五年级数学教案合集15篇
在教学工作者实际的教学活动中,编写教案是必不可少的,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么什么样的教案才是好的呢?下面是小编精心整理的五年级数学教案,希望能够帮助到大家。
五年级数学教案1
教学目标:
1.通过学生的动手操作,借助图形语言,理解分数乘法的意义和分数乘以分数的算理,掌握计算方法,并能熟练地进行计算;
2.让学生经历猜想、验证等过程,体验数学研究的方法;
3.培养逻辑推理能力,渗透一定的数学思维方法。
教学重难点:
学生能够熟练的计算出分数乘以分数的结果。
教学过程:
一、创设情境激趣揭题
1.出示我国古代哲学著作的情景。
2.出示复习题
3×2/54/5×2
二、扶放结合探究新知
1.画图引导学生理解1/21/2的`算例。
2.出示3/41/4引导学生验证上面的计算方法,岩石推理过程。
3.出示2/31/5,5/62/3写出计算过程,
小结计算方法:
分子乘分子,分母乘分母。
三、反馈矫正落实双基
1.出示教材第8页试一试1-3题。
2.引导学生发现规律。
四、小结评价布置预习
1.引导学生进行课堂小结。
2.布置预习:教材10-11页练习一。
板书
意义:
求一个数的几分之几是多少?
计算法则:
分子乘分子作分子,分母乘分母作分母。
五年级数学教案2
教学目标:
1.知识技能:经历探索分数基本性质的过程,理解分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。
2.思考与问题解决:经历观察讨论,操作等学习活动,能对分数的基本性质作出简要的,合理的说明,培养学生的观察,比较,归纳,总结概括的能力。
3.情感态度:经历观察,操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣,鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质。
教学重点:
探索,发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。
教学难点:
自主探索,归纳概括分数的基本性质。
教具学具准备:
多媒体课件,正方形纸,彩笔。
教学设计:
一、创设情境,导入新课:
1.课件分别出示两张不同的孙悟空的照片。师:学们仔细看看这两张照片,你有什么发现?(指名回答)。
2.教师引导交流:孙悟空本人没有改变,只不过是外表的打扮装饰发生了改变。
3.学生初步感知了什么变了而什么却没有变的概念。
4.教师导入新课:今天我们就来探讨什么变了而什么没有变的有关内容。教师板书课题:分数的基本性质设计意图:利用学生感兴趣的图片来吸引学生的注意力和观察能力,为下一步学习营造一个轻松活跃的氛围。
二、探究新知。
(一):1.师:在我们在学习这个新的内容之前,我们首先来复习一下除法与分数的关系。学生回答教师板书:
被除数=课件出示:120÷30=(120×2)÷(30×2)=(120÷10)÷(30÷10)= 2.同学们说说这几道相等吗?(指名回答)。
3.教师引导说出商不变的性质,课件出示商不变的性质的定义。
设计意图:通过复习商不变的.性质,为下一步更容易的学习分数的基本性质打下基础。
(二)、教学新知。
1.师:请同学们拿出课前准备好的正方形纸,把手中的纸平均折成4份,其中把3份图上你喜欢的颜色。
2.学生操作,教师巡视并特别提醒学生注意“平均分”。
3.展示学生的作业。
4.师:现在请同学们把正方形纸平均分成8份,16份,分好之后你有什么发现?(指名回答)。
5.教师归纳总结,并课件出示:设计意图:同一张纸能平均分成不同的份数,拓展学生的思维能力。
6.引导学生观察:
观察它们的分子和分母是怎样变,学生观察,思考,交流后,教师集体指导观察,并板书:
教师归纳总结后,学生完成课本66页的填空题,完成后集体回答。
设计意图:学生通过动手操作发现一些表象,但这些表象还须上升为科学理论,这就需要学生能透过表象识别表现后蕴藏的规律,这才能知其然且知其所以然,便于以后举一反三,解决同类相关问题。
7.课件出示:(通知互相讨论)
(1)相比较,看看分子分母有什么变化?(2)在这个变化中,你们发现了什么规律。
8.教师引导学生说出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。(教师特别强调“同时”“同一个数”)。
9.教师提出疑问:为什么要0除外呢?学生回答,教师归纳:因为0和任何数相乘都得0,而分数的分母是不能为0的。
10.同学们,现在你们来看看分数的基本性质和你们以前学习过得商不变性质有什么不同呢?(课件出示两性质作对比)
师:分数的基本性质和商不变性质的规律是一致的。
三、巩固强化,拓展应用。
(1)课件出示:(集体回答)。
(2)指出下列分数是否相等。(指名回答)。
(3)把和化成分母是10而分数大小不变的分数。(指名到台上板演)。
(4)课件出示小故事。
有位老爷爷把一块地分给三个儿子。老大分到了这块地的,老二分到了这块地的。老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。
你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?(让学生课后去思考)
设计意图:多样的练习可以让学生及时巩固所学知识,有调动了学习的积极性。
四、回顾总结,梳理新知。
同学们,你们对分数又有了哪些新的了解呢?板书设计:分数的基本性质数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。
教学反思:
1.创设情境,激发学生兴趣。出示孙悟空的照片激发学生的兴趣,吸引学生的注意力。
2.手脑并用,在操作中深入感知分数。请同学们用一张正方形纸片,动手折一折,通过三次的对折,每次找出一个和相等的分数,比较涂色部分大小有没有变化?(没有)。那么得到了什么结论?教师引导学生观察分子,分母的变化,经历总结得出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。学生对此进行巩固后,再引导学生说出:0除外。学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。
3.巩固练习,围绕中心。在设计练习的过程中,采取多种形式呈现,使学生加深对分数基本性质的理解,激发了学生学习的兴趣,使每个学生都能理解所学知识,学有所获,并进一步学习约分和通分打下了良好的基础。
五年级数学教案3
分数除法同分数乘法一样,都是小学阶段重要的数学内容,从过去的教学实践来看,这部分知识历来是学生数学学习的难点。原《大纲》的要求是:理解分数除法的意义;掌握分数除法计算法则;会计算分数除法;会口算简单的分数除法;会进行分数四则混合运算(不超过三步);会解答分数应用题(最多不超过两部)。《数学课程标准》关于分数除法的具体标准是:会进行分数除法运算和混合运算(以两步为主,不超过三步)。会解决有关分数的简单实际问题。《数学课程标准》与原《大纲》相比,分数除法计算方面的要求没有大的变化,只是把《大纲》中的混合运算的步数”不超过三步“改为”以两步为主,不超过三步“。变化较大的同分数乘法一样,仍然是淡化分数除法的意义,强调会进行分数除法计算和解决简单实际问题。本单元教材与传统教材相比,从编写思想、内容编排、教学方式等方面都有了较大的变化,主要有以下几个方面的特点:
一、结合具体情境理解分数除法的意义强化计算方法的掌握和应用。
