五年级数学教案(通用15篇)
作为一名优秀的教育工作者,就难以避免地要准备教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。教案应该怎么写才好呢?下面是小编为大家整理的五年级数学教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
五年级数学教案1
教学目标
1.理解和掌握循环小数的概念.
2.掌握循环小数的计算方法.
教学重点
理解和掌握循环小数等概念.
教学难点
理解和掌握循环小数等概念.
教学过程
一、铺垫孕伏
(一)口算
0.8times;0.5= 4times;0.25= 1.6+0.38=
0.15divide;0.5= 1-0.75= 0.48+0.03=
(二)计算
21divide;3= 15divide;3= 12divide;3= 10divide;3=
教师提问:通过计算,你发现了什么?
二、探究新知
(一)教学例7
例7 10divide;3
1.列竖式计算
教师提问:你发现了什么?为什么?(教师用两种颜色的笔分别将商3和余数1描一遍)
使学生明确:因为余数重复出现1,所以商就重复出现3,总也除不尽.
所以10divide;3=3.33……
(二)教学例 8
例8 计算58.6divide;11
1.学生独立计算
2.因为余数重复出现数字3和8,所以商就重复出现数字2和7,
所以58.6divide;11=5.32727……
3.观察比较 10divide;3=3.33…… 58.6divide;11=5.32727……
教师提问:你有什么发现?
(小数部分有的数字重复出现;有一个数字、有两个数字重复出现;)
4.一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数.
教师板书:循环小数.像3.33……和5.32727……是循环小数.
5.简便写法
3.33……可以写作 ;
5.32727……可以写作
6.练习
把下面各数中的循环小数用括起来
1.5353…… 0.19292…… 8.4666……
(三)教学例9
例9 一辆汽车的油箱里原来有130千克汽油,行驶一段路程以后用去了 .大约用去了多少千克汽油?(保留两位小数)
1.学生独立列式计算
130divide;6=21.666……
asymp;21.67(十克)
答:小汽车大约装21.67千克汽油.
2.集体订正
重点强调:保留两位小数,只要除到小数点后第三位即可.
3.练习
计算下面各题,除不尽的先用循环小数表示所得的`商,再保留两位小数写出它的近似值.
28divide;18 2.29divide;1.1 153divide;7.2
(四)讨论:两个数相除,如果不能得到整数商,会有几种情况出现?
1.除到小数部分的某一位时,不再有余数,商里小数部分的位数是有限的也就是被除数能够被除数除尽.如3divide;2=1.5.小数部分的位数是有限的小数,叫做有限小数.
2.除到小数部分后,余数重复出现,商也不断重复出现,商里小数部分的位数是无限的如10divide;3=3.33……,小数部分的位数是无限的小数,叫做无限小数,循环小数是无限小数.
三、课堂练习
(一)计算下面各题,哪些商是循环小数?
5.7divide;9 14.2divide;11 5divide;8 10divide;7
(二)下面的循环小数,各保留三位小数写出它们的近似值.
1.29090…… 0.0183838……
0.4444…… 7.275275……
四、布置作业
(一)计算下面各题,除不尽的用循环小数表示商,再保留两位小数写出它们的近似值.
9.4divide;6 38.2divide;2.7 204divide;6.6 6.64divide;3.3
(二)一列火车从南京到上海运行305千米,用了3.5小时,平均每小时行多少千米?(保留两位小数)
五年级数学教案2
教学目标:
知识与技能:会解决同一天中,时和分、分和秒形式的两个时刻与时间(段)的计算问题。
过程与方法:引导学生用时间线段图和竖式解决同一天中,时和分、分和秒形式的两个时刻与时间(段)的计算问题。
情感与态度:在学习中使学生明白时间的宝贵,养成珍惜时间的好品质。
教学重点:
用时间线段图和竖式解决同一天中,时和分、分和秒形式的两个时刻与时间(段)的计算问题。(加法计算)
教学难点:
学生对于题意的理解。
教学过程:
一、导入阶段
出示
小丁丁和同学约好上午9时15分在动物园门口集合,小丁丁早晨7时48分出门,路上用了1小时23分。
(1)在这段文字叙述中你获得了哪些信息
上午9时15分在动物园门口集合;
早晨7时48分出门;
路上用了1小时23分。
(2)9时15分、7时48分、1小时23分各表示什么,有什么不同?
9时15分、7时48分表示时刻,是指某一事件发生的'时候。
1小时23分表示时间,是指某一事件经过了多久。
(3)出示问题“小丁丁几时几分到达动物园门口”这是求时间还是求时刻?
是求时刻
(4)今天我们就要来讨论关于时间的计算的问题。(出示课题)
[对于学生经常会混淆的“时间”“时刻”这2个数学用语进行简单的辨析。使学生在解决问题时能明确地知道是要求什么?]
