初一数学教案:多项式除以单项式

时间:2023-09-20 13:15:28 数学教案 我要投稿
  • 相关推荐

初一数学教案:多项式除以单项式(精选8篇)

  作为一名教学工作者,就难以避免地要准备教案,教案是备课向课堂教学转化的关节点。那要怎么写好教案呢?下面是小编为大家整理的初一数学教案:多项式除以单项式,希望对大家有所帮助。

初一数学教案:多项式除以单项式(精选8篇)

  初一数学教案:多项式除以单项式 1

  【教学目标】

  知识目标:

  解单项式乘以多项式的意义,理解单项式与多项式的乘法法则,会进行单项式与多项式的乘法运算。

  能力目标:

  (1)经历探索乘法运算法则的过程,发展观察、归纳、猜测、验证等能力;

  (2)体会乘法分配律的作用与转化思想,发展有条理的思考及语言表达能力。

  情感目标:

  充分调动学生学习的积极性、主动性

  【教学重点】

  单项式与多项式的乘法运算

  【教学难点】

  推测整式乘法的运算法则。

  【教学过程】

  一、复习引入

  通过对已学知识的'复习引入课题(学生作答)

  1.请说出单项式与单项式相乘的法则:

  单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里出现的字母,则连同它的指数作为积的一个因式。

  (系数×系数)×(同字母幂相乘)×单独的幂

  例如:( 2a2b3c) (-3ab)

  解:原式=[2· (-3) ] · (a2·a) · (b3 · b) · c

  = -6a3b4c

  2.说出多项式2x2-3x-1的项和各项的系数项分别为:2x2、-3x、-1系数分别为:2、-3、-1

  问:如何计算单项式与多项式相乘?例如:2a2· (3a2 - 5b)该怎样计算?

  这便是我们今天要研究的问题。

  二、新知探究

  已知一长方形长为(a+b+c),宽为m,则面积为:m(a+b+c)

  现将这个长方形分割为宽为m,长分别为a、b、c的三个小长方形,其面积之和为ma+mb+mc因为分割前后长方形没变所以m(a+b+c)=ma+mb+mc

  上一等式根据什么规律可以得到?从中可以得出单项式与多项式相乘的运算法则该如何表述?(学生分组讨论:前后座为一组;找个别同学作答,教师作评)

  结论单项式与多项式相乘的运算法则:

  用单项式分别去乘多项式的每一项,再把所得的积相加。

  用字母表示为:m(a+b+c)=ma+mb+mc

  运算思路:单×多

  转化

  分配律

  单×单

  三、例题讲解

  例计算:(1)(-2a2)· (3ab2– 5ab3)

  (2)(- 4x) ·(2x2+3x-1)

  解:(1)原式= (-2a2)· 3ab2+ (-2a2)·(– 5ab3) ①=-6a3b2+ 10a3b3 ②

  (2)原式=(- 4x) ·2x2+(- 4x) ·3x+(- 4x) ·(-1) ①

  初一数学教案:多项式除以单项式 2

  教学目的:

  使学生熟练地掌握多项式除以单项式的法则,并能准确地进行运算.

  教学重点:

  多项式除以单项式的法则是本节的重点.

  教学过程:

  一、复习提问

  1.计算并回答问题:

  (1)4a3b4c÷2a2b2c;(2)(-a2b2c)÷3ab2.

  (3)以上的计算是什么运算?能否叙述这种运算的法则?

  2.计算并回答问题:

  (1)3x(x2-x+1);(2)-4a·(a2-a+2).

  (3)以上的计算是什么运算?能否叙述这种运算的法则?

  3.请同学利用2、3、6其间的数量关系,写出仅含以上三个数的等式.

  说明:希望学生能写出

  2×3=6,(2的3倍是6)

  3×2=6,(3的2倍是6)

  6÷2=3,(6是2的3倍)

  6÷3=2.(6是3的2倍)

  然后向大家指明,以上四个式子所表示的三个数间的关系是相同的`,只是表示的角度不同,让学生理解被除式、除式与商式间的关系.

  二、新课

  1.新课引入.