从传统分数除法教材来看,主要有三个重点。第一,分数除法的意义;第二,分数除法法则。即:一个数除以分数,等于这个数乘以分数的倒数。第三,用方程或算术两种方法解决分数除法问题。从知识的建构上看,学生学习整数除法时对除法就是”平均分“已经非常熟悉,而现实生活中,又很难找到具体的事例来说明”一个数除以分数“的实际意义。所以,传统教材中选用”已知两个因数的积和其中一个因数,求另一个因数的运算“来说明分数除法的意义。这种乘除互逆关系是重要的数学结论,应该在学生乘除计算的知识背景下让学生认识。但是,现在用这个关系来定义分数除法意义的表述,对学生来说实在难于理解,再加上枯燥的看算式说意义的练习,使学生一开始接触分数除法就一头雾水。另外,这个分数除法的意义与”一个数除以分数,等于这个数乘以分数的倒数“这一分数除法的核心知识点又没有一点联系。所以,造成既增加学生的学习难度,又不利于学生掌握知识的情况。本着”降低难度,突出重点“的原则,本套教材首先不安排分数除法意义的内容。而是利用学生已有的整数除法意义的知识,通过现实的,学生能理解的具体事例,学习除法计算。明白为什么用除法?为什么这样算?如,为了解决”一个数除以分数,等于这个数乘分数的倒数“这一分数除法的核心知识点。教材首先安排了三组整数除法和分数乘法相对应口算练习,通过观察计算结果和算式的特点,让学生发现”甲数÷乙数=甲数×乙数的倒数“的规律。然后,选择学生生活中的现实问题,妈妈买来1/2张饼,把它平均分成3份,每份是整张大饼的几分之几?解决这个问题,学生自己的知识和经验是把半张饼平均分成3份,列式是÷3。甲数÷乙数=甲数×乙数的倒数以及3的倒数是。在解决问题的过程中,借助直观图,把学生已有的知识和经验整合在一起,生成新的数学知识,分析除以一个数(0除外)等于分数乘这个数的倒数。这样设计分数除法法则的学习,首先删去了学生难于理解的计算方法推导的过程,另外,由整数除法和分数乘法的规律迁移到分数除法,是一个计算方法验证过程,也是计算方法形成和巩固的过程。在这里,删去的是次要的、过高的要求,强化的.是学生扎扎实实进行分数除法计算最基本、最有价值的内容。同时,培养了学生自主建构知识的能力。
二、渗透数学建模思想,强化用方程解答分数除法问题。
从过去的经验看,分数除法应用问题的特点是”已知部分和所对应的分率,求整体“。实事求是地讲,这样的应用问题都是已发生的事物,是经过人为”加工“、”编造“的应用问题。这样的问题解决虽然在现实生活中应用较少,但在传统教材和教学中,一直是教材内容的重点和教学评价选题的焦点。众所周知,在很长时期内,分数除法问题要求用算术方法和方程两种方法解答,而用算术方法解答无论如何也找不到学生能够理解的、能够说明并理解数量关系的问题情境。所以,人们就用”已知部分和所对应的分率,求整体,用除法“的解题套路来解决问题。这样的学习,不利于学生理解问题中的数量关系,没有思维的条理性训练,有的只是死记硬背和机械的模仿训练。本教材有关分数除法问题的解决只采用列方程解答。这样设计的思考有以下几点:第一,有利于学生应用已有知识解决问题。即:把单位”1“看作χ,根据”求一个数的几分之几是多少,用乘法“找到题中的等量关系。第二,渗透数学建模的思想。方程是现实运算的一个有效的数学模型。结合分数除法问题的解决,通过一些典型事例,让学生经历分析问题(找等量关系)--列出方程表示--解方程等过程。这是《数学课程标准》提倡的数学建模思想的具体体现。
三、借助线段图分析数量关系,发挥其工具性。
线段图作为小学阶段数形结合,分析数量关系的工具,历来成为小学数学中的重要内容。传统教材和教学中,人们在关注用线段直观描述数量关系的同时,也把用线段图表示数量关系作为一般要求。即,把画线段表示题中的数量关系作为学习要求,增加了学习的难度。本套教材,只发挥线段图的工具性。即:借助线段图分析数量关系,不把画线段图表示数量关系作为学习要求。通过线段图来分析问题中的数学信息和数量关系,从而找出问题中隐含的等量关系。让学生在自主解决问题中,体会画图分析问题、解决问题的优越性和工具性。
本单元共安排5课时。主要内容包括:分数除以整数;一个数除以分数;简单的应用问题;混合运算。
本单元的教育目标是:
1、会进行简单的分数除法以及分数四则混合运算,能用方程解决有关分数除法的简单实际问题。
2、能借助线段图分析数量关系,在用方程解简单分数除法应用问题的过程中,能进行有条理的思考,并对结论的合理性作出有说服力的说明。
3、能够表达解决简单分数除法实际问题的过程,并尝试解释所得的结果。
4、体验画线段图分析问题的直观性和用方程解决问题时思维的条理性,认识到许多分数除法问题可以用方程的方法来解决。
●分数除法,安排4课时。
第1课时,分数除以整数。教材首先设计了三组有关系的口算题。如:20÷5,20×。通过计算20÷5=4,20×=4,发现它们的结果相同,进而得出:甲数÷乙数=甲数×乙数的倒数。接着,设计了”把张大饼平均分成3份,每份是这张大饼的几分之几?“的问题,探索分数除以整数的计算方法。教材以学生交流的形式呈现了学生计算和验证的过程。一是利用图示和已有的分数知识,推导出÷3==,二是直接利用发现的规律得出:÷3=×=。得到:分数除以一个数等于分数乘这个数的倒数。然后,在”试一试“,设计了分数除以整数的三道题,让学生应用上面的方法尝试计算。教学时,要给学生充分的口算和讨论规律的时间,然后,启发学生利用以前学过的除法的意义,倒数的知识,分数乘法的知识解决问题,说明结果的正确性。把分数除以整数计算方法的学习过程,变成知识扩展、方法验证的过程。
第2课时,一个数除以分数。教材贯彻在解决问题中学习计算的设计思路,选择了把消毒液分装在每瓶能装升的小瓶中的典型事例,设计了两个问题。(1)把2升消毒液分装在每瓶能装升的小瓶中,需要几个瓶子?学习整数除以分数的除法;(2)把升消毒液分装在每瓶能装升的小瓶中,需要几个瓶子?学习分数除以分数的计算方法。两个问题都呈现了算术和用方程解的两种方法。这节课的内容,计算方法是上节课的进一步拓展,根据题意列算式和方程是重点。教学中,首先要帮助学生理解题意,明白把2升消毒液倒入每瓶能装升的小瓶中,需要几个瓶子,就是求2升中有几个升。再鼓励学生用自己的方法试着解答。χ=2和χ=,除根据等式的基本性质解方程外,还可以利用倒数的知识,即两边直接乘的倒数来解决。如果学生只用方程两边同时除以的方法解答,教师就提出兔博士的问题”χ=2还可以怎样解?“启发学生用倒数的知识列方程χ×=2×解答。”试一试“中安排了三道除数是分数的式题,要给学生充分的试算和交流的时间,重点说一说自己是怎样想的。教师还可以引导学生讨论一下分数除以整数、分数除以分数有什么共同点,进一步巩固分数除法的计算方法。
第3课时,简单的已知一个数的几分之几是多少,求这个数的简单问题。教材选择了同学们开联欢会布置会场的事情,呈现了布置会场的情境图和”用的红气球占总数的“、”红气球有28个“等文字信息,以及”一共用了多少个气球?“的问题。通过兔博士的话,提出”把气球的总数看作单位‘1’,画出线段图分析一下的要求“,并呈现了线段图。教学时,要在学生了解数学信息和知道了要解决的问题后,师生共同画线段图来分析数量关系,找到等量关系式,再鼓励学生自己试着解答,并检验计算的结果。交流时,重点让学生说说是怎样想的、怎样解答的,用自己的方法解释计算结果的正确性。”试一试“中,安排了一个数的几分之几是两数和,求这个数的问题,鼓励学生画线段图并解答。
第4课时,稍复杂的”已知一个数的几分之几是多少,求这个数“的问题。教材首先选择了玩具厂计划生产碰碰车的事例,用图文结合的方式呈现了已经完成计划的,还要生产190辆等信息和”这批碰碰车有多少辆?“的问题。通过兔博士的话,提示画线段图来分析数量关系并呈现了完整的线段图。这是一道需要两步计算的分数除法的实际问题,可找到两组等量关系,列出两个方程解答。(1)计划生产的辆数-已经生产的辆数=还要生产的辆数,方程为:χ-χ=190。(2)计划生产的辆数×还剩下的几分之几(1-)=还要生产的辆数,方程为:χ(1-)=190。教学时,要充分利用线段图指导、帮助学生分析问题中的数学信息和数量关系,找到题中给出的等量关系,再鼓励学生用列方程的方法解答。
分数混合运算的顺序与整数一样,本节课的混合运算主要是根据分数除法的特点,解决运算过程中的方法问题。教材设计了三道分数混合运算式题,(1)题是除加混合运算,运算中要先算除法,并把除法变成乘除数的倒数。(2)题是乘除混合运算。运算时,把除法转化为乘除数的倒数后,可以有不同的约分方法。第一,直接在三个分数上约分;第二,把三个分数相乘写成分子乘分子,分母乘分母的式子,再约分。(3)是带小括号的除减混合运算。教学中,由于两步混合运算的顺序学生已经非常熟悉,所以,让学生说一说运算顺序,自己计算。在交流学生计算方法和结果的同时,掌握分数两步混合运算方法。
五年级数学教案4
活动目标
通过发豆芽活动,了解生活中的相关知识,运用多种途径查询和收集相关资料,并能运用数学的方法记录和描述豆芽的生长情况,培养同学们动手实践、分析问题以及解决问题的能力。
活动准备
教师收集相关资料,并先做一次实验。学生分组准备黄豆、绿豆各50g,以及发豆芽的器皿。
活动过程
一、提出问题,揭示课题?
