是的必要条件.

  4.小结回授

  今天我们学习了充分条件、必要条件和充要条件的概念,并学会了判断条件A是B的什么条件,这为我们今后解决数学问题打下了等价转化的基础.

  课内练习:课本(人教版,试验修订本,第一册(上))第35页练习l、2;第36页练习l、2.

  (通过练习,检查学生掌握情况,有针对性的进行讲评.)

  5.课外作业:教材第36页 习题1.8 1、2、3.

高一数学教案7

  一、指导思想:

  (1)随着素质教育的深入展开,《课程方案》提出了教育要面向世界,面向未来,面向现代化和教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。

  (2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。

  (3) 根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。

  (4) 使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  (5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。

  (6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。

  二、学生状况分析

  本学期担任高一(1)班和(5)班的数学教学工作,学生共有111人,其中(1)班学生是名校直通班,学生思维活跃,(5)班是火箭班,学生基本素质不错,一些基本知识掌握不是很好,学习积极性需要教师提高,成绩以中等为主,中上不多。两个班中,从军训一周来看,学生的学习积极性还是比较高,爱问问题的同学比较多,但由于基础知识不太牢固,上课效率不是很高。

  教材简析

  使用人教版《普通高中课程标准实验教科书数学(A版)》,教材在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。必修1有三章(集合与函数概念;基本初等函数;函数的应用);必修4有三章(三角函数;平面向量;三角恒等变换)。

  必修1,主要涉及两章内容:

  第一章 集合

  通过本章学习,使学生感受到用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言表示数学对象,为以后的学习奠定基础。

  1.了解集合的含义,体会元素与集合的属于关系,并初步掌握集合的表示方法;新-课-标-第-一-网

  2.理解集合间的包含与相等关系,能识别给定集合的子集,了解全集与空集的含义;

  3.理解补集的含义,会求在给定集合中某个集合的补集;

  4.理解两个集合的并集和交集的含义,会求两个简单集合的并集和交集;

  5.渗透数形结合、分类讨论等数学思想方法;

  6.在引导学生观察、分析、抽象、类比得到集合与集合间的关系等数学知识的过程中,培养学生的思维能力。

  第二章 函数的概念与基本初等函数Ⅰ

  教学本章时应立足于现实生活从具体问题入手,以问题为背景,按照问题情境数学活动意义建构数学理论数学应用回顾反思的顺序结构,引导学生通过实验、观察、归纳、抽象、概括,数学地提出、分析和解决问题。通过本章学习,使学生进一步感受函数是探索自然现象、社会现象基本规律的工具和语言,学会用函数的思想、变化的观点分析和解决问题,达到培养学生的创新思维的目的。

  1.了解函数概念产生的背景,学习和掌握函数的概念和性质,能借助函数的知识表述、刻画事物的变化规律;X|k |b| 1 . c|o |m

  2.理解有理指数幂的意义,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质;理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质;了解幂函数的概念和性质,知道指数函数、对数函数、幂函数时描述客观世界变化规律的重要数学模型;

  3.了解函数与方程之间的关系;会用二分法求简单方程的近似解;了解函数模型及其意义;

  4.培养学生的理性思维能力、辩证思维能力、分析问题和解决问题的能力、创新意识与探究能力、数学建模能力以及数学交流的能力。

  必修4,主要涉及三章内容:

  第一章 三角函数

  通过本章学习,有助于学生认识三角函数与实际生活的紧密联系,以及三角函数在解决实际问题中的广泛应用,从中感受数学的价值,学会用数学的思维方式观察、分析现实世界、解决日常生活和其他学科学习中的问题,发展数学应用意识。

  1.了解任意角的概念和弧度制;

  2.掌握任意角三角函数的定义,理解同角三角函数的基本关系及诱导公式;

  3.了解三角函数的周期性;

  4.掌握三角函数的图像与性质。

  第二章 平面向量

  在本章中让学生了解平面向量丰富的实际背景,理解平面向量及其运算的意义,能用向量的语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力。

  1.理解平面向量的'概念及其表示;

  2.掌握平面向量的加法、减法和向量数乘的运算;

  3.理解平面向量的正交分解及其坐标表示,掌握平面向量的坐标运算;