  对照整式乘法的学习顺序,下面我们应该研究整式除法的什么内容?在学生思考的基础上,点明本节的主题,并板书标题.

  2.法则的推导.

  引例:(8x3-12x2+4x)÷4x=(?)

  分析:

  利用除法是乘法的逆运算的规定,我们可将上式化为

  4x · ( ? ) =8x3-12x2+4x.

  原乘法运算: 乘式 乘式 积

  (现除法运算):(除式) (待求的商式) (被除式)

  然后充分利用单项式乘多项式的运算法则,引导学生对“待求的商式”做大胆的猜测:大体上可以从结构(应是单项式还是多项式)、项数、各项的符号能否确定、各具体的项能否“猜”出几方面去思考.根据课上学生领悟的情况,考虑是否由学生完成引例的解答.

  解:(8x3-12x2+4x)÷4x

  =8x3÷4x-12x2÷4x+4x÷4x

  =2x2-3x+4x.

  思考题:(8x3-12x2+4x)÷(-4x)=?

  以上的思想,可以概括为“法则”:

  (am+mb+cm)÷m=am÷m+bc÷m+cm÷m

  法则的语言表达是:

  多项式除以单项式,先把这个多项式的每

  一项除以这个单项式,再把所得的商相加.

  3.巩固法则.

  例1 计算:

  (1)(28a3-14a2+7a)÷7a;

  (2)(36x4y3-24x3y2+3x2y2)÷(-6x2y).

  小结:

  (1)当除式的系数为负数时,商式的各项符号与被除多项式各项的符号相反,要特别注意;

  (2)多项式除以单项式是利用相应法则,转化为单项式除以单项式而求得结果的.

  (3)在学习、巩固新的法则阶段,应尽量要求学生写出表现法则的那一步.

  本节是学习多项式与单项式的除法,因此对于单项式除以单项式的计算则可以从简.

  练习

  1.计算:

  (1)(6xy+5x)÷x;(2)(15x2y-10xy2)÷5xy;

  (3)(8a2b-4ab2)÷4ab;(4)(4c2d+c3d3)÷(-2c2d).

  例2 化简[(2x+y)2-y(y+4x)-8x]÷2x.

  解:[(2x+y)2-y(y+4x)-8x]÷2x

  =(4x2+4xy+y2-y2-4xy-8x)÷2x

  =(4x2-8x)÷2x=2x-4.

  三、小结

  1.多项式除以单项式的法则写成下面的形式是否正确?

  (a+b+c)÷m=a÷m+b÷m+c÷m.

  答:上面的等式也反映出多项式除以单项式的基本方法(两个要点):

  (1)多项式的每一项除以单项式;

  (2)所得的商相加.

  所以它也可以是多项式除以单项式法则的数字表示形成.

  学习了负指数之后,我们可以理解a、b、c是否能被m整除不是关键问题.

  2.多项式除以单项式的商在项数与各项的符号与什么式子有联系?有何联系?

  初一数学教案:多项式除以单项式 3

  学习目标:

  1、在具体情景中,了解单项式和多项式相乘的意义。

  2、在通过学生活动中,理解单项式和多项式相乘的法则,会用它们进行计算。

  3、培养学生有条理的思考和表达能力。

  学习重点:

  单项式乘以多项式的法则

  学习难点:

  对法则的理解

  学习过程

  1.学习准备

  1.叙述单项式乘以单项式的法则

  2.计算

  (1)(- a2b) ?(2ab)3=

  (2) (-2x2y)2 ?(- xy)-(-xy)3?(-x2)

  3、举例说明乘法分配律的应用。

  2.合作探究

  (一)独立思考,解决问题

  1、 问题: 一个施工队修筑一条路面宽为n m的公路,第一天修筑 a m长,第二天修筑长 b m,第三天修筑长 c m,3天工修筑路面的`面积是多少?

  结合图形,完成填空。

  算法一:3天共修筑路面的总长为(a+b+c)m,因为路面的宽为bm,所以3

  天共修筑路面 m2.

  算法二:先分别计算每天修筑路面的面积,然后相加,则3天修路面 m2.

  因此,有 = 。

  3.你能用字母表示乘法分配律吗?