1.师:同学们,你们知道豆芽的生长过程吗?你自己发过豆芽吗?
2.学生根据查询的资料和咨询科学教师得到的知识进行交流。
3.根据学生的交流,提出:我们也来试一试发豆芽。
揭示课题:发豆芽。
二、讨论交流,得出活动步骤
1.提问:发豆芽要做哪些准备?怎样记录发豆芽的过程呢?对最后的记录如何分析呢?
结合学生的交流,得出本次活动的主要步骤:调查与收集;发制与记录;整理与分析;推测与应用。
2.学生结合教材了解4个环节应该做什么,并在全班交流。
教师重点提问:发豆芽的`统计图画什么好?为什么?如何计算发豆芽的盈利情况?
三、学生分组活动
1.教师演示发豆芽的过程。
2.教师提出要求:
(1)发豆芽活动要做的事情比较多,我们要分组进行,每组5个人。
(2)为了方便观察与记录,我们都将豆芽统一放在教室里进行观察,每天每个组在固定时间进行浇水。
3.各组学生进行发豆芽实验。
时间大约是6天。教师对各组实验的情况进行适时的指导,对各组的记录进行及时督促与检查。各组在发豆芽完成后,及时进行数据分析,制作好相应的统计图表,写好分析总结。
四、小组交流,感受价值
交流发豆芽的具体做法和注意事项。
五、观察、记录、分析
1.观察豆芽的生长情况。(大约6天时间)
2.记录豆芽的生长情况。(每天进行记录)
3.把豆芽的生长情况制成统计图表。
4.分析统计图表,写好总结。
六、总结反思
小组结合统计图汇报豆芽生长情况,说说在发豆芽活动中的收获。
注:五、六两个教学过程在课外进行。
[简评:本课设计采取课内课外相结合的方式,突出发豆芽的相关资料收集,讨论发豆芽的活动步骤,对发豆芽活动进行分析、交流、评价。通过分组活动,培养学生的合作意识与能力;统一在教室进行,便于学生观察、比较、交流、互相激励。同时,把发豆芽活动的重点放在依据实验数据制作、分析统计图表上,以体现数学在生活中的价值,体现综合应用的数学味。]
五年级数学教案5
课题:研究长方体课型:新知探究课时:1课时
学习目标:
1、我能在认识长方体的基础上,掌握长方体的特征,并认识长方体的长、宽、高。
2、我能通过自主探究与合作交流,探索出长方体的具体特征,并能解决简单的实际问题。
3、我有信心学会本节所学内容,我一定能够获得成功。
重点:掌握长方体面、棱、顶点的特征和认识长方体的长、宽、高。
难点:形成长方体的概念,发展学生的空间观念。
学习过程
☆创设情景揭示课题
1、教师出示幻灯片,让同学们从长方体、长方形、正方形、三角形、球体、圆柱、圆等图形中,找出立体图形和平面图形,然后在立体图形中找出长方体。
2、孩子们,你能找出长方体吗?
☆学海探秘探究一:火眼金睛
1、长方体有()个面,每个面是()形。指一指哪些面是相同的?
2、长方体有()条棱,指一指哪些棱长度相等?
3、长方体有()个顶点。
4、你还能发现什么?
探究二:制作长方体框架图我发现
1、长方体的12条棱可以分为几组?
2、相交于同一顶点的三条棱长度相等吗?
探究三:借助“产品”我能认
1、相交于一个顶点的三条棱的长度分别叫做()、()和()。
2、我能指出长方体的长、宽、高。
☆走进知识大本营填一填
1、长方体有()个面,都是()形,特殊情况可能有一组相对的面是()形,相对的面的.面积()。
2、长方体有()条棱,相对的棱长度()。
3、长方体有()顶点。
4、相交于长方体一个顶点的三条棱的长度分别叫()、()和()
辨一辨
1、长方体的6个面不可能有正方形。()
2、长方体的12条棱中长宽高各有4条。()
3、一张长方形的纸是一个长方体。()
4决定长方体的大小是长、宽、高。()
☆拓展延伸:我能自己制作一个美观的长方体玩具箱。
☆谈收获、写反思(梳理成数学日记)
通过这节课的学习,你有哪些收获?还有哪些方面需要进一步的努力?
五年级数学教案6
教学理念:
让学生在广泛的探究时空中,在明主平等、轻松愉悦的氛围里,应用已有知识经验,通过自主预习、质疑问难、释疑解惑、合作交流,理解并掌握方程的意义,知道等式和方程、方程的解与解方程之间的关系,并能进行辨析,学会用方程表示简单情境中的等量关系,提高观察能力、分析能力和解决实际问题的能力。初步建立分类的思想,进一步感受数学与生活之间的密切联系。
教学过程:
一、课前探疑
学生课前认真预习课文内容,通过自主探究、合作交流,感知本课内容,提出疑难问题。
二、课始集疑
1、揭题
2、集疑:同学们课前都进行认真的预习,现在请同学们把预习中没有解决的、需要在本节课上请老师、同学们帮助解决的问题提出来。
过渡:刚才这些问题都提的非常好,我们这节课就重点解决这些问题。在解决这些问题之前,先请同学们认识一件物体。
三、课中释疑
<一>认识天平:课件出示天平,同学们说天平的作用、用法。
<二>认识等式
1、演示课件 写出式子
在左边放二个40克的物体,右边放一个50克的法码,这时天平怎么样?
你能用一个数学式子来表示这时候的现象吗? 40+50<100
再在左边放一个30克的物体,这时天平怎么样?
你能也用一个式子来表示这时候的现象吗? 40+50+30>100
把左边的一个30克的物体换成10克的,这时天平怎么样?
你能也用一个式子来表示这时候的现象吗? 40+50+10=100
再把左边的10克与50克的物体换成未知的,这时天平怎么样?
你能也用一个式子来表示这时候的现象吗? 40+X<100
再把左边的未知的物体换成另一个未知的,这时天平怎么样?
你能也用一个式子来表示这时候的'现象吗? 40+X=100
再把左边的物体换成二个未知的,右边另加上一个50克的砝码,这时天平怎么样?