  4.理解平面向量数量积的含义,会用平面向量的数量积解决有关角度和垂直的问题。

  第三章 三角恒等变换

  通过推导两角和与差的余弦、正弦、正切公式,二倍角的正弦、余弦、正切公式以及积化和差、和差化积、半角公式的过程,让学生在经历和参与数学发现活动的基础上,体会向量与三角函数的联系、向量与三角恒等变换公式的联系,理解并掌握三角变换的基本方法。

  1.掌握两角和与差的余弦、正弦、正切公式;

  2.掌握二倍角的正弦、余弦、正切公式 ;

  3.能正确运用三角公式进行简单的三角函数式的化简、求值和恒等式证明。

  三、教学任务

  本期授课内容为必修1和必修4,必修1在期中考试前完成(约在11月5日前完成);必修4在期末考试前完成(约在12月31日前完成)。

  四、教学质量目标新 课 标

  1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,体会数学思想和方法。

  2.提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。

  3.提高学生提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

  5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  五、促进目标达成的重点工作及措施

  重点工作:

  认真贯彻高中数学新课标精神,树立新的教学理念,以双基教学为主要内容,坚持抓两头、带中间、整体推进,使每个学生的数学能力都得到提高和发展。

  分层推进措施

  1、重视学生非智力因素培养,要经常性地鼓励学生,增强学生学习数学兴趣,树立勇于克服困难与战胜困难的信心。

  2、合理引入课题,由数学活动、故事、提问、师生交流等方式激发学生学习兴趣,注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

  3、培养能力是数学教学的落脚点。能力是在获得和运用知识的过程中逐步培养起来的。在衔接教学中,首先要加强基本概念和基本规律的教学。

  加强培养学生的逻辑思维能力和解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

  4、讲清讲透数学概念和规律,使学生掌握完整的基础知识,培养学生数学思维能力 ,抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

  5、自始至终贯彻教学四环节(引入、探究、例析、反馈),针对不同的教材内容选择不同教法,提倡创新教学方法,把学生被动接受知识转化主动学习知识。

  6、重视数学应用意识及应用能力的培养。

  7、加强学生良好学习习惯的培养

  六、教学时间大致安排

  集合与函数概念 13 课时

  基本初等函数 15

  课时

  函数的应用 8

  课时

  三角函数 24

  课时

  平面向量 14

  课时

  三角恒等变换 9

  课时

高一数学教案8

  教学目的:

  (1)使学生初步理解集合的概念,知道常用数集的概念及记法

  (2)使学生初步了解“属于”关系的意义

  (3)使学生初步了解有限集、无限集、空集的意义

  教学重点

  集合的基本概念及表示方法

  教学难点

  运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合

  授课类型

  新授课

  课时安排

  1课时

  教具

  多媒体、实物投影仪

  内容分析:

  1、集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础。

  2、把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑。

  3、本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。

  4、这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念。

  5、集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明。

  教学过程:

  一、复习引入:

  1、简介数集的发展,复习最大公约数和最小公倍数,质数与和数;

  2、教材中的章头引言;

  3、集合论的创始人——康托尔(德国数学家)(见附录);

  4、“物以类聚”,“人以群分”;

  5、教材中例子(P4)。

  二、讲解新课:

  阅读教材第一部分,问题如下:

  (1)有那些概念?是如何定义的?

  (2)有那些符号?是如何表示的?

  (3)集合中元素的特性是什么?

  (一)集合的有关概念:

  由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.

  定义:一般地,某些指定的对象集在一起就成为一个集合。

  1、集合的概念

  (1)集合:某些指定的对象集在一起就形成一个集合(简称集)。

  (2)元素:集合中每个对象叫做这个集合的元素。

  2、常用数集及记法

  (1)非负整数集(自然数集):全体非负整数的集合记作N。

  (2)正整数集:非负整数集内排除0的集记作N*或N+。

  (3)整数集:全体整数的集合记作Z。

  (4)有理数集:全体有理数的集合记作Q。

  (5)实数集:全体实数的`集合记作R。

  注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。

  (2)非负整数集内排除0的集记作N*或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z。

  3、元素对于集合的隶属关系

  (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A。

  (2)不属于:如果a不是集合A的元素,就说a不属于A,记作。

  4、集合中元素的特性

  (1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可。

  (2)互异性:集合中的元素没有重复。

  (3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)。

  5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……

  ⑵“∈”的开口方向,不能把a∈A颠倒过来写。

  三、练习题:

  1、教材P5练习1、2。

  2、下列各组对象能确定一个集合吗?