  4.你能尝试单项式乘以多项式的法则吗?

  (二)师生探究,合作交流

  1、例3 计算:

  (1) (-2x) (-x2?x+1) (2)a(a2+a)- a2 (a-2)

  2、练一练

  (1)5x(3x+4) (2) (5a2? a+1)(-3a)

  (3)x(x2+3)+x2(x-3)-3x(x2?x-1)

  (4)(?a)(-2ab)+3a(ab-b-1))

  (三)学习

  对照学习目标,通过预习,你觉得自己有哪些方面的收获?有什么疑惑?

  (四)自我测试

  1、教科书P59 练习 3,结合解题,单项式乘以多项式的几何意义。

  2、判断题

  (1)-2a(3a-4b) =-6a2-8ab ( )

  (2) (3x2-xy-1) ? x =x3 -x2y-x ( )

  (3)m2- (1- m) = m2- - m ( )

  3、已知ab2=-1,-ab(a2b3-ab3-b)的值等于 ( )

  A. -1 B. 0 C. 1 D. 无法确定

  4、计算(2009 贺州中考)

  (-2a)?( a3 -1) =

  5、(3m)2(m2+mn-n2)=

  (五)应用拓展

  1、计算

  (1)2a(9a2-2a+3)-(3a2) ?(2a-1)

  (2)x(x-3)+2x(x-3)=3(x2-1)

  2、若一个梯形的上底长(4m+3n)cm,下底长(2m+n)cm,高为3m2n cm,求此梯形的面积。

  3、一块边长为xcm的正方形地砖,因需要被裁掉一块2cm宽的长条,为剩下部分面积是多少?

  初一数学教案:多项式除以单项式 4

  教材分析:

  单项式的乘法是浙教版七年级下册第五章第二节的内容,主要学习单项式乘以单项式、单项式乘以多项式的法则,是建立在学生学习过有理数的乘法和幂的运算性质上的,同时为接下来学习多项式的乘法奠定坚实的基础,因此单项式的乘法起到承前启后的作用,在整式乘法中占有独特的地位。

  学情分析

  本节课的说课对象是7年级的学生,七年级的学生已经学习过单项式的概念,会用合并同类项法则进行整式的加减运算;熟练掌握了数的乘法运算;以及学习了上一节的同底数幂的乘法运算。这对本节课所要学习的单项式的乘法做了铺垫。

  基于以上的教材分析和学情分析我指定了如下的教学三维目标教学三维目标

  (1)知识与技能目标

  1.口述单项式与单项式的,单项式与多项式的乘法法则;

  2.举出单项式与单项式、单项式与多项式乘法实例。

  3.对给出的单项式与单项式、单项式与多项式,能够快速准确的进行运算

  (2)过程与方法目标

  1.引导学生运用乘法交换律与结合律,以及同底数幂的乘法法则来总结出单项式与单项式的乘法法则。

  2.小组讨论合作学习,类比有理数的乘法分配律,使学生自己得出单项式与多项式乘法法则。

  (3)情感态度与价值观目标

  1.体会乘法交换律、结合律和分配律的`作用

  2.利用运算律将问题转化,使学生获得成就感,培养学习兴趣

  教学重点:

  单项式与单项式、单项式与多项式的乘法法则

  教学难点:

  多种运算法则的综合运用(有理数的乘法、同底数幂的乘法、幂的乘方、积的乘方)

  教学方法:

  下面,为了讲清重点、难点,使学生能达到本节课设定的目标,我制定了如下的教学方法:

  新课标认为,应当让学生在具体生动的情境中学习数学。我采用测量广场面积为例子,引导学生探索单项式乘法这一新知,然后师生互动,根据例子,让学生总结出单项式乘法的法则,使学生更好的接受新知,理解新知。在课堂练习中,采用师生共同练习的方式,强化思维与解题思路,在课后作业中,采用练习法来巩固知识、分层布置作业,因材施教。掌握基础性知识与技能,积极培养学生求知的兴趣。

  教学过程:

  一、回顾旧知

  1.回顾单项式的概念,让学生列举出几个简单的单项式

  2.温习同底数幂的乘法运算

  二、创设情景

  1.(PPT展示)一位旅行者用步长测量某广场的面积:他先从南走到北,记下所走的步数为1000步;再从东走到西,记下所走的步数为600步,然后根据自己的步长来估算广场的面积。

  问:(1)若步长用a m表示,请用含a的代数式表示广场的面积?