二、中心阶段
1、请学生试着计算。
2、汇报
(1)画图
(2)竖式算
注意:这步计算,“分”的计算满60要向“时”进1,因为分与时之间的进率是60。
答:小丁丁9时11分到达动物园门口。
3、比较2种方法得出2种方法都很好,都很直观、很简洁。
4、小结
我们可以利用时间线段图和竖式来解决某一时刻经过多少时间会到哪一个时刻的计算问题。
三、练习阶段
7时50分+45分=()时()分
8时26分+2小时37分=()时()分
15分18秒+3分52秒=()分()秒
五年级数学教案3
课型:新授
教学内容:教材P5~6例3、例4及练习二第1、9题。
教学目标:
知识与技能:理解并掌握小数乘小数的计算方法,会正确进行笔算,并且会运用该知识解决一些实际问题。
过程与方法:在小组讨论中探究、发现、感悟小数乘小数的计算法则,提高计算能力。
情感、态度与价值观:渗透转化的数学思想,感受数学知识间的内在联系,培养科学、严谨的学习态度。
教学重点:在理解小数乘法和小数意义的基础上掌握计算方法。
教学难点:让学生自主探究小数乘法的计算方法并正确地进行笔算。
教学方法:观察、分析、比较。
教学准备:多媒体。
教学过程
一、复习引入
1.口算。0.7×5 9×0.8 1.2×6 0. 23×3 14×3 1.4×3
口算后提问:从14×3和1.4×3的口算中,你有什么发现?
2.列竖式计算。26×7 1.36×12 30.8×25
学生独立完成,指名板演,订正时让学生说一说计算的过程。
3.引入新课。我们已经掌握了小数乘整数的计算方法,那么小数乘小数又该怎样计算呢?这节课我们来探究这个问题。(板书课题:小数乘小数)
二、自主探究
1.创设情境,引入问题。出示教材第5页例3的'主题情境图。
师:观察图片,说说你发现了什么?(学校有一个长2.4米、宽0.8米的宣传栏。现在学校要给它刷油漆,一共需要多少千克油漆?)
师:给宣传栏刷油漆,一共需要多少千克油漆?该怎样计算呢?
全班交流,然后说出解决问题的方法。
师:我们该如何解决问题呢?
生:要算出一共需要多少千克油漆,需要先求出宣传栏的面积。
师:那么怎样求宣传栏的面积呢?如何列式呢?生:2.4×0.8
师:这个式子中,两个因数都是小数,该如何计算呢?
生1可以用竖式计算:×0.8
生2:也可以把它们可作整数来计算(下左)。
师:那么如何求一共需要多少油漆呢?
生:算式是1.92×0.9,可以仿照上面同样的方法计算。(上右)
所以一共需要1.728千克油漆。
师:同学们能说说我们在列竖式计算小数乘法时,要注意什么吗?
学生小组交流讨论,老师加以总结。
小结:所有小数右边的数一律对齐,其他小数位从右往左依次对齐。
师:看一看算式的两个因数中一共有几位小数?积呢?
生:两个因数中一共有2位小数,积也有2位小数。
2.探究小数乘法的计算方法。完成P6例4上面的填空。
(l)组织学生尝试完成教材第5页的“做一做”。
(2)学生独立计算后,指名板演并汇报自己是怎样计算的,然后集体订正。
(3)教学例4。 0.56×0.04
师:这个算式中的两个因数都是两位小数,通过列竖式计算,我们能发现一个问题,即这个算式中,乘得的积的小数位数不够,那么如何点小数点呢?
学生讨论,教师板书。
师:乘得的积的小数位数不够时,要在前面用0补足,再点小数点。
师:观察黑板上各题,小组讨论。(出示讨论提纲。)
讨论提纲:①小数乘小数,我们首先怎样想?
(把两个因数的小数点去掉,转化为整数乘法。)
②怎样得到正确的积?(因数扩大到它的几倍,积就缩小到它的几分之一。)
③积的小数位数和两个因数的小数位数有什么关系?能举例说明吗?
(教师以竖式中的因数的小数位数和积的小数位数为例,说明因数中一共有几位小数,积就有几位小数,积的小数位数不够时,要在前面用O补足。)
3.根据上面的分析,想想小数乘法是怎样计算的?
学生讨论后,教师组织学生交流,回答上面的问题,归纳出计算小数乘小数应该注意哪些问题。
生:小数乘小数,先按整数乘法计算,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。当积的小数位数不够时,要在前面用0补足,再点小数点。
教师引导学生讨论、归纳,进一步得出“1看、2算、3数、4点”。
三、巩固练习
1.不计算,说一说下列各题的积有几位小数。
2.3×0.4 0.08×0.9 7.3×0.06
9.1×0. 03 0.25×0.23 45.9×3.5
提问:怎样判断积有几位小数?
2.用竖式计算。(教材第6页“做一做”的第1题)
提问:你是怎样计算0.29×0.07的?