  (1)所有很大的实数(不确定)

  (2)好心的人(不确定)

  (3)1,2,2,3,4,5、(有重复)

  3、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2__

  4、由实数x,-x,|x|,所组成的集合,最多含(A)

  (A)2个元素(B)3个元素(C)4个元素(D)5个元素

  5、设集合G中的元素是所有形如a+b(a∈Z, b∈Z)的数,求证:

  (1)当x∈N时, x∈G;

  (2)若x∈G,y∈G,则x+y∈G,而不一定属于集合G

  证明(1):在a+b(a∈Z, b∈Z)中,令a=x∈N,b=0,则x= x+0* = a+b ∈G,即x∈G

  证明(2):∵x∈G,y∈G,

  ∴x= a+b(a∈Z, b∈Z),y= c+d(c∈Z, d∈Z)

  ∴x+y=( a+b )+( c+d )=(a+c)+(b+d)

  ∵a∈Z, b∈Z,c∈Z, d∈Z

  ∴(a+c) ∈Z, (b+d) ∈Z

  ∴x+y =(a+c)+(b+d) ∈G,又∵不一定都是整数,∴=不一定属于集合G

  四、小结:本节课学习了以下内容:

  1、集合的有关概念:(集合、元素、属于、不属于)

  2、集合元素的性质:确定性,互异性,无序性

  3、常用数集的定义及记法

高一数学教案9

  【内容与解析】

  本节课要学的内容有函数的概念指的是函数的概念及符号的理解,理解它关键就是能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用。学生已经学过了集合并且初中对函数的概念已经作了介绍,本节课的内容函数的概念就是在此基础上的发展的。由于它还与基本初等函数和函数模型等内容有必要的联系,所以在本学科有着很重要的地位,是学习后面知识的基础,是本学科的核心内容。教学的重点是函数的概念,函数的三要素,所以解决重点的关键是通过实例领悟构成函数的'三个要素;会求一些简单函数的定义域和值域。

  【教学目标与解析】

  1、教学目标

  (1)理解函数的概念;

  (2)了解区间的概念;

  2、目标解析

  (1)理解函数的概念就是指能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用;

  (2)了解区间的概念就是指能够体会用区间表示数集的意义和作用;

  【问题诊断分析】

  在本节课的教学中,学生可能遇到的问题是函数的概念及符号的理解,产生这一问题的原因是:函数本身就是一个抽象的概念,对学生来说一个难点。要解决这一问题,就要在通过从实际问题中抽象概况函数的概念,培养学生的抽象概况能力,其中关键是理论联系实际,把抽象转化为具体。

  【教学过程】

  问题1:一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距离地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2.

  1.1这里的变量t的变化范围是什么?变量h的变化范围是什么?试用集合表示?

  1.2高度变量h与时间变量t之间的对应关系是否为函数?若是,其自变量是什么?

  设计意图:通过以上问题,让学生正确理解让学生体会用解析式或图象刻画两个变量之间的依赖关系,从问题的实际意义可知,在t的变化范围内任给一个t,按照给定的对应关系,都有唯一的一个高度h与之对应。

  问题2:分析教科书中的实例(2),引导学生看图并启发:在t的变化t按照给定的图象,都有唯一的一个臭氧层空洞面积S与之相对应。

  问题3:要求学生仿照实例(1)、(2),描述实例(3)中恩格尔系数和时间的关系。

  设计意图:通过这些问题,让学生理解得到函数的定义,培养学生的归纳、概况的能力。

  问题4:上述三个实例中变量之间的关系都是函数,那么从集合与对应的观点分析,函数还可以怎样定义?

  4.1在一个函数中,自变量x和函数值y的变化范围都是集合,这两个集合分别叫什么名称?

  4.2在从集合A到集合B的一个函数f:A→B中,集合A是函数的定义域,集合B是函数的值域吗?怎样理解f(x)=1,x∈R?

  4.3一个函数由哪几个部分组成?如果给定函数的定义域和对应关系,那么函数的值域确定吗?两个函数相等的条件是什么?

  【例题】:

  例1求下列函数的定义域

  分析:求定义域就是使式子有意义的x的取值所构成的集合;定义域一定是集合!

  例2已知函数

  分析:理解函数f(x)的意义

  例3下列函数中哪个与函数相等?