  1000a?600a

  (2)若步长为0.8m,那么广场的面积为多少?

  1000_0.8_600_0.8

  引导学生对第二个算式进行变形,教师提示运用乘法的交换律与结合律,学生容易得出(1000_600)_(0.8_0.8),在追问学生能不能运用同底数幂的乘法在进行整理,教师引导写出(1000_600)_(0.82)。重新回到第一问,看看能不能类比写出(1)式的计算结果。

  【设计意图】使学生运用乘法交换律与结合律以及同底数幂的乘法来初步进行运算

  三、练一练

  请2位学生到黑板进行计算,其余学生在草稿纸上运算。

  若学生仍不熟练,在请同学做书本上P121课内练习T1的(1)(3)

  【设计意图】巩固学生单项式的乘法运算,并熟练掌握计算技巧。

  四、合作学习

  (10min)

  (1)(b-2m)_a

  ab-2am

  (3)单项式与多项式相乘,就是单项式去乘多项式的每一项,再把所得的积相加。

  【设计意图】由单项式相乘,推导出多项式相乘,让学生自我体会发现规律的成就感。

  五、试一试

  列举出书中的多项式乘法运算

  【设计意图】不仅是对单项式乘法的回顾,更是对单项式乘以多项式的练习。

  六、归纳小结

  学生阐述本节课学习的知识与收获,教师引导学生复述法则

  【设计意图】教师引导完学生学习知识后,学生能够总结出所学知识,说明学生掌握情况良好,也体现出了学生课堂主体的地位。

  七、布置作业

  课后作业A题必做,B题选做,有兴趣的同学完成设计题

  【设计意图】针对不同学生的情况,我分层布置作业,体现因材施教,调动同学的积极性。

  以上就是我对本节课的理解。

  初一数学教案:多项式除以单项式 5

  学习目标

  1、经历探索多项式乘法法则的过程,理解多项式乘法法则。

  2、学会用多项式乘法法则进行计算。

  3、要有用几何图形理解代数知识的能力和复杂问题转化为简单问题的转化思想。

  学习重难点

  重点是掌握多项式的乘法法则并加以运用。

  难点是理解多项式乘法法则的推导过程和运用法则进行计算。

  教学过程设计

  看一看

  认真阅读教材,记住以下知识:

  1、多项式乘法的`法则:

  2、归纳易错点:

  做一做:

  1.计算:

  (1)(a+2b)(a-b)=_________;

  (2)(3a-2)(2a+5)=________;

  (3)(x-3)(3x-4)=_________;

  (4)(3x-y)(x+2y)=________.

  2.计算:(4x2-2xy+y2)(2x+y).

  3.计算(a-b)(a-b)其结果为()

  A.a2-b2B.a2+b2

  C.a2-2ab+b2D.a2-2ab-b2

  4.(x+a)(x-3)的积的一次项系数为零,则a的值是()

  A.1B.2C.3D.4

  5.下面计算中,正确的是()

  A.(m-1)(m-2)=m2-3m-2

  B.(1-2a)(2+a)=2a2-3a+2

  C.(x+y)(x-y)=x2-y2

  D.(x+y)(x+y)=x2+y2

  6.如果(x+3)(x+a)=x2-2x-15,则a等于()

  A.2B.-8C.-12D.-5

  想一想

  你还有哪些地方不是很懂?请写出来。

  _______________________________

  _______________________________

  ________________________________.

  预习展示:

  一、计算(1)(x+y)(a+2b)

  (2)(3x-1)(x+3)

  二、先化简,再求值:

  (2a-3)(3a+1)-6a(a-4)其中a=2/17

  应用探究

  计算

  (1)(a+b)(a-b)

  (2)(a+b)2

  (3)(a+b)(a2-ab+b2)

  (4)(a+b+c)(c+d+e)

  拓展提高

  1.当y为何值时,(-2y+1)与(2-y)互为负倒数.