你能也用一个式子来表示这时候的现象吗? X + X=150
2、分类
刚才我们写出了这么多的式子,大家能把这些式子按照一个统一的标准分类吗?请小组讨论按照什么样的标准分?并把分类结果写在卡片上。
展示同学们不同的分类,并说说你们是按照什么标准分的?
师:按照不同的标准分类,有不同的结果。刚才同学们的分类都是正确的,为了解决刚才同学们所提出的问题,我们今天就研究这一种分法。(分成等式与不等式两类的)
3、理解概念
师:为什么这么分?你们发现了这一类式子有什么特点? 左右两边相等
揭示:像这样表示左右两边相等的式子叫做等式。(板书:等式)
谁来举一些例子说说什么是等式?
五年级数学教案7
教学内容:数学第九册教材P27页例7和例8
教学要求:认识循环小数的特点,理解循环小数的意义,了解循环小数的简便计法。
教学重点:循环小数的特点
教学难点:理解循环小数的意义
教学过程:
一、导入并板书课题:循环小数
二、出示学习目标
认识循环小数的特点,理解循环小数的意义,了解循环小数的简便计法。
三、呈现自学指导(1):
1、认真看课本27页,观察400÷75的竖式计算,说说你的发现。
2、思考:这个竖式如果继续除下去,会是怎样的情况。你怎样表示出它们的商?
五分钟后,比一比看谁能做出类似的题目,并能说出自己的发现。
四、学生自学
1、学生看书,教师巡视,注意帮助学困生。
2、统计了解学生自学情况。
3、学情检测
(1)出示检测题:
计算后观察商的特点:
28÷18=78.6÷11=
5.7÷9=20÷3.7=
(2)请四名同学板演,其他同学自己做,做好后与板演的同学对比,找出不同。
五、后教
1、更正板演题
评思路、评方法、评步骤、评结果、评规范
2、讨论
(1)循环小数的特点:
(2)循环小数的意义:
3、训练:指出下列哪些是循环小数?
1.55…5.314162…
1.53533530.19292…
0.547754…16666
1.5353…0.6333…
5.405405…1.2108108…
六、出示自学指导(2):
认真看课本28页的“你知道吗?”
思考:
1、循环小数中,依次不断重复出现的数字叫什么?
2、数字上面的`小圆点叫什么?
3、像5.3…可以简写成多少?
4、7.14545…也可以简写成多少?
五分钟后,看谁说得准确,写得漂亮。
七、学生自学
1、学生看书,教师督促学生专心看书。
2、了解学习情况。
3、出示检测题:
用循环节表示出下列循环小数:
1.55…=0.19292…=
1.5353…=0.6333…=
5.405405…=1.2108108…=
指名板演,其他同学仔细观察,为评价作好准备。
八、评价板演题
看写得是否准确规范,学生评,师生评。
九、小结本节课内容,学生质疑
十、当堂训练:
1、必做题:
计算下面各题,除不尽的用循环小数的简写表示商,再保留两位小数写出它们的近似值。
(1)6.64÷3.3(2)2.29÷1.1
(3)4÷37(4)38.2÷2.7
2、选做题:
循环小数0.48536536……的小数部分第60位上的数是几?第100位上的数呢?
五年级数学教案8
教学内容:
1、认识负数:教材第1—6页例1—例4以及练习一
2、实践活动:面积是多少第10—11页
教学目标:
1、使学生在熟悉的生活情境中初步认识负数,知道负数和正数的读、写方法,知道0既不是正数也不是负数,正数都大于0,负数都小于0。
2、使学生初步学会用负数表示日常生活中的简单问题,体会数学与日常生活中的简单联系。
3、通过学生的实践操作,让学生初步体会化难为易、化繁为简的解决问题的策略,为后面学习多边形面积的计算做些准备。
教学重点:正数、负数的意义
教学难点:理解0既不是正数也不是负数
课时安排:3课时
(1)认识负数的意义
教学内容:p.1、2,完成第3页的练一练和练习一的第1~5题
教学目标:
1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。2、能用正负数描述现实生活中的现象,如温度、收支、海拔高度等具有相反意义的量。3、体验数学与日常生活密切相关,激发学生对数学的兴趣。
教学重点:在现实情境中理解正负数及零的意义。
教学难点:用正负数描述生活中的现象。
教学准备:温度计挂图等
教学过程:
一、谈话导入:
通过复习,你知道这节课要学什么么?(板书:负数)
说我们以前认识过哪些数?(自然数、小数、分数)
分别举例。指出:最常见的是自然数,小数有个特殊的标记“小数点”,分数有个特殊标记是“分数线”,你知道负数有什么特殊标记么?(负号,类似于减法)
二、学习例1:
1、你知道今天的最高温度么?你能在温度计上找到这个温度么?
介绍温度计:(1)℃、℉,我们中国人用摄氏度为单位,即℃;℉是华士度,是欧美国家用的。(2)以0为界,0上面的温度表示零上,0下面的温度表示零下。(3)刻度。要注意一大格、一小格分别表示多少度?
在温度计上找到表示35℃的刻度。
你知道什么时候是0℃吗?(水和冰的混合物)
你知道太仓一年中的最低温度么?(零下5度左右)你能在温度计上找到它吗?
分别写出这三个温度:0℃,为了强调这个温度在零上,35℃还可以写成+35℃,而这个零下5度,应该写成—5℃。
读一读:正35,负5
分别说说在这3个不同的温度你的感受。
2、完成试一试:
写出下面温度计上显示的气温各是多少摄氏度,并读一读。
对零下几度,可能学生会不能正确地看,注意指导。
3、完成第3页第2题的看图写一写,再读一读。
简单介绍有关赤道、北极、南极的知识。
4、完成第6页第4题:
先指名说说这三条鱼分别所处的地方,再选择合适的温度。也可选择几个让学生说说选择的理由。
5、读第7页第5题。,让学生说说体会。
6、完成第6题,分别在温度计上表示4个季节的温度。加强指导与检查。
三、学习例2:
1、出示例2图片,介绍“海平面”“海拔”的基本知识。
让学生指一指珠穆朗玛峰的高度是从哪里到哪里。补充:最新的测量,这个数据有所变化,有兴趣的同学可以查一查。
再指一指吐鲁番盆地的海拔。
指出:这两个地方,一个是高于海平面的,可以用“+8848米”来表示,另一个是低于海平面的,可以用“-155米”表示。
用你自己的理解来说说这样记录有什么好处?
2、完成第6页第1题:用正数或负数表示下面的海拔高度。
读一读第2题的海拔高度,它们是高于海平面还是低于海平面。
三、认识正负数的意义:
1、像温度在零上和零下或是海拔是高于和低于海平面可以用正数和负数来表示。
黑板上这些数,哪些是正数?哪些是负数?
你能用自己的话来说说怎样的数是正数?怎样的数是负数?
0呢?为什么?
2、完成第3页第1题,先读一读,再把这些数填入相应的圈内。
3、完成第6页第3题:分别写出5个正数和5个负数。
四、全课小结:(略)
(2)认识负数的应用
教学内容:p.3、4的例3、例4,完成第5页的练一练和练习一的第7~10题
教学目标:
1、使学生在盈与亏、收与支、升与降、增与减以及朝两个相反方向运动等现实的情境中应用负数,进一步理解负数的意义。
2、体验数学与日常生活密切两观,激发学生对数学的兴趣。
教学重点:应用正数和负数表示日常生活中具有相反意义的数量。
教学难点:体会两种具有相反意义的数量。
教学准备:直尺等
教学过程:
一、谈话导入:
上节课我们认识了负数,请你用自己的话书说怎样的数是负数?