  例4在下列各组函数中与是否相等?为什么?

  分析:

  (1)两个函数相等,要求定义域和对应关系都一致;

  (2)用x还是用其它字母来表示自变量对函数实质而言没有影响.

  【课堂目标检1测】

  教科书第19页1、2.

  【课堂小结】

  1、理解函数的定义,函数的三要素,会球简单的函数的定义域和函数值;

  2、理解区间是表示数集的一种方法,会把不等式转化为区间。

高一数学教案10

  1.1 集合含义及其表示

  教学目标:理解集合的概念;掌握集合的三种表示方法,理解集合中元素的三性及元素与集合的关系;掌握有关符号及术语。

  教学过程:

  一、阅读下列语句:

  1) 全体自然数0,1,2,3,4,5,

  2) 代数式 .

  3) 抛物线 上所有的点

  4) 今年本校高一(1)(或(2))班的全体学生

  5) 本校实验室的所有天平

  6) 本班级全体高个子同学

  7) 著名的科学家

  上述每组语句所描述的对象是否是确定的?

  二、1)集合:

  2)集合的元素:

  3)集合按元素的个数分,可分为1)__________2)_________

  三、集合中元素的'三个性质:

  1)___________2)___________3)_____________

  四、元素与集合的关系:1)____________2)____________

  五、特殊数集专用记号:

  1)非负整数集(或自然数集)______2)正整数集_____3)整数集_______

  4)有理数集______5)实数集_____ 6)空集____

  六、集合的表示方法:

  1)

  2)

  3)

  七、例题讲解:

  例1、 中三个元素可构成某一个三角形的三边长,那么此三角形一定不是 ( )

  A,直角三角形 B,锐角三角形 C,钝角三角形 D,等腰三角形

  例2、用适当的方法表示下列集合,然后说出它们是有限集还是无限集?

  1)地球上的四大洋构成的集合;

  2)函数 的全体 值的集合;

  3)函数 的全体自变量 的集合;

  4)方程组 解的集合;

  5)方程 解的集合;

  6)不等式 的解的集合;

  7)所有大于0且小于10的奇数组成的集合;

  8)所有正偶数组成的集合;

  例3、用符号 或 填空:

  1) ______Q ,0_____N, _____Z,0_____

  2) ______ , _____

  3)3_____ ,

  4)设 , , 则

  例4、用列举法表示下列集合;

  1.

  2.

  3.

  4.

  例5、用描述法表示下列集合

  1.所有被3整除的数

  2.图中阴影部分点(含边界)的坐标的集合

  课堂练习:

  例6、设含有三个实数的集合既可以表示为 ,也可以表示为 ,则 的值等于___________

  例7、已知: ,若 中元素至多只有一个,求 的取值范围。

  思考题:数集A满足:若 ,则 ,证明1):若2 ,则集合中还有另外两个元素;2)若 则集合A不可能是单元素集合。

  小结:

  作业 班级 姓名 学号

  1. 下列集合中,表示同一个集合的是 ( )

  A . M= ,N= B. M= ,N=

  C. M= ,N= D. M= ,N=

  2. M= ,X= ,Y= , , .则 ( )

  A . B. C. D.

  3. 方程组 的解集是____________________.

  4. 在(1)难解的题目,(2)方程 在实数集内的解,(3)直角坐标平面内第四象限的一些点,(4)很多多项式。能够组成集合的序号是________________.

  5. 设集合 A= , B= ,

  C= , D= ,E= 。

  其中有限集的个数是____________.

  6. 设 ,则集合 中所有元素的和为

  7. 设x,y,z都是非零实数,则用列举法将 所有可能的值组成的集合表示为

  8. 已知f(x)=x2-ax+b,(a,b R),A= ,B= ,

  若A= ,试用列举法表示集合B=

  9. 把下列集合用另一种方法表示出来:

  (1) (2)

  (3) (4)

  10. 设a,b为整数,把形如a+b 的一切数构成的集合记为M,设 ,试判断x+y,x-y,xy是否属于M,说明理由。

  11. 已知集合A=

  (1) 若A中只有一个元素,求a的值,并求出这个元素;

  (2) 若A中至多只有一个元素,求a的取值集合。

  12.若-3 ,求实数a的值。

  【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学教案:集合含义及其表示能给您带来帮助!