  2.已知(x+2)(x2+ax+b)的积不含x的二次项和一次项,求a、b的值.

  3.已知:A=x2+x+1,B=x+p-1,化简:AB-pA,当x=-1时,求其值.

  堂堂清

  1.解方程:(2x+3)(x-4)-(x+2)(x-3)=x2+6.

  2.先化简,再求值:5x(x2+2x+1)-x(x-4)(5x-3),其中x=1.

  教后反思

  在前面学习了单项式与单项式相乘,单项式与多项式相乘的法则之后,有继续来学习多项式与多项式的乘法法则,对学生来说掌握起来并不困难,但是学生的计算能力不是很强,所以计算起来很浪费时间,并且计算容易出错。

  初一数学教案:多项式除以单项式 6

  一、教材分析

  1、教材的地位

  本节课主要讲解的是单项式乘以单项式,是在前面学习了幂的运算性质的基础上学习的,学生学习单项式的乘法并熟练地进行单项式的乘法运算是以后学习多项式乘法的关键,单项式的乘法综合用到了有理数的乘法、幂的运算性质,而后续的多项式乘以单项式、多项式乘以多项式都要转化为单项式的乘法,因此单项式的乘法将起到承前启后的作用,在整式乘法中占有独特的地位。

  2、课标要求:能进行简单的整式乘法的运算。

  3、教学目标

  (1)、通过实际问题的探索,类比得出单项式乘以单项式的法则,发展逻辑思维能力。

  (2)、通过单项式乘单项式的训练,加强法则的应用,提升运算能力。

  (3)、通过运算法则在实际问题中的应用,提高解决实际问题的能力。

  4、教学重点、难点:

  重点:单项式乘单项式法则

  (这是因为要熟练地进行单项式的乘法运算,就必须掌握和深刻理解运算法则,对运算法则理解得越深,运算才能掌握的越好)

  难点:

  1、掌握单项式乘法法则的应用

  2、单项式乘法法则有关系数和指数在计算中的不同规定

  (这是因为单项式的乘法最终将转化为有理数的乘法、同底数的幂相乘、幂的乘方、积的乘方等运算,对于初学者来说,由于难于正确辨认和区别各种不同的运算及运算所使用的法则,易于将各种法则混淆,造成运算结果错误。)

  二、教学方法与手段

  本节课在教学过程的不同阶段采用不同的教学方法,以适应教学的需要。

  1、在新课学习阶段的单项式的乘法法则的推导过程中,采用了引导发现法。通过教师设计的问题,引导学生将需要解决的问题转化成用已学过的知识可解决的问题,让学生既掌握了新的知识,又培养了学生探索问题的能力。

  2、在新课学习的`例题讲解阶段,采用了讲练结合法。对例题的学习,围绕问题进行,通过教师引导、学生观察、思考,寻求解决问题的方法,在解题的过程中展开思维。与此同时还进行多次有较强针对性的练习,分散难点,对学生分层进行训练,化解难点,并注意及时矫正,使学生在前面出现的错误不致于影响后面的解题,为后面的学习扫清障碍,通过例题的学习教师给出了解题规范,并注意对学生良好学习习惯的培养。

  3、在归纳小结这个阶段采用师生共同总结,旨在训练学生归纳的方法,并形成相应的知识系统,进一步防范学生在运算中容易出现的错误。

  4、本节课训练量大,利用投影仪,增大课堂容量,提高课堂教学效率。

  三、教学过程

  1、温故知新(复习幂的运算性质)

  单项式与单项式、单项式与多项式相乘最终将转化为有理数乘法,同底数幂相乘,幂的乘方,积的乘方等运算,故通过复习幂的运算性质为单项式乘单项式、单项式乘多项式的教学作好铺垫。

  2、单项式乘法法则的推导

  通过实际问题引导学生进行观察、分析两个单项式如何相乘,使学生能运用乘法交换律、结合律和同底数幂的运算性质等知识探索单项式乘以单项式的运算法则。通过类比实际问题的解决引导学生进行归纳,最后得出单项式乘以单项式的法则,以实现教学目标。