3.完成教材第6页“做一做”的第2题。先由学生独立完成,然后集体订正。
师:分别比较积和第一个因数的大小,你能发现什么?小组交流讨论,教师总结。
师:一个数(0除外)乘大于1的数,积比原来的数大。
一个数(O除外)乘小于1的数,积比原来的数小。
四、课堂小结
师:请同学们想一想,我们今天学到了哪些知识?你有什么收获?在计算小数乘法时应注意什么?(学生发言,说说自己的收获,并回答问题,教师予以点评。)
作业:教材第8~10页练习二第1、9题。
板书设计:
小数乘小数
2.4×0.8=1.92 0.56×0.04=0.0224
1看、2算、3数、4点
五年级数学教案4
教学内容:
教材第xx页的内容及第xx页练习的第x题。
教学目标:
1.理解两个数的公倍数和最小公倍数的意义。
2.通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实生活中的应用。
3.培养学生抽象、概括的能力。
教学重点:
理解两个数的公倍数和最小公倍数的意义。
教学难点:
自主探索并总结找最小公倍数的方法。
教学具准备:
多媒体课件,学生操作用长方形纸片(长3Cm,宽2Cm)与方格纸。
教学方法:
小组合作谈话法。
教学过程:
一、创设情景,生成问题:
前面,我们通过研究两个数的因数,掌握了公因数和最大公因数的知识。今天,我们来研究两个数的倍数。
二、探索交流,解决问题
1.在数轴上标出4、6的倍数所在的'点
拿出老师课前发的画有两条直线的纸。
在第一条直线上找出4的倍数所在的点,画上黑点。在第二条直线上找出6的倍数所在的点,圈上小圆圈。
2.引入公倍数
(1)学生汇报,多媒体课件出现两条数轴,并根据学生报的数,仿效出现黑点和小圆圈。
(2)观察:从4和6的倍数中你发现了什么?
(3)学生回答后,多媒体课件演示两条数轴合并在一起,闪现12和21。
(4)我们发现:有些数既是4的倍数,又是6的倍数,如果让你给这些数起个名,把它们叫做4和6的什么数呢?(板书:公倍数)
说说看,什么叫两个数的公倍数?
3.用集合图表示
如果让你把4的倍数、6的倍数、4和6的公倍数填在下面的图中,你会填吗?试试看。同桌两人可以讨论一下。
4.引人最小公倍数
学生汇报后问:
(1)为什么三个部分里都要添上省略号?
(2)4和6的公倍数还有哪些?有没有最大公倍数?
(3)有没有最小公倍数?4和6的最小公倍数是几?(板书:最小公倍数)
4的倍数6的倍数
4,8,
16,20,
12,24,
4和6的公倍数:
五年级数学教案5
教学内容:分数与除法
教学目标:
1、使学生理解、掌握分数与除法的关系,并能用分数表示两个整数相除的商。
2、运用分数与除法的关系,探索假分数与带分数的互化方法。
3、培养学生动手操作、观察、比较和归纳的能力。
4、培养学生团结合作、关心他人、先人后己等优良品质。
教学重点:理解、掌握分数与除法的关系。
教学难点:理解分数商a/b(b≠0)的意义。
教学具准备:教学课件及3张完全相同的圆和剪刀。
教学过程:
一、设置疑问,揭示课题
1、请同学们计算下面各题,你能把商分为哪几类?
36÷6 = 6 4÷5=0.8 80÷5=16
3÷7= 5÷10=0.5 4÷9=
然后引导学生归纳分类:
36÷6 = 6和80÷5=16的商为整数;
4÷5=0.8和5÷10=0.5的商为有限小数;
3÷7=和4÷9=的商为循环小数。
2、师指出:两个自然数相除,不能整除的时候,它们的商可以用分数来表示。今天我们就来学习这部分内容:分数与除法(板书:分数与除法)
二、创设情境,引导探索
1、创设情境,引入关系
师:“六一”儿童节就要到了,今年的儿童节,学校要组织全校师生开展野游活动,到了野外,还要以班级为单位开展联欢活动,前几天我同班主任刘老师对想要买的食品做了一些粗略的计划,知道买哪些东西了,具体怎么分还没有计算,大家愿意和老师一起做一下详细的计划吗?
生:愿意!
师:好!那我们大家就一起来吧!
师:请看我们班级为这次活动准备的食品:
食品名称食品数量班级人数平均每人分的数量
苹果40个47 40÷47
饮料39瓶47 39÷47
花生8千克47 8÷47
上面表格里的商都不能用整数的商来表示,除了可以用小数来表示,能否用其它的形式,比如分数来表示呢?等我们学完了这节课,同学们自然会找到答案的。
2.层层深入,感知关系
师:我想调查一下,最近谁要过生日?指一名同学说说你过生日的时候必须要买什么食品?(生:蛋糕)买了蛋糕是自己吃,还是同爸爸妈妈一起吃?