高一数学教案11

  一、课标要求:

  理解充分条件、必要条件与充要条件的意义,会判断充分条件、必要条件与充要条件.

  二、知识与方法回顾:

  1、充分条件、必要条件与充要条件的概念:

  2、从逻辑推理关系上看充分不必要条件、必要不充分条件与充要条件:

  3、从集合与集合之间关系上看充分条件、必要条件与充要条件:

  4、特殊值法:判断充分条件与必要条件时,往往用特殊值法来否定结论

  5、化归思想:

  表示p等价于q,等价命题可以进行相互转化,当我们要证明p成立时,就可以转化为证明q成立;

  这里要注意原命题 逆否命题、逆命题 否命题只是等价形式之一,对于条件或结论是不等式关系(否定式)的命题一般应用化归思想.

  6、数形结合思想:

  利用韦恩图(即集合的包含关系)来判断充分不必要条件,必要不充分条件,充要条件.

  三、基础训练:

  1、 设命题若p则q为假,而若q则p为真,则p是q的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  2、 设集合M,N为是全集U的两个子集,则 是 的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  3、 若 是实数,则 是 的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  四、例题讲解

  例1 已知实系数一元二次方程 ,下列结论中正确的是 ( )

  (1) 是这个方程有实根的充分不必要条件

  (2) 是这个方程有实根的必要不充分条件

  (3) 是这个方程有实根的充要条件

  (4) 是这个方程有实根的充分不必要条件

  A.(1)(3) B.(3)(4) C.(1)(3)(4) D.(2)(3)(4)

  例2 (1)已知h 0,a,bR,设命题甲: ,命题乙: 且 ,问甲是乙的 ( )

  (2)已知p:两条直线的斜率互为负倒数,q:两条直线互相垂直,则p是q的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  变式:a = 0是直线 与 平行的 条件;

  例3 如果命题p、q都是命题r的必要条件,命题s是命题r的充分条件,命题q是命题s

  的充分条件,那么命题p是命题q的. 条件;命题s是命题q的 条件;命题r是命题q的 条件.

  例4 设命题p:|4x-3| 1,命题q:x2-(2a+1)x+a(a+1) 0,若﹁p是﹁q的必要不充分条件,求实数a的取值范围;

  例5 设 是方程 的两个实根,试分析 是两实根 均大于1的什么条件?并给予证明.

  五、课堂练习

  1、设命题p: ,命题q: ,则p是q的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  2、给出以下四个命题:①若p则q②若﹁r则﹁q③ 若r则﹁s

  ④若﹁s则q若它们都是真命题,则﹁p是s的 条件;

  3、是否存在实数p,使 是 的充分条件?若存在,求出p的取值范围;若不存在说明理由.

  六、课堂小结:

  七、教学后记:

  高三 班 学号 姓名 日期: 月 日

  1、 A B是AB=B的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  2、 是 的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  3、 2x2-5x-30的一个必要不充分条件是 ( )

  A.-

  4、2且b是a+b4且ab的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  5、设a1、b1、c1、a2、b2、c2均为非零实数,不等式a1x2+b1x+c10和a2x2+b2x+c20的解集分别为集合M和N,那么 是 M=N 的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分又不必要条件

  6、若命题A: ,命题B: ,则命题A是B的 条件;

  7、设条件p:|x|=x,条件q:x2-x,则p是q的 条件;

  8、方程mx2+2x+1=0至少有一个负根的充要条件是 ;

  9、关于x的方程x2+mx+n = 0有两个小于1的正根的一个充要条件是 ;

  10、已知 ,求证: 的充要条件是 ;

  11、已知p:-210,q:1-m1+m,若﹁p是﹁q的必要不充分条件,求实数m的取值范围。

  12、已知关于x的方程(1-a)x2+(a+2)x-4=0,aR,求:

  (1)方程有两个正根的充要条件;

  (2)方程至少有一正根的充要条件.