  2、应用新知

  例1引导学生观察,根椐题目特征,辩认出它们是哪种运算,应选用什么样的法则进行计算,使学生逐渐分清运算类型,正确实运用法则,以实现难点的分散和突破,并提高学生运算的熟练程度。例2是单项式的乘法在实际生活中的应用,通过例2使学生认识到数学在日常生活和生产中应用十分广泛,从而逐步培养学生应用数学的意识。

  在例题的教学过程中除学生给出计算过程,教师要给出规范的解题过程,并要求学生按规范的书写格式进行练习。

  在每道题完成之后,都配有与例题相近的巩固练习,由学生板演和自主练习,发现问题及时纠正,以实现教学目标2、3。

  四、教学反思

  1、设计分段练习。主要解决重点问题,及时了解学生对数学知识的掌握情况,发现问题及时矫正,扫清后续学习障碍。

  2、采用不同的练习方法。如口答、笔答、板演等,以增加反馈层面。通过练习使大多数学生的学习情况都能及时反馈,做到对教学情况心中有数。

  3、及时矫正。对每次练习情况进行讲评,对正确的解答及时给予肯定,发现问题及时评讲。

  4、课堂气氛不够活跃。

  5、锤炼语言的准确性。

  初一数学教案:多项式除以单项式 7

  【教学目标

  1、经历探索多项式乘法法则的过程,理解多项式乘法法则。

  2、学会用多项式乘法法则进行计算。

  3、培养学生用几何图形理解代数知识的能力和复杂问题转化为简单问题的转化思想。

  【教学重点、难点

  重点是掌握多项式的乘法法则并加以运用。

  难点是理解多项式乘法法则的推导过程和运用法则进行计算。

  【教学过程

  一、回顾与思考

  教师引导学生复习:单项式×多项式运算法则;整式的乘法实际上就是

  单项式×单项式; 单项式×多项式; 和今天学多项式×多项式

  二、创设情景,导入课题

  展示:节前语和图片。

  展示:课本中三图

  图5-5

  图5-6

  图5-7

  一间厨房的平面布局如图5-5,试用几种方法表示厨房的总面积。(师生共同探索,鼓励学生用不同的表示方法完成,然后总结)

  由图5-6得总面积为(a+n)(b+m);由图5-7得总面积为a(b+m)+n(b+m)

  或ab+am+nb+nm ; 此时提出问题《多项多的乘法》。

  三、探索法则与应用

  (a+n)(b+m)=a(b+m)+n(b+m)=ab+am+nb+nm

  根据分配律,我们也能得到下面等式:

  (a+n)(b+m)=ab+am+nb+nm

  1、在学生发言的基础上,教师总结多项式×多项式的乘法法则并板书法则。

  让学生体会法则的理论依据:

  乘法对加法的分配律

  多项式乘以多项式先用一个多项式的'每一项乘以另一个多项式的每一项,再把所得的积相加。

  2、例题讲题

  例1 计算(1)(x+y)(a+2b)

  (2)(3x-1)(x+3)强调法则的作用。

  例2 先化简,再求值:

  (2a-3)(3a+1)-6a(a-4)其中a=2/17

  解:(2a-3)(3a+1)-6a(a-4)

  =6a2+2a-9a-3-6a2+24a

  =17a-3

  当a=2/17时,原式=17×2/17-3=-1

  3、课内练习

  见课本P114

  四、拓展延伸,探索挑战

  1、拓展演练

  (1)(a+b)(a-b) (2)(a+b)2 (3)(a+b)(a2-ab+b2)

  (4)(a+b+c)(c+d+e)

  2、探索

  课本P115 第6题

  五、归纳小结,充实结构

  指导学生总结本节课的知识点、学习过程等的自我评价。主要针对以下两个方面:

  1、多项式×多项式 ;