正和负是一对反义词,生活中也有很多正好相反的变化,它们也可以分别用正负数来表示。
学生举例(可能有的情况):
1、收入和支出:如果老师上个月的10日拿到1500元工资,为了强调“收入”,我可以这么记“+1500”,买衣服花了300元,可以怎么记?为什么?吃饭花了500元,怎么记?……
2、转入与转出:这个新学期,我们班转出1人,转进3人,怎么表示?
3、上车与下车:(第10题),依次写出每一站的情况,让学生说说每一站是什么意思?特别是“0”;还可以结合某一站,让学生说说“—3,+8”其实人数有什么变化?……
4、上楼与下楼:……
补充楼层,第下室的`表示方法等。补充:楼房有正的几楼,也有可能会有负的几楼,会不会有0楼?为什么?
5、向东走、向右走:常见的方向有4个,东和西是相反的方向,南和被也是一对相反的方向。如果把想东走5米,记作+5米,那么向西走10米,可以怎么记?你是怎么想的?+10米表示什么呢?为什么?
如果+10表示的是向南走10米,那么,—10米表示什么?你是怎么想的?
比较这个话题与前面话题的不同:前面的正负数一般都有增加或是减少的意思,而这个正负数,只表示相反的意思。……
小结:生活中很多具有相反的意思可以分别用正负数表示。
二、学生自学课本,把书上有关的练习完成,并可与同桌交流。
老师选巡视中发现问题较多的题全班交流。
(3)实践活动面积是多少
教学内容:p.10~11
教学目标:
1、复习面积的意义、常用的面积单位、长方形和正方形的面积计算公式,初步建立图形的等积变形思想。
2、让学生体会转化、估计等解决问题的策略,为教学平行四边形等图形的面积计算做比较充分的知识准备和思想准备。
3、体验数学与生活的练习和数学的实用价值。
教学重点、难点:对图形进行分解与组合、分割与移拼的转化方法。
教学准备:学生课前剪好图上的三个不规则图形
教学过程:
一、复习面积:
你知道这节课学什么么?我们以前学过哪几种图形的面积?
板书:长方形面积=长×宽
正方形面积=边长×边长
二、分一分、数一数:
1、取图1,问:它是长方形或正方形吗?像这样的图形,我们可以把它叫做不规则图形。
1小格表示1平方厘米,你知道它的面积是多少么?
方法一:数方格。一起数一数,数得74格
方法二:分割法。指名折一折,并指出所折出的形状。注意有两种折法。
折好之后,在每一块长方形上写出求面积的算式。最后再相加求得总面积。
比较两种方法求的结果。
用类似的方法求出图2的面积。学生完成后交流。
小结:复杂的图形,可以分割成几个长方形或正方形,分别求出面积后再求出总面积。
2、移一移,数一数:
取图3,交流数的方法:说说在数格子的时候你遇到了什么困难?是怎么解决的?最后结果是多少?
观察后说说你能把它变成长方形吗?
剪一剪、拼一拼。你能算出这个拼成的长方形的面积是多少吗?
3、数一数,算一算:
(1)、出示池塘图。观察该池塘边的特点,说说你想怎么求它的面积?有什么困难?有什么好办法吗?
方法:先数整格,可以按顺序标出数字;再把不满整格的当作半格数,最后再相加。
学生数,数完后交流结果。发现会有一定的误差。
指出:由曲线围成的图形,在求其面积的时候会出现一定的误差,这是很正常的。
(2)、观察树叶图,它有什么特点?你能利用它的特点来更方便地数面积吗?
学生数完后再校对答案。
4、估一估,算一算。
在第126页上的方格纸上,描画出自己的左手,然后再用刚才的方法估算出自己手掌的面积。
交流,得到:通常我们学生的手掌面积是80多到90多平方厘米。
三、全课小结:
现在你知道怎么求一些较复杂图形的面积了么?
五年级数学教案9
教学内容:
观察物体
教学目标:
1、让学生经历观察的过程,认识到从不同的位置观察物体,所看到的形状是不同的。能辨认从正面、左面、上面观察到的简单物体的形状。
2、培养学生从不同角度观察,分析事物的能力。
3、培养学生构建简单的'空间想象力。
重点:
帮助学生构建初步的空间想象力。
难点:
帮助学生构建初步的空间想象力。
教学过程:
一、谜语导入
请同学们猜谜语:“左一片、右一片,摸得着,看不见,是什么呢?”(耳朵)为什么能看见别人的耳朵,却看不见自己的耳朵呢?因为我们观察的角度不一样,那么今天我们就一起来进一步研究观察物体(板书)
二、合作探究
(一)整体观察
1、教师将一个对面涂有相同颜色的长方体举起静止不动,叫学生观察并提问:
你观察到的正方体是什么样的?
在你的位置上观察,你看到了哪几个面?
2、学生汇报交流。
学生自由走动,观察。汇报交流。
3、解释应用
教师出示两个正方体的立体图,一个有虚线,另一个没有。
提问:谁能用刚学到的知识解释一下正方体为什么这样画?
学生解释说明。
(二)分别从三个面进行观察(出示例1)
1、教师提问:我们分别从几个不同的方向去观察这个图形,看看它的正面、左面以及上面分别是什么形状的图形,把它们分别划出来。
学生离开座位自由观察。
2、小组之间相互交流,然后全班交流,学生以组为单位在投影以上展示交流。
总结学生的发言:从不同的方向观察,所看到的形状是不一样的。
三、拓展应用
1。做教科书例2
2、智力游戏:两个同学为一组做游戏,一个同学画,另一个同学猜,负责猜的同学要想办法通过你提问的问题确定这个物体是什么,猜完后,在把物体拿出来验证一下,看是否猜对了。
学生玩游戏,教师指导。
四、总结
本节课你学会了什么?
五、作业布置
兴趣探索,根据以下几幅图找出1的对面是几,2的对面是几,3的对面是几。
1、不同角度观察一个物体,看到的面都是两个或三个相邻的面,不可能一次看到长方体或正方体相对的面。
2、从一个面看到物体的形状,可以有多种不同的摆放方式。
3、知道从两个面看到的物体的形状,可以确定小立方体的个数范围。
五年级数学教案10
教学目标:
1、通过复习,使学生能够运用所学知识,采用列方程的方法解答应用题。
2、让学生独立思考,合作交流,确定等量关系,正确用方程解答应用题
3、培养学生利用恰当的方法解决实际问题的能力。
教学重点:
通过复习,使学生弄请已知量与未知量的联系,找出题目中的等量关系。
教学难点:
通过复习,使学生能够准确的找出题目中的等量关系。
教学过程:
一、复习准备。(P107)
1、找出下列应用题的等量关系。
①男生人数是女生人数的2倍。
②梨树比苹果树的3倍少15棵。
③做8件大人衣服和10件儿童衣服共用布31.2米。
④把两根同样的铁丝分别围成长方形和正方形。
(学生回答后教师点评小结)
我们今天就复习运用题目中的等量关系解题。(板书:列方程解应用题)
二、新授内容
1、教学例题
(1)、一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站,经过4小时相遇,甲乙两站的铁路长多少千米?
①、读题,学生试做。
②、学生汇报(可能情况)
(90+75)×4
提问:90+75求得是什么问题?再乘4求的是什么?
90×4+75×4
提问:90×4与75×4分别表示的是什么问题?
(由学生计算出甲乙两站的'铁路长多少千米。)
(2)、甲乙两站之间的铁路长660千米,一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站。经过多少小时相遇?
(先用算术方法解,再用方程解)
①、660÷(90+75)=?
②、方程
解:设经过x小时相遇,
(90+75)×x =660或者,90×x +75×x =660
让学生说出等量关系和解题的思路
教师小结(略)
(3)、甲乙两站之间的铁路长660千米。一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车从乙站开往甲站,经过4小时相遇。货车每小时行多少千米?