高一数学教案12

  第二十四教时

  教材:倍角公式,推导和差化积及积化和差公式

  目的:继续复习巩固倍角公式,加强对公式灵活运用的'训练;同时,让学生推导出和差化积和积化和差公式,并对此有所了解。

  过程:

  一、 复习倍角公式、半角公式和万能公式的推导过程:

  例一、 已知 , ,tan = ,tan = ,求2 +

  (《教学与测试》P115 例三)

  解:

  又∵tan2 0,tan 0 ,

  2 + =

  例二、 已知sin cos = , ,求 和tan的值

  解:∵sin cos =

  化简得:

  ∵ 即

  二、 积化和差公式的推导

  sin( + ) + sin( ) = 2sincos sincos = [sin( + ) + sin( )]

  sin( + ) sin( ) = 2cossin cossin = [sin( + ) sin( )]

  cos( + ) + cos( ) = 2coscos coscos = [cos( + ) + cos( )]

  cos( + ) cos( ) = 2sinsin sinsin = [cos( + ) cos( )]

  这套公式称为三角函数积化和差公式,熟悉结构,不要求记忆,它的优点在于将积式化为和差,有利于简化计算。(在告知公式前提下)

  例三、 求证:sin3sin3 + cos3cos3 = cos32

  证:左边 = (sin3sin)sin2 + (cos3cos)cos2

  = (cos4 cos2)sin2 + (cos4 + cos2)cos2

  = cos4sin2 + cos2sin2 + cos4cos2 + cos2cos2

  = cos4cos2 + cos2 = cos2(cos4 + 1)

  = cos22cos22 = cos32 = 右边

  原式得证

  三、 和差化积公式的推导

  若令 + = , = ,则 , 代入得:

  这套公式称为和差化积公式,其特点是同名的正(余)弦才能使用,它与积化和差公式相辅相成,配合使用。

  例四、 已知cos cos = ,sin sin = ,求sin( + )的值

  解:∵cos cos = , ①

  sin sin = , ②

  四、 小结:和差化积,积化和差

  五、 作业:《课课练》P3637 例题推荐 13

  P3839 例题推荐 13

  P40 例题推荐 13

高一数学教案13

  【摘要】鉴于大家对数学网十分关注,小编在此为大家整理了此文空间几何体的三视图和直观图高一数学教案,供大家参考!

  本文题目:空间几何体的三视图和直观图高一数学教案

  第一课时 1.2.1中心投影与平行投影 1.2.2空间几何体的三视图

  教学要求:能画出简单几何体的三视图;能识别三视图所表示的空间几何体.

  教学重点:画出三视图、识别三视图.

  教学难点:识别三视图所表示的空间几何体.

  教学过程:

  一、新课导入:

  1. 讨论:能否熟练画出上节所学习的几何体?工程师如何制作工程设计图纸?

  2. 引入:从不同角度看庐山,有古诗:横看成岭侧成峰,远近高低各不同。不识庐山真面目,只缘身在此山中。 对于我们所学几何体,常用三视图和直观图来画在纸上.

  三视图:观察者从不同位置观察同一个几何体,画出的空间几何体的图形;

  直观图:观察者站在某一点观察几何体,画出的空间几何体的图形.

  用途:工程建设、机械制造、日常生活.

  二、讲授新课:

  1. 教学中心投影与平行投影:

  ① 投影法的提出:物体在光线的照射下,就会在地面或墙壁上产生影子。人们将这种自然现象加以科学的抽象,总结其中的规律,提出了投影的方法。

  ② 中心投影:光由一点向外散射形成的投影。其投影的大小随物体与投影中心间距离的变化而变化,所以其投影不能反映物体的实形.

  ③ 平行投影:在一束平行光线照射下形成的投影. 分正投影、斜投影.

  讨论:点、线、三角形在平行投影后的结果.

  2. 教学柱、锥、台、球的三视图:

  定义三视图:正视图(光线从几何体的.前面向后面正投影);侧视图(从左向右)、俯视图

  讨论:三视图与平面图形的关系? 画出长方体的三视图,并讨论所反应的长、宽、高

  结合球、圆柱、圆锥的模型,从正面(自前而后)、侧面(自左而右)、上面(自上而下)三个角度,分别观察,画出观察得出的各种结果. 正视图、侧视图、俯视图.

  ③ 试画出:棱柱、棱锥、棱台、圆台的三视图. (

  ④ 讨论:三视图,分别反应物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)

  正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

  俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

  侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

  ⑤ 讨论:根据以上的三视图,如何逆向得到几何体的形状.

  (试变化以上的三视图,说出相应几何体的摆放)

  3. 教学简单组合体的三视图:

  ① 画出教材P16 图(2)、(3)、(4)的三视图.

  ② 从教材P16思考中三视图,说出几何体.

  4. 练习:

  ① 画出正四棱锥的三视图.