师:同学们愿意帮xxx同学分一分蛋糕吗?
生:愿意!
师:出示例题:把一个蛋糕平均分给3个人,平均每人能分得多少?师:这时,应该把什么看作单位“1”?
要把蛋糕平均分成几份?
怎样列式?(指名口述算式)
1÷3=
师:大家拿出练习本来计算这个商是多少?(用小数表示)
生:0.333…或
课件显示:1÷3=0.333…或
师:这个商用小数表示太麻烦了,能不能用分数来表示呢?
请大家看大屏幕大家看,每人得到这个蛋糕的几分之几?
生:
师:对了!那么上面的算式1÷3的商可以用分数表示了,即:1÷3=(个)
(2)现在小组讨论:1÷3=中,你发现整数除法中被除数和除数与得数中的分子、分母存在着什么样的关系?
(3)讨论完毕后,指几名同学代表自己的小组总结:学生口述的过程中,教师出示课件:被除数÷除数=
(4)师:现在大家会用分数表示整数除法的商了,那么,大家能把前面表格中的得数用分数表示吗?
生:会!
师出示:40÷47=?39÷47=?8÷47=?
3.,巩固关系
师:“六一”联欢的时候,我打算买3张非常好吃的比萨饼,想和班主任刘老师、还有两名在这学期进步最大的同学A和B共同分享,大家能帮我们合理的分一下吗?
生:想!
师:大家看问题:我想把这3张饼平均分给我们4个人,每人分得这3张饼的几分之几呢?
①议一议:讨论如何分,有哪些分法?(让同学们充分考虑好后,说说自己的想法)
②剪一剪:想好后各小组可以行动了,请同学们以小组为单位拿出我们事先准备的三个完全一样的圆形和剪刀剪一剪,并把分好的四份摆在桌子上。
③拼一拼:分好后,请同学们每人取一份拼在一起,看看是一个“饼”的几分之几?
④列一列:怎样用算式表示自己分饼的数量关系?谁会列式?
⑤算一算:师指一名同学板演算式:3÷4=(张)
答:每人分得张。
请板演的同学说一说自己是根据什么这样写的?
⑥如果分别用字母a和b表示除法算式中的被除数和除数,分数与除法的这种关系怎样表示?
学生回答,师板书:a÷b= (b≠0)
师:大家考虑:这里的a和b是否可以是任何自然数?为什么?
生:不可以,因为这里的b≠0
师:左侧b≠0,那么右侧的b是否可以是0?为什么?
师:讨论完后,教师用红色粉笔标上:b≠0
(引导学生懂得:在除法中,除数不能为零,所以在分数中,分母不能为零)
三、总结提升,归纳关系(师生共同完成)
1、让学生说一说分数与除法的联系:分子相当于除法中的被除数,分母相当于除法中的'除数,分数线相当于除法中的除号。
2、判断:“分数就是除法,除法就是分数”这句话对不对?
(最后教师总结:分数与除法既有联系,又有区别,除法是一种运算,而分数是一个数)
四、拓展延伸,发展能力
1、填空:7÷13= =()÷()
()÷9= ()÷26=
2、用分数表示下面各式的商。
3÷4= 7÷12= 16÷49= 25÷24= 12÷25= 36÷57= 30÷37= 33÷78=
7÷13= 74÷14= 77÷13= 78÷97
3、一个4平方米的圆形花坛分成大小相同的5块,每块是多少平方米?(用分数表示)
4、“六一”联欢的时候,大家都会带好多自己爱吃的食品,你们愿意与同学们共同品尝吗?如果愿意的话,请说说你的打算,并编一道符合这节课学习内容的题目说给大家听听好吗?
五、情感教育,教书育人
同学们,我刚才听了大家的各种打算,感到很欣慰,同学们都打算把自己的好吃的分给大家一起享用,我都盼望着过“六一”儿童节了,到那时,我也会准备一些好吃的礼物与大家一起分享好吗?但愿我们同学在共同的学习和生活中,能互相关心,团结友爱,亲如兄妹,让我们的班级成为一个温暖的班级体!