(先用算术方法解,再用方程解)
①、(660—90×4)÷4=?
②、方程
解:设货车每小时行x千米
90×4+ 4x = 660或者(90 + x)×4 = 660
让学生说出等量关系和解题的思路
2、教师小结(略)
让学生比较上面三道应用题,它们有什么联系和区别?
比较用方程解和用算术方法解,有什么不同?
教师提问:这两道题有什么联系?有什么区别?
三、巩固反馈。(P109———1题)
1、根据题意把方程补充完整。
(1)张华借来一本116页的科幻小说,他每天看x页,看了7天后,还剩53页没有看。
_____________=53
_____________=116
(2)妈妈买来3米花布,每米9。6元,又买来x千克毛线,每千克73.80元。一共用去139.5元。
_____________=139.5
_____________=9.6×3
(3)电工班架设一条全长x米长的输电线路,上午3小时架设了全长的21%,下午用同样的工效工作1小时,架设了280米。
_____________=280×3
2、(P110————4题)解应用题。
东乡农业机械厂有39吨煤,已经烧了16天,平均每天烧煤1.2吨。剩下的煤如果每天烧1.1吨,还可以烧多少天?
小结:根据同学们的不同方法,我们需要具体问题具体分析,用哪种方法简便就用哪种方法。
3、思考题。
甲乙两个港相距480千米,上午10时一艘货船从甲港开往乙港,下午2时一艘客船从乙港开往甲港。客船开出12小时后与货船相遇。如果货船每小时行15千米。客船每小时行多少千米?
四、课堂总结。
通过今天的复习,你有什么收获?
五、课后作业。
(P110———5题)不抄题,只写题号。
板书设计:
列方程解应用题
等量关系具体问题具体分析
例3:一列火车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站,经过4小时相遇,甲乙两站的铁路长多少千米。
五年级数学教案11
一、创设情境
(1)展示主题图
(2)让学生说出从图中获取的主要信息
(3)揭示课题
二、师生共同探究新知
(一)再创情境,探案例1
1、中秋期间,我们的传统习俗是合家分享一块大月饼,喻示合家和美,团圆之意。小华一家也不例外。(示图)
他告诉我们什么?我分得这个月饼的1/4
谁能告诉大家,这里的1/4是把()看作一个整体呢??
2、小红家买的是盒装月饼,每盒8个,她说:我分得这盒月饼的1/4。谁知道小红所说的'1/4是把什么看作一个整体呢?
分析一下他俩得到的月饼,你们发现了什么现象?有什么问题吗? 小组交流,再全班反馈
(二):教学单位“1”、分数意义和分数单位
1、关于单位“1”
学生小组交流“议一议”
师让学生小组“议一议”的3个情境,全班反馈(师对应板书)
归纳:一个物体或是由许多物体组成一个整体,通常把它叫做单位“1” 观察板书内容,体会这里单位1的量,及其所表示量的对应的分数的实际意义。(可以同桌交流)
2、关于分数的意义
理解了什么是单位1的量,我们进一步认识分数的意义
学生活动:(小组合作)拿出一些小棒,把它看作单位1
使它能平均分成5份,6份??
情况反馈
归纳分数的意义:让学生用自己的话先说,再对照书上的概念进行巩固。同时板书:分数
说一说,议一议,上面分数的实际意义
课堂活动:说一说生活中的分数;画一画(书上的第2题)
3、关于分数单位的认识
把单位“1”平均分成若干份,表示这样一份的数,又叫做这个分数的单位。 让学和举例说一说:
再议一议:分数单位与分数什么有关系?(分母)
三、全课总结
1、反思与质疑
本课我们研究了哪些方面的新内容,说说自己的理解。再针对主题图的情境试述其中各分数的实际意义。
2、还有什么疑惑的,或者有什么不同的想法?
师生共同梳理
单位“1”——分数——分数单位
四、布置作业
课本第25~26页1、2、3题
分数
单位“1”:??
分数的意义:??
分数单位:??
单位“1”——分数——分数单位
五年级数学教案12
教学目标:
1、使学生能根据要求正确地运用“四舍五入”法求一个小数的近似数。
2、能正确的按需要用“四舍五入”法保留一定的小数数位。
3、会把较大的整整改写成以“万”或“亿”作单位的小数,再求近似值。
教学重点:
求一个小数的近似数及把较大的数改写成以“万”或“亿”作单位的小数。
教学难点:
使学生能够区别求近似数与改写求准确数的方法。
教具准备:
多媒体课件。
教学过程:
一、情境导入
师:我们学过求一个整数的近似数。在实际应用小数时,往往也没有必要说出它的准确数,只要它.的近似数就可以了。如在商店买菜时,电子秤上显示总价是7.53元,而营业员只收我们7元5角。平常不需要说得那么精确,只要知道它的近似数即可,那么如何求一个小数的近似数呢?今天我们就来学习这一内容。(板书课题川、数的近似数) 。
二、自主控究
1.求一个小数的近似数。
(课件出示豆豆测量身高的情景图)
师:读情景.图,你能找出已知信息和所求的问题吗? .
生1:要解决的问题是如何得出豆豆身高的近似数。
生2:已知信息是豆豆的身高是0.984m,亮亮说:“豆豆身高约是0.98m。”红红说:“豆豆身高约1m”。
师:对于上面的已知信息,你是怎样理解的?
生b“豆豆的身高是O.984m”,这里的0.984m,是测量时精确到毫米得到的。
生2:“豆豆高约0.98m”,这里的0.98是精确到厘米得到的。
生3:“豆豆高约1m”,这里的l是精确到米得到的。
师:为什么会出现上面不同韵结果呢?
生:0.98和1都是0.984按不同要求取的近似数。
师:取一个整数的近似数用到的方法是什么?
生:我们取一个整数的`近似数时,用到的方法是“四舍五入”法。
师:对,“四舍五入”的方法同样适用于小数取近似数。
师:下面同学们以小组为单位,讨论一下,0.984m是如何得到0.98的?
(小组讨论,全班交流)
生:“豆豆高约是0.98m”,这里的0.98m是把豆豆身高0.984m保留两位小数得到酌结果。
师:它是如何取的两位小数?
生:按要求把一个小数保留两位小数时,一般要看到千分位,如果千分位上的数大于或等于5就要向百分位进1,如果千分位上的数小于5,就舍去。
0.984≈O.98(保留两位小数),因为千分位上的4小于5,所以舍去。
师:“豆豆高约lm”,这里的lm是把0.984m保留整数得到的结果。一个小数怎样才能保留整数呢?
生:一个小数,如果保留整数,就要看这个小数的十分位,然后按照“四舍五入”法取近似值,0.984m-≈lm。
师:如果0.984m保留一位小数,结果又是什么呢?
生:把0.984m保留一位小数,就要看到百分位,百分位上是8,大于5,就要向十分位进1,十分位上是9,9+1=10,接着向个位进1,个位上0+1=1,所以0.984m保留一位小数是1.0m。
0.984≈1.0(保留一位小数),百分位上8大于5,向前一位迸1。
师:后面的0可以省略不写吗? ,
生:不能,因为要是省略就变成精确到整数部分的个位了。
2、把较大的整数改写成以“万”或“亿”作单位的小数。
师:读图,你能读出什么信息?
生:地球与月球的距离是384400km。
师:384400km,数据比较大,书写起来也不方面,你能把它改成以“万”为单位的数吗?
(小组讨论,全班交流)
生:改写成“万”作单位的数,就是把这个数缩小到原数的1/10000,也就是把小数点向左移动四位,然后点上小数点。
师:你会表示吗?
生:384400km=38.44km
师:上面的改写方法正确吗?
生:不正确,因为384400和38.44根本就不相等。
师:那怎么办呢?谁有办法解决这个问题?