  画出右图所示几何体的三视图.

  ③ 右图是一个物体的正视图、左视图和俯视图,试描述该物体的形状.

  5. 小结:投影法;三视图;顺与逆

  三、巩固练习: 练习:教材P17 1、2、3、4

  第二课时 1.2.3 空间几何体的直观图

  教学要求:掌握斜二测画法;能用斜二测画法画空间几何体的直观图.

  教学重点:画出直观图.

高一数学教案14

  本文题目:高一数学教案:对数函数及其性质

  2.2.2 对数函数及其性质(二)

  内容与解析

  (一) 内容:对数函数及其性质(二)。

  (二) 解析:从近几年高考试题看,主要考查对数函数的性质,一般综合在对数函数中考查.题型主要是选择题和填空题,命题灵活.学习本部分时,要重点掌握对数的运算性质和技巧,并熟练应用.

  一、 目标及其解析:

  (一) 教学目标

  (1) 了解对数函数在生产实际中的简单应用.进一步理解对数函数的图象和性质;

  (2) 学习反函数的概念,理解对数函数和指数函数互为反函数,能够在同一坐标上看出互为反函数的两个函数的图象性质..

  (二) 解析

  (1)在对数函数 中,底数 且 ,自变量 ,函数值 .作为对数函数的三个要点,要做到道理明白、记忆牢固、运用准确.

  (2)反函数求法:①确定原函数的值域即新函数的定义域.②把原函数y=f(x)视为方程,用y表示出x.③把x、y互换,同时标明反函数的定义域.

  二、 问题诊断分析

  在本节课的教学中,学生可能遇到的问题是不易理解反函数,熟练掌握其转化关系是学好对数函数与反函数的基础。

  三、 教学支持条件分析

  在本节课一次递推的教学中,准备使用PowerPoint 20xx。因为使用PowerPoint 20xx,有利于提供准确、最核心的文字信息,有利于帮助学生顺利抓住老师上课思路,节省老师板书时间,让学生尽快地进入对问题的分析当中。

  四、 教学过程

  问题一. 对数函数模型思想及应用:

  ① 出示例题:溶液酸碱度的测量问题:溶液酸碱度pH的计算公式 ,其中 表示溶液中氢离子的浓度,单位是摩尔/升.

  (Ⅰ)分析溶液酸碱读与溶液中氢离子浓度之间的关系?

  (Ⅱ)纯净水 摩尔/升,计算纯净水的酸碱度.

  ②讨论:抽象出的函数模型? 如何应用函数模型解决问题? 强调数学应用思想

  问题二.反函数:

  ① 引言:当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inverse function)

  ② 探究:如何由 求出x?

  ③ 分析:函数 由 解出,是把指数函数 中的'自变量与因变量对调位置而得出的. 习惯上我们通常用x表示自变量,y表示函数,即写为 .

  那么我们就说指数函数 与对数函数 互为反函数

  ④ 在同一平面直角坐标系中,画出指数函数 及其反函数 图象,发现什么性质?

  ⑤ 分析:取 图象上的几个点,说出它们关于直线 的对称点的坐标,并判断它们是否在 的图象上,为什么?

  ⑥ 探究:如果 在函数 的图象上,那么P0关于直线 的对称点在函数 的图象上吗,为什么?

  由上述过程可以得到什么结论?(互为反函数的两个函数的图象关于直线 对称)

  ⑦练习:求下列函数的反函数: ;

  (师生共练 小结步骤:解x ;习惯表示;定义域)

  (二)小结:函数模型应用思想;反函数概念;阅读P84材料

  五、 目标检测

  1.(20xx全国卷Ⅱ文)函数y= (x 0)的反函数是

  A. (x 0) B. (x 0) C. (x 0) D. (x 0)

  1.B 解析:本题考查反函数概念及求法,由原函数x 0可知A、C错,原函数y 0可知D错,选B.

  2. (20xx广东卷理)若函数 是函数 的反函数,其图像经过点 ,则 ( )

  A. B. C. D.

  2. B 解析: ,代入 ,解得 ,所以 ,选B.

  3. 求函数 的反函数

  3.解析:显然y0,反解 可得, ,将x,y互换可得 .可得原函数的反函数为 .

  【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学教案:对数函数及其性质能给您带来帮助!