板书设计:
分数与除法
a÷b= (b≠0)
3÷4=(张)
答:每人分得张饼。
五年级数学教案6
教学目标:
知识与技能目标
通过猜测—验证—应用等环节引导学生探索并理解整数乘法运算定律对于小数同样适用
过程与方法目标
能够正确、合理、灵活的运用乘法运算定律进行有关小数乘法的简便运算。
情感态度与价值观目标
让学生相互交流、合作、体验成功的喜悦
教学重点:
探索、发现、理解整数乘法运算定律,在小数乘法中同样适用。
教学难点:
运用运算定律进行小数乘法的简便计算。
学情分析:
五年级的孩子们大部分已养成良好的学习习惯,能在课堂上大胆地表达自己的见解。因此在本堂课的教学中,我充分调动学生的积极性,提高学生课堂活动的参与性,让他们通过亲自探索和体验来达到掌握所学知识的目的。同时,感受数学中的奥妙,增加学习数学的兴趣。
教法学法:
本节课我主要采用“自主探究,合作交流,汇报验证”等教学方法。通过创设生动的教学情景,激发学生的求知欲。使学生在观察中发现,在探究中交流,在合作中归纳解决问题。具体地说分为以下几种方法:1、情景创设法。 2、活动探究法。 3、集体讨论法。
教学流程:
创设情景,导入新课——自主探索,解决问题——精心选题,多层训练,——质疑总结,反思评价。
第一环节:创设情境,导入新课。
上课伊始,我会向孩子们抛出一个问题:同学们,我们已经学习了整数乘法的一些运算定律,谁能来说一说整数乘法的运算定律有哪些?
学生们会回答:乘法交换律、乘法结合律和乘法分配律。
接着我会让孩子们用数字、字母或者符号等自己喜欢的方式来表示出这三个定律。学生展示后,我进行小结:我们知道乘法运算定律在整数乘法中,可以使一些计算更简便了,那么在小数乘法中,这些运算定律是否也能运用呢?今天这节课我们就来研究这个问题。同时板书课题。
在这一环节中让孩子们用自己喜欢的方式表示三个定律,一方面激发他们学习的兴趣,另一方面复习巩固所学的知识,为学习新课作准备。以旧引新,激发孩子的探究__,让他们有目标的.去思考。
第二环节:自主探索,解决问题。
本环节我设计了以下几个教学活动。
(一)小组合作,猜测验证
1、用幻灯片出示以下题目。
0。7×1。2○1。2×0。7
(0。8×0。5)×0。4○0。8×(0。5×0。4)
(2。4+3。6)×0。5○2。4×0。5+3。6×0。5
让孩子们猜一猜,每一组算式它们有怎样的关系?(当然由于是猜测,学生出现的答案很可能会不一样。)
2、学生自己探究,验证。
让学生以小组为单位通过计算得出结论,原来每组算式的结果都是相等的。
接着我引导学生们仔细观察每一组算式,它们有什么特点?
学生们通过观察会得出如下结论:第一组算式运用了乘法交换律,第二组算式运用了乘法结合律,第三组算式运用了乘法分配律。
3、举例验证。
我向孩子们提问:通过上面的一组例子,能否就说明乘法运算定律在小数乘法中同样适用?
孩子们可能有两种意见:能或是不能。
针对不同意见,我会引导他们:对,单纯的一组例子并没有说服力,我们需要多举几个例子进行验证。下面咱们就以小组为单位仿照第一组的例子,也写出三种这样的算式,并验证是否相等。
(给孩子们充分的时间动手写,验证后让他们进行汇报,尽量多让几组学生汇报,这样例子多了,结论更有说服力。)
学生汇报的同时,我会有目的的板书几组算式,让学生观察发现,乘法运算定律,在小数乘法中同样适用。
在大家交流结束后,我这样引导他们:刚刚小组同学相互交流后,你能用一句话来概括你们的发现吗?(引导学生得出结论:整数乘法的运算定律在小数乘法中同样适用。)
在这一环节中我首先让学生进行猜测,在头脑中初步感知每一组算式之间的关系,然后进行验证,进一步理解每一组算式之间的关系,再次启发学生自己举例验证,让他们通过自己动手动脑,以及倾听其他同学的发言,从而得出结论。在这一环节中,教师的作用只是引导点拨,决不把规律强加给学生,而是让学生自己去猜测、发现、验证。
(二)灵活应用,解决问题
出示例题8
师:同学们,仔细观察下面两题,看看它们能不能用简便方法计算。
0。25×4。78×4 0。65×201
(1)让学生独立思考,然后尝试写在练习本上。
(2)指名让学生板演。
然后我会让孩子们思考:第①题中为什么先让0。25和4相乘?这里运用了什么运算定律呢?
孩子们会自然而然的答出:运用了乘法交换律
接着问他们:你们认为第②小题中解题的关键是什么?