  2、整式的乘法

  六、知识留恋、课后韵味

  布置作业:作业本,一课一练。

  初一数学教案:多项式除以单项式 8

  〖教学目标〗

  1、经历探索多项式的乘法运算法则的过程,掌握多项式与多项式相乘的法则。

  2、会运用单项式与单项式,单项式与多项式,多项式与多项式相乘的法则,化简整式。

  3、会用多项式的乘法解决简单的实际问题。

  〖教学重点与难点〗

  教学重点:多项式与多项式相乘的运算。

  教学难点:例2包含了多种运算,过程比较复杂是本节的难点。

  〖教学过程〗

  一、创设情境,引出课题

  小明找来一张铅画纸包数学课本,已知课本长a厘米,宽b厘米,厚c厘米,小明想将课本封面与封底的每一边都包进去m厘米,问如果你是小明你会在铅画纸上裁下一块多大面积的长方形?

  二、引出新知,探究示例

  1、合作探索学习:有一家厨房的平面布局如图1

  (1)请用三种不同的方法表示厨房的总面积。

  (2)这三种不同的方法表示的面积应当相等,你能用运算律解释吗?

  (3)通过上面的讨论,你能总结出单项式与多项式相乘的运算规律吗?

  (让学生以同桌合作的.形式进行探索,然后表达交流)

  答:(1)总面积:(a+n)(b+m);a(b+m)+n(b+m)或b(a+n)+m(a+n);ab+am+nb+nm

  (2)总面积相等,由此可得到(a+n)(b+m)=a(b+m)+n(b+m)……①

  =ab+am+nb+nm……②

  第①步运用分配律把(b+m)看成一个数,第②步再运用分配律。

  (3)由(a+n)(b+m)=ab+am+nb+nm师生共同总结得出多项式与多项式相乘的法则:

  (学生归纳,教师板书)

  2、运用新知,计算例题

  例1:计算

  (1)(x+y)(a+2b)(2)(3x—1)(x+3)(3)(x—1)2

  解:(1)(x+y)(a+2b)=x?a+x?(2b)+y?a+y?(2b)=ax+2bx+ay+2by

  (2)(3x—1)(x+3)=3x2+9x—x—3=3x2+8x—3

  (3)(x—1)2=(x—1)(x—1)=x2—x—x+1=x2—2x+1

  教师在示范过程中引导学生注意这三题都按多项式相乘的法则进行,运算过程中注意符号,防止漏乘,结果要合并同类项。

  反馈练习:课内练习1

  例2,先化简,再求值:(2a—3)(3a+1)—ba(a—4),其中a=

  解:(2a—3)(3a+1)—ba(a—4)=6a2+2a—9a—3—6a2+24a=17a—3

  当a=时,原式=17a—3=17×()—3=—19—3=—22

  注意的几点:(1)必须先化简,再求值,注意符号及解题格式。

  (2)当代入的是一个负数时,添上括号。

  (3)在运算过程中,把带分数化为假分数来计算。

  反馈练习:1、计算当y=—2时,(3y+2)(y—4)—(y—2)(y—3)的值。

  2、课内练习2、3。

  三、分层训练,能力升级

  1、填空

  (1)(2x—1)(x—1)=

  (2)x(x2—1)—(x+1)(x2+1)=

  (3)若(x—a)(x+2)=x2—6x—16,则a=

  (4)方程y(y—1)—(y—2)(y+3)=2的解为

  2、某地区有一块原长m米,宽a米的长方形林区增长了200米,加宽了15米,则现在这块地的面积为平方米。

  3、某人以一年期的定期储蓄把2000元钱存入银行,当年的年利率为x,第二年的年利率减少10%,则第二年到期时他的本利和为多少元?

  四、小结

  让学生谈谈通过这节课的学习,有哪些收获与疑问?教师及时总结内容并解答疑惑。

  五、布置作业

  课本的分层作业题。

【初一数学教案:多项式除以单项式】相关文章:

初中数学-七年级数学教案数学教案-多项式除以单项式12-30

《分数除以整数》教学设计(精选6篇)03-23

初中数学常考的知识点多项式的值10-24

数学教案:菱形11-25

小学数学教案(经典)07-22

数学教案教学09-14

有趣的数学教案11-08

小学数学教案09-16

初中数学教案01-10

数学教案(15篇)09-28