生:在38.44的后面加上一个“万”字即可,因为把384400变为38.44缩小到了原数的而1/10000。
师:好,上面的这一过程可以表示为384400千米=38.44万千米。
师生共同总结:小数点向左移动四位,在万位的右边点上小数点,在数的后面加上“万”字。
师:读情景图,你发现了哪些数学信息?
生1:已知木星距离太阳778330000km。
生2:所要解答的问题是木星离太阳的距离是多少亿千米?(保留一位小数)
师:这个问题和上面的问题有哪些相同和不同的地方?
生:上面是把一个数改写成用“万”作单位的数,这个问题是把一个数改写成用“亿”作单位的数,并且还要求保留一位小数。
师:把一个数改写成用“亿”作单位和改写成用“万”作单位有什么相同之处?
生:都是把大数改写成一个用小数表示的数,所以都应该是把小数点向左移动。
师:改成以“万”为单位的数,小数点向左移动四位,那么改成以“亿”为单位的数,小数点向左移动几位呢?
生:应该是八位,然后加“亿”字。
师:好!同学们真聪明,用自己的思维,类推了把一个数改成用“亿”作单位的数。你能写出改写过程吗?
(学生独立尝试,全班投影展示)
778330000千米=7.7833亿千米
师生总结方法:小数点向左移动八位,在亿位的右边,点上小数点,在数的后面加上“亿”字。
师;如果保留一位小数,你会吗?
生:7.7833亿千米≈7.8亿千米
三、控究结果汇报
师:用“四舍五入”法,求一个数的近似数时,有哪些需要注意的地方?
(小组讨论,汇报交流).
生:用“四舍五入”法求一个小数的近似数时,保留整数,表示精确到个位,看到十分位;保留一位小数,表示精确到十分位,要看到百分位;保留两位小数,表示精确到百分位,要看到千分位……
师:表示近似数时,小数末尾的0怎么办呢?
生:表示近似数时,小数末尾的0是不能省略的。
师:如何把一个较大的数改成以“万”或者“亿”为单位的数?
(小组讨论,全班交流)
师生总结:把一个大数改写成以“万”为单位的数时小数点向左移动四位,加上“万”字。把一个大数改写成以“亿”为单位的数时小数点向左移动八位,加上“亿”字。
师:改写时,需要注意什么?
生:在改写的过程中,不要把单位“万”“亿”丢掉。
四、师生总结收获
师:同学们,通过本节课的学习,你有哪些收获?
生1:求小数的近似数的方法和求整数的近似数的方法类似,都是采用“四舍五入”法。
生2:把大数改写成用“万”或“亿”作单位的数,写起数来就简单多了,这体现了数学的简洁思想。
师:小数的近似数在我们的生活中应用非常广泛,我们的身边就有很多类似的数,你们课下去找一找,看看它们都存在于我们生活中的哪些地方。让我们在发现中学习数学,体会数学与我们的密切联系,做生活中的有心人!
【设计意图:在教学过程中,学生能够在知识、能力、数学思想方法以及学习方法上有所收获】
板字设计:
例1:0.984保留两位小数 0.984保留一位小数 0.984保留整数
0.984≈0.98 0.984≈1.0 0.984≈1
↑ ↑ ↑
小于5,舍去 大于5,向前一位进1 大于5,向前一位进1
例2 例3
142800千米=14.28万千米 778330000=7.7833亿千米≈7.8亿千米↑
五年级数学教案13
教学目标:
1.掌握小数加减法的计算方法,并能用于解决生活中的一些实际问题。
2.通过自主探究、合作交流,经历探索小数加减法计算方法的全过程,理解算理,体会小数加减法与整数加减法的联系,发展运算、分析、推理能力,积累解决问题的经验。
3.加强数学知识与日常生活的联系,激发学习兴趣,培养与他人合作的意识,逐步养成独立思考、细心计算的良好习惯。
教学重点:
掌握小数加减法的计算方法。
教学难点:
理解相同数位上的数才能直接相加减的算理。
本节课关键性问题:
1、如何引导学生发现只有相同数位上的数才能直接相加的原因。
2、如何引导学生将小数加减法与整数加减法进行联系沟通。
教学准备:
课件、学习单、实物投影
过程设计教学过程:
一.错题引入
师:同学们,知道我们今天学什么?(出示课题)
师:之前我们已经学习了简单的小数加减法,所以昨天我做了一次课前调查,这是同学们列的两道竖式:
师:你认为哪道是对的?
师追问:为什么这个2不与5相加,而要与6相加呢?
设计意图:从学生的错例引入,激发孩子的求知欲,为自主探究作好铺垫。
二.小组合作,自主探究只有相同数位上的数才能直接相加的原因。
【关键问题1】如何引导学生发现只有相同数位上的`数才能直接相加的原因。
出示学习单
小组合作要求:
(1)组长合理分工,在最短时间内让组员将讨论结果内记录在学习单上。
(2)小组汇报时按顺序依次发言。
(3)其他组员可以进行补充和评价。
(预设生):百分位与百分位加,十分位与十分位加,个位与个位加。
(预设生):用计数器来表示算法的。
(预设生):2个一加3个一,6个0.1加2个0.1,5个0.01加0个0.01。
(预设生):用格子图来解释。
师:现在你知道为什么这个2不与这个5相加,而要与6相加了吗?
(预设生):2表示2个0.1,5表示5个0.01.(同时板书)他们的计数单位不同,不能直接相加。
师追问:现在你们知道为什么这个2不与5相加,而要与6相加吗?
小结:是的,只有相同数位的数才能相加,也就是计算小数加法的时候我们要做到相同数位对齐。(板书)
练习:判断一下下面哪道竖式是正确的?
师:你怎么这么快就判断出来啊!
(预设生):看看小数点对齐了没有。
小结:在计算小数加法时要把相同数位对齐只要把小数点对齐就可以了。
师:那么以后再算小数加法时我们要做到什么?
(预设生):计算小数加法时,小数点对齐,相同数位对齐,从低位算起。
设计意图:通过小组合作,生生交流,自主发现相同数位上的数才能直接相加,体验自主探究学习的快乐。
与整数加法进行比较
1.【关键问题2】如何引导学生将小数加减法与整数加减法进行联系沟通。
师:相同数位对齐你有没有觉得很熟悉?在哪里听过。
出示课件
小结:在做整数加减法的时候就是要把相同数位对齐才能相加减。原来小数加减法与整数的计算方法是一样的。
2.回到课前调查引出小数减法
师:看来同学们,小数加法的问题已经解决了,请再来看看课前调查中的那一道算式:
师:现在你知道哪道是正确的吗?为什么?
师:百分位上没有数怎么减?
师:计算小数减法时有什么好窍门?
小结:所以以后在计算小数加减法时相同数位对齐了,就与整数加减法的运算规则是一样的。
设计意图:通过对比整数加法的计算方法,把旧的知识经验迁移到小数加减法上,让学生独立解决小数减法的计算问题。
练习巩固
1.校对时借助课件用计数器演示退位过程。
设计意图:借助开小卡车,调节学习氛围,同时让学生巩固小数点对齐的重要性,通过演示计数器让学生形象地感知退位过程。
2.你觉得生活中有没有用到小数加减的地方?
师:这是小马虎的妈妈去超市购物的清单,可是清单的右下角被油渍弄脏了看不清了,你们能帮忙算一算吗?先估一估大约是几元?
设计意图:通过解决生活中的小数加减法问题,能让学生体会到学习计算的必要性,体会加减计算与生活的密切联系。
3.在方框上填上运算符号,然后添上小数点,使竖式成立。
设计意图:进一步让学生感知小数点对齐的本质就是让相同数位上的数相加减。
三、课堂总结
谈谈你的收获?