学生会根据以往的知识答出:把201分成200+1,然后用乘法分配律完成。(因为乘法分配率在上学期的学习中就是一个难点,所以这里我也会强调一下,让孩子们体会到先把特殊的数进行分解,然后才能进行简算。)
然后继续提问:在小数乘法中,要使计算简便,我们应该注意什么?(启发学生思考,认真审题,要观察数的特点等。)
在这一环节里,让孩子们运用所学的知识解决问题,这是数学学习的目的。学生通过自己动脑想,尝试用乘法的运算定律使计算简便,激发了他们运用知识解决问题的__,同时使学生体会到运用乘法运算定律的简便性,并体验到成功的快乐。
第三环节:精心选题,多层训练。
本环节我依据教学目标和学生在学习中存在的问题,设计有针对性、层次分明的练习题组(基本题、变式题、拓展题、开放题)。
练习题组设计如下
通过各种形式的练习,进一步提高学生学习兴趣,使学生的认知结构更加完善。同时强化本课的教学重点,突破教学难点。
第四环节:质疑总结,反思评价。
用幻灯片出示以下两个问题
让学生以小组为单位,每位学生充分发言,交流学习所得。在评价方面:先让学生自评,接着让他们互评,最后我会表扬全班学生,以增强学生的自信心和荣誉感,使他们更加热爱数学。
在本环节通过交流学习所得,增强孩子们学习数学知识的信心,培养了他们敢于质疑、勇于创新的精神。
五年级数学教案7
教学内容:
1、认识负数:教材第1—6页例1—例4以及练习一
2、实践活动:面积是多少第10—11页
教学目标:
1、使学生在熟悉的生活情境中初步认识负数,知道负数和正数的读、写方法,知道0既不是正数也不是负数,正数都大于0,负数都小于0。
2、使学生初步学会用负数表示日常生活中的简单问题,体会数学与日常生活中的简单联系。
3、通过学生的实践操作,让学生初步体会化难为易、化繁为简的解决问题的策略,为后面学习多边形面积的计算做些准备。
教学重点:正数、负数的意义
教学难点:理解0既不是正数也不是负数
课时安排:3课时
(1)认识负数的意义
教学内容:p.1、2,完成第3页的练一练和练习一的第1~5题
教学目标:
1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。2、能用正负数描述现实生活中的现象,如温度、收支、海拔高度等具有相反意义的量。3、体验数学与日常生活密切相关,激发学生对数学的兴趣。
教学重点:在现实情境中理解正负数及零的意义。
教学难点:用正负数描述生活中的现象。
教学准备:温度计挂图等
教学过程:
一、谈话导入:
通过复习,你知道这节课要学什么么?(板书:负数)
说我们以前认识过哪些数?(自然数、小数、分数)
分别举例。指出:最常见的是自然数,小数有个特殊的标记“小数点”,分数有个特殊标记是“分数线”,你知道负数有什么特殊标记么?(负号,类似于减法)
二、学习例1:
1、你知道今天的最高温度么?你能在温度计上找到这个温度么?
介绍温度计:(1)℃、℉,我们中国人用摄氏度为单位,即℃;℉是华士度,是欧美国家用的。(2)以0为界,0上面的温度表示零上,0下面的温度表示零下。(3)刻度。要注意一大格、一小格分别表示多少度?
在温度计上找到表示35℃的刻度。
你知道什么时候是0℃吗?(水和冰的混合物)
你知道太仓一年中的最低温度么?(零下5度左右)你能在温度计上找到它吗?
分别写出这三个温度:0℃,为了强调这个温度在零上,35℃还可以写成+35℃,而这个零下5度,应该写成—5℃。
读一读:正35,负5
分别说说在这3个不同的温度你的感受。
2、完成试一试:
写出下面温度计上显示的气温各是多少摄氏度,并读一读。
对零下几度,可能学生会不能正确地看,注意指导。
3、完成第3页第2题的看图写一写,再读一读。
简单介绍有关赤道、北极、南极的知识。
4、完成第6页第4题:
先指名说说这三条鱼分别所处的地方,再选择合适的温度。也可选择几个让学生说说选择的理由。
5、读第7页第5题。,让学生说说体会。
6、完成第6题,分别在温度计上表示4个季节的温度。加强指导与检查。
三、学习例2:
1、出示例2图片,介绍“海平面”“海拔”的基本知识。
让学生指一指珠穆朗玛峰的高度是从哪里到哪里。补充:最新的测量,这个数据有所变化,有兴趣的同学可以查一查。
再指一指吐鲁番盆地的海拔。
指出:这两个地方,一个是高于海平面的,可以用“+8848米”来表示,另一个是低于海平面的,可以用“-155米”表示。
用你自己的理解来说说这样记录有什么好处?
2、完成第6页第1题:用正数或负数表示下面的海拔高度。
读一读第2题的海拔高度,它们是高于海平面还是低于海平面。
三、认识正负数的意义:
1、像温度在零上和零下或是海拔是高于和低于海平面可以用正数和负数来表示。
黑板上这些数,哪些是正数?哪些是负数?
你能用自己的话来说说怎样的数是正数?怎样的数是负数?
0呢?为什么?
2、完成第3页第1题,先读一读,再把这些数填入相应的圈内。
3、完成第6页第3题:分别写出5个正数和5个负数。
四、全课小结:(略)
(2)认识负数的应用
教学内容:p.3、4的例3、例4,完成第5页的练一练和练习一的第7~10题
教学目标:
1、使学生在盈与亏、收与支、升与降、增与减以及朝两个相反方向运动等现实的情境中应用负数,进一步理解负数的意义。
2、体验数学与日常生活密切两观,激发学生对数学的兴趣。
教学重点:应用正数和负数表示日常生活中具有相反意义的数量。
教学难点:体会两种具有相反意义的数量。
教学准备:直尺等
教学过程:
一、谈话导入:
上节课我们认识了负数,请你用自己的话书说怎样的数是负数?