高一数学教案15

  一、教学目标

  1.知识与技能

  (1)解二分法求解方程的近似解的思想方法,会用二分法求解具体方程的近似解;

  (2)体会程序化解决问题的思想,为算法的学习作准备。

  2.过程与方法

  (1)让学生在求解方程近似解的实例中感知二分发思想;

  (2)让学生归纳整理本节所学的知识。

  3.情感、态度与价值观

  ①体会二分法的程序化解决问题的思想,认识二分法的价值所在,使学生更加热爱数学;

  ②培养学生认真、耐心、严谨的数学品质。

  二、 教学重点、难点

  重点:用二分法求解函数f(x)的零点近似值的步骤。

  难点:为何由︱a - b ︳< 便可判断零点的近似值为a(或b)?

  三、 学法与教学用具

  1.想-想。

  2.教学用具:计算器。

  四、教学设想

  (一)、创设情景,揭示课题

  提出问题:

  (1)一元二次方程可以用公式求根,但是没有公式可以用来求解放程 ㏑x+2x-6=0的根;联系函数的零点与相应方程根的关系,能否利用函数的有关知识来求她的根呢?

  (2)通过前面一节课的学习,函数f(x)=㏑x+2x-6在区间内有零点;进一步的问题是,如何找到这个零点呢?

  (二)、研讨新知

  一个直观的想法是:如果能够将零点所在的范围尽量的'缩小,那么在一定的精确度的要求下,我们可以得到零点的近似值;为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围。

  取区间(2,3)的中点2.5,用计算器算得f(2.5)≈-0.084,因为f(2.5)xf(3)<0,所以零点在区间(2.5,3)内;

  再取区间(2.5,3)的中点2.75,用计算器算得f(2.75)≈0.512,因为f(2.75)xf(2.5)<0,所以零点在(2.5,2.75)内;

  由于(2,3),(2.5,3),(2.5,2.75)越来越小,所以零点所在范围确实越来越小了;重复上述步骤,那么零点所在范围会越来越小,这样在有限次重复相同的步骤后,在一定的精确度下,将所得到的零点所在区间上任意的一点作为零点的近似值,特别地可以将区间的端点作为零点的近似值。例如,当精确度为0.01时,由于∣2.5390625-2.53125∣=0.0078125<0.01,所以我们可以将x=2.54作为函数f(x)=㏑x+2x-6零点的近似值,也就是方程㏑x+2x-6=0近似值。

  这种求零点近似值的方法叫做二分法。

  1.师:引导学生仔细体会上边的这段文字,结合课本上的相关部分,感悟其中的思想方法.

  生:认真理解二分法的函数思想,并根据课本上二分法的一般步骤,探索其求法。

  2.为什么由︱a - b ︳<便可判断零点的近似值为a(或b)?

  先由学生思考几分钟,然后作如下说明:

  设函数零点为x0,则a<x0<b,则:

  0<x0-a<b-a,a-b<x0-b<0;

  由于︱a - b ︳<,所以

  ︱x0 - a ︳<b-a<,︱x0 - b ︳<∣ a-b∣<,

  即a或b 作为零点x0的近似值都达到了给定的精确度。

 (三)、巩固深化,发展思维

  1.学生在老师引导启发下完成下面的例题

  例2.借助计算器用二分法求方程2x+3x=7的近似解(精确到0.01)

  问题:原方程的近似解和哪个函数的零点是等价的?

  师:引导学生在方程右边的常数移到左边,把左边的式子令为f(x),则原方程的解就是f(x)的零点。

  生:借助计算机或计算器画出函数的图象,结合图象确定零点所在的区间,然后利用二分法求解.

  (四)、归纳整理,整体认识

  在师生的互动中,让学生了解或体会下列问题:

  (1)本节我们学过哪些知识内容?

  (2)你认为学习“二分法”有什么意义?

  (3)在本节课的学习过程中,还有哪些不明白的地方?

  (五)、布置作业

  P92习题3.1A组第四题,第五题。

【高一数学教案】相关文章:

人教版高一数学教案02-10

高一必修三数学教案02-10

高一数学教案《函数概念》12-15

高一数学教案模板范文02-09

高一必修一数学教案02-09

高中高一数学教案02-11

高一数学教案《方程根与函数零点》(精选11篇)11-19

高一数学教案:幂函数指数函数和对数函数12-20

数学教案12-18

数学教案:菱形11-25