五年级数学教案14
学习目标
1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。
2、结合现实情景,体验数学与日常生活的密切联系,激发学生对数学的兴趣
学情分析重点、难点:
在现实情景中理解正负数及零的意义。
易混点、易错点:感受用正数和负数来表示一些相反意义的量
学生认知基础:生活中见到过负数。
时间分配学20讲10练10
教法学法
自主探索法,练习法,讲授法。
教学准备
第一课时
一、自学例1
1、通过查资料了解“℃”和“℉”的含义,并学会看温度计的方法。
2、从图中你能知道些什么?上海的气温和南京比,怎么样?北京的气温和南京比,怎么样?
3、上海和北京的气温一样吗?不一样在哪儿?
4、那你知道在数学上是怎样区分和表示这两个不同的温度的呢?
二、自学例2
1、了解海拔的意义。
2、思考从图上你知道了什么?
3、试着用今天所学的知识来表示这两个地方的海拔高度。
学生活动教师助学课后改进
第一课时
第一板块:学生汇报预习情况。第二板块:根据预习情况,学习例1
(1)交流“℃”和“℉”的含义,说明我国是用“℃”来计量温度的,并指导看温度计的方法。
(2)交流:从图中你能知道些什么?上海的气温和南京比,怎么样?北京的气温和南京比,怎么样?
(3)上海和北京的气温一样吗?不一样在哪儿?
(5)那你知道在数学上是怎样区分和表示这两个不同的温度的呢?(零上4摄氏度记作+4℃或4℃,零下4摄氏度﹣4℃)
第三板块:正数和负数的读、写方法。
根据课本要求,记住读写方法。
学生看温度计,选择合适的卡片表示各地气温。
第三板块:交流学习例2
交流:从图上你知道了什么?
交流:你能用今天所学的知识来表示这两个地方的海拔高度吗?
共同小结:以海平面为基准,比海平面高8844米,通常称为海拔8844.43米,可以计作+8844.43米;比海平面低155米,通常称为海拔负155米,可以计作﹣155米。
学生根据今天所学知识把这些数分类。
正数都大于0,负数都小于0。
先指名读一读,再用正数或负数表示图中数据。
先读一读,再说说这些海拔高度是高于海平面还是低于海平面。
一:教学例1
1.出示例1的三幅分别显示三个城市某一天最低气温的温度计图。
根据学生的预习,共同学习交流认识新知。
(4)上海的气温是零上4摄氏度,北京的气温是零下4摄氏度。以0摄氏度分界,一个在0摄氏度以上,一个在0摄氏度以下。一上一下,正好相反。
2.教学正数和负数的读、写方法。
“+4”读作正四,“+4”的正号也可以省略不写,直接把“+4”写成“4”。“﹣4”读作负四。
3.指导完成“试一试”。
(卡片上分别写有+11℃、﹣11℃、19℃、+19℃、﹣7℃、+7℃)
二:教学例2
1.师:同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。
2.出示例2中珠穆朗玛峰与吐鲁番盆地的海拔高度图。
三:初步归纳正数和负数。
⑴出示+4、﹣4、﹣7、﹣11 、19、+8844.43、﹣155这些数,提出要求:前面,我们用这些数来表示零上和零下的温度以及海平面以上和以下的高度。大家仔细观察这些数,你能将它们分分类吗?
⑵小结:像+4、19、+8844.43这样的数都是正数。像-4、﹣7、﹣11 、-155这样的数都是负数;而0既不是正数,也不是负数。
⑶提问:正数、负数和0比一比,它们的大小关系怎样?
四:练习
做“练一练”1,2题
2.做练习一第1题。
3.做练习一第2题。
4、练习一4、5、6题。
五:作业
练习一第3题。
交流认识新知。
正数和负数的读、写方法。
根据课本要求,记住读写方法。
交流:你能用今天所学的知识来表示这两个地方的海拔高度吗?
正数、负数和0比一比,它们的大小关系怎样?
正数都大于0,负数都小于0。
课后反思
得:
首先,对教材的编排作了重新的审视。在教材编排中,我们可以观察到,在学习负数的过程中,学生更多的是经历“具体情境中的数——解释数的意义”这样的过程。在教学中我设计了通过观察生活中的.盈亏、收支、增减及朝两个相反的方向运动中应用负数进一步理解负数的意义,明白用正负数可以表示一些具有相反意义的量,从而让学生体验负数产生的原因,接着引导学生列举生活中正负数应用的实例。
失:
《认识负数》单元的教学看似简单,教起来似乎觉得轻松,学生学习起来也看似轻松,可在解决实际问题的时候,却会发现有各种各样的问题出现。
由于正负数表示的是相反意义的量,如何帮助学生正确的解决实际生活情境下的正负数问题,这是值得我们在教学中进行思考的问题。由于问题的存在,不得不想一些办法去解决这样的问题。
五年级数学教案15
教学目标
1、使学生初步掌握的特征.
2、使学生知道奇数、偶数的概念.
教学重点
掌握的特征及奇数、偶数的概念.
教学难点
灵活运用的特征及奇数、偶数的概念进行综合判断.
教学步骤
一、铺垫孕伏(课件演示:)
1、我们已经掌握了约数、倍数的意义,谁能根据整除的意义判断这几个数能否被2或5整除?
8267 6972 1867 5625
2、导入 :你们通过笔算都能判断出哪个数能被2整除,哪个数能被5整除.想不想不用笔算就判断出一个数能否被2或5整除呢?这节课我们一起研究的特征.
3、反馈练习:大家检验具有这种特征的数是不是能被5整除.
4、判断:下面哪些数能被2整除?哪些能被5整除?
60、75、106、130、521
思考:哪些数既能被2整除又能被5整除呢?(60 130)
说一说你是怎样判断的?
能同时被2和5整除的数有什么特征?
总结:个位上是0的数既能被2整除又能被5整除.
三、全课小结
这节课你学到了哪些知识?的特征是今后学习通分、约分、分数运算的重要基础,希望同学们掌握并能灵活运用.
副标题#e#
四、随堂练习
1、下列数哪些是奇数,哪些是偶数?
52、77、 124、501、3170、4296、6003
2、按要求将下面的数分类.
47、75、96、100、135、246、369、718、900
(1)能被2整除的数:
(2)能被5整除的数:
(3)能同时被2和5整除的数:
3、判断.
(1)一个自然数不是奇数就是偶数.
(2)能被2除尽的数都是偶数.
(3)能同时被2、5整除的数个位上的数字一定是0.
4、填空.
(1)能被2整除的最小的三位数是,最大的`三位数是.
(2)能被5整除的最小两位数是,最大的两位数是.
5.选择题
(1)的数是偶数.
A.能被2除尽 B.能被2整除 C.个位上是0、2、4、6、8
(2)任何奇数加1后.
A.一定能被2整除 B.不能被2整除 C.无法判断
(3)一个奇数相邻的两个数 .
A.都是奇数 B. 都是偶数 C.一个是奇数,一个是偶数
(4)任何一个自然数都能被5.
A.整除 B.除尽 C.除不尽
(5)三个偶数的和.
A.一定是偶数 B.可能是偶数 C.可能是奇数
五、课后作业
用5、6、8排成一个三位数,使它是2的倍数;再排成一个三位数,使它是5的倍数.
各有几种排法?
六、板书设计
【五年级数学教案】相关文章:
五年级数学教案08-31
五年级数学教案01-13
五年级《分数的意义》数学教案08-29
五年级数学教案《小数》01-10
小学五年级数学教案08-25
小学五年级数学教案02-28
五年级数学教案设计10-22
五年级上册数学教案范文10-18
相遇问题的五年级数学教案01-22
五年级数学教案(精选10篇)12-26