正和负是一对反义词,生活中也有很多正好相反的变化,它们也可以分别用正负数来表示。
学生举例(可能有的情况):
1、收入和支出:如果老师上个月的10日拿到1500元工资,为了强调“收入”,我可以这么记“+1500”,买衣服花了300元,可以怎么记?为什么?吃饭花了500元,怎么记?……
2、转入与转出:这个新学期,我们班转出1人,转进3人,怎么表示?
3、上车与下车:(第10题),依次写出每一站的情况,让学生说说每一站是什么意思?特别是“0”;还可以结合某一站,让学生说说“—3,+8”其实人数有什么变化?……
4、上楼与下楼:……
补充楼层,第下室的表示方法等。补充:楼房有正的几楼,也有可能会有负的几楼,会不会有0楼?为什么?
5、向东走、向右走:常见的方向有4个,东和西是相反的方向,南和被也是一对相反的方向。如果把想东走5米,记作+5米,那么向西走10米,可以怎么记?你是怎么想的?+10米表示什么呢?为什么?
如果+10表示的是向南走10米,那么,—10米表示什么?你是怎么想的?
比较这个话题与前面话题的不同:前面的.正负数一般都有增加或是减少的意思,而这个正负数,只表示相反的意思。……
小结:生活中很多具有相反的意思可以分别用正负数表示。
二、学生自学课本,把书上有关的练习完成,并可与同桌交流。
老师选巡视中发现问题较多的题全班交流。
(3)实践活动面积是多少
教学内容:p.10~11
教学目标:
1、复习面积的意义、常用的面积单位、长方形和正方形的面积计算公式,初步建立图形的等积变形思想。
2、让学生体会转化、估计等解决问题的策略,为教学平行四边形等图形的面积计算做比较充分的知识准备和思想准备。
3、体验数学与生活的练习和数学的实用价值。
教学重点、难点:对图形进行分解与组合、分割与移拼的转化方法。
教学准备:学生课前剪好图上的三个不规则图形
教学过程:
一、复习面积:
你知道这节课学什么么?我们以前学过哪几种图形的面积?
板书:长方形面积=长×宽
正方形面积=边长×边长
二、分一分、数一数:
1、取图1,问:它是长方形或正方形吗?像这样的图形,我们可以把它叫做不规则图形。
1小格表示1平方厘米,你知道它的面积是多少么?
方法一:数方格。一起数一数,数得74格
方法二:分割法。指名折一折,并指出所折出的形状。注意有两种折法。
折好之后,在每一块长方形上写出求面积的算式。最后再相加求得总面积。
比较两种方法求的结果。
用类似的方法求出图2的面积。学生完成后交流。
小结:复杂的图形,可以分割成几个长方形或正方形,分别求出面积后再求出总面积。
2、移一移,数一数:
取图3,交流数的方法:说说在数格子的时候你遇到了什么困难?是怎么解决的?最后结果是多少?
观察后说说你能把它变成长方形吗?
剪一剪、拼一拼。你能算出这个拼成的长方形的面积是多少吗?
3、数一数,算一算:
(1)、出示池塘图。观察该池塘边的特点,说说你想怎么求它的面积?有什么困难?有什么好办法吗?
方法:先数整格,可以按顺序标出数字;再把不满整格的当作半格数,最后再相加。
学生数,数完后交流结果。发现会有一定的误差。
指出:由曲线围成的图形,在求其面积的时候会出现一定的误差,这是很正常的。
(2)、观察树叶图,它有什么特点?你能利用它的特点来更方便地数面积吗?
学生数完后再校对答案。
4、估一估,算一算。
在第126页上的方格纸上,描画出自己的左手,然后再用刚才的方法估算出自己手掌的面积。
交流,得到:通常我们学生的手掌面积是80多到90多平方厘米。
三、全课小结:
现在你知道怎么求一些较复杂图形的面积了么?
五年级数学教案8
教学内容:
人教版小学数学第九册《相遇问题》第58准备题、例5及做一做,并完成练习十三1-3题。
教学目的:
1、使学生理解相遇问题的意义及特点。
2、学会分析相遇问题的数量关系,掌握相遇求路程的应用题的解答方法。
3、明白具体情况具体分析的道理,培养学生初步的辨证唯物主义观点。
教学重点:
理解相遇问题的数量关系,建立解题思路,掌握解题方法。
教学难点:
理解相遇问题中速度和、相遇时间和总路程之间的关系。
教学准备:
计算机辅助教学软件一套。
教学过程:
一、动画引入,揭示课题
1、通过电脑演示了解相遇问题中两个物体的运动情况。
电脑演示一声枪响后,两人相向而行,相遇前停下来。
提问:一声枪响后,你看到了什么?注意他们的出发时间和运动方向是怎样的?
(板书:同时出发、相向而行)
如果他们继续走下去,结果可能会怎样?
(相遇、不相遇就停下来、相遇以后相交而过)
结果究竟怎么样呢?请同学们继续观察。
电脑演示两人相遇。
(板书:结果相遇)
谁能完整的说说他们是怎样运动的?
[评析:运用多媒体所具有的声、光、色、形的特点,创设动态情境,抓住"相遇问题"的关键,让学生形象地理解"同时出发"、"相向而行" 、"结果相遇"这几个相遇问题的几个基本要素,为例题教学扫除了文字障碍。并且通过生动形象卡通画导入新课,大大激发了学生学习的兴趣。]
2、揭示课题:
像这样,两人或两个物体同时从两地出发,相向而行,最后相遇,我们称这样的问题为相遇问题。
(板书课题:相遇问题)
过去我们学过一个物体运动的行程问题。你们还记得一个物体运动时,速度、时 间、路程三者之间有什么样的关系?
(板书:速度×时间=路程)
今天研究的相遇问题中,运动物体变成了两个,他们的速度、时间和路程三者之间又有什么样的关系呢?今天咱们就一块儿来研究这个问题。
二、引导探究,教学新知
(一)教学准备题。
1、电脑配音显示准备题。
我是张华,我的速度是每分60米。我是李诚,我的速度是每分70米。张华家距李诚家390米,他俩同时从家里出发,向对方走去。下面是他们两人走的时间和路程的变化情况表。请同学们先看动画,再完成下表,然后讨论以下两个问题。
走的时间 张华走 的路程 李诚走 的路程 两人所走 的路程和 现在两人 的距离 1分 60米 79米 2分 3分
讨论:①出发3分后,两人之间的距离变成了多少?说明了什么?
②相遇时,两人所走路程的和与两家的距离有什么关系?
2、观察填表,讨论分析。
(1)学生填写表格,并讨论屏幕上的两个问题。
(2)全班校对答案。提问:2分时两人所走路程的和260米你是怎样计算的?(①120+140=260米②30×2=260米)
(3)学生回答讨论的两个问题。
小结:刚才我们通过自己观察、填写、讨论,发现了两个物体同时出发、相向而行,相遇时,两人所走路程的和恰好就是两家的距离。下面我们就利用这个规律自己来解决一些实际问题。
[评析:在准备题教学中,教师放手让学生自己观察、填写、讨论,不但使学生深刻理解了两人所走的路程与两家距离的关系,为研究解题方法作了充分的准备,而且充分体现了学生的自主学习精神。]
(二)教学例5。
1、电脑出示例5及线段图:小强和小丽同时从自己家里走向学校。小强每分走65米,小丽每分走70米,经过4分。两人在校门口相遇。他们两家相距多少米?
2、学生尝试解答,两生上台板书。 65×4 + 70×4(65 + 70)×4=260 + 280 =135×4 =540(米)=540(米)
3、学生自己分析解题思路:
①请用第一种方法的同学说说你是怎样想的?
提问:题中只有一个4,为什么算式中出现了两个4?
师:经过4分两人相遇,说明相遇时两人都行了4分,因此我们也可以把这个时间称为相遇时间。相遇时间在这种解法中要用到两次。
②请用第二种方法的`同学说说你的解题思路又是什么?
[评析:在学生已掌握路程、速度、时间三者间关系的基础上,联系学生已有的生活实际,通过自己探索,寻求出解答求相遇路程的思路,从而提高了学生分析问题和决问题的能力。]
4、通过电脑演示强化两种解法的解题思路。
通过刚才的分析我们知道,相遇问题中求路程有几种解法?请看屏幕。
电脑演示:一种是先求出小强走的路程和小丽走的路程,再加起来就得到两人所走路程的和,也就是两家的距离;另一种解法是先把小强每分所走的路程和小丽每分所走的路程加起来,得到每分两人所走路程的和,因为经过4分相遇,再乘以相遇时间4,就得到了4分所走路程的和,也就是两家的距离。
[评析:通过大屏幕色彩鲜艳的线段闪铄演示,加深了学生对第一种方法的理解;"速度和"的概念是第二种解法的难点,通过将两人每分各行的路程"移动、合并",形象地揭示了"速度和"的内涵。教者灵活地利用多媒体图象的移动、合并、返回的运动特点,揭示"速度和、相遇时间、距离"之间的关系,加深了学生对第二种方法的理解。]
5、总结数量关系式:请同学们观察这两种解法,你更喜欢哪一种?根据这种解法你发现在相遇问题中,速度、时间、路程三者之间有什么关系?
(板书:和、相遇)有了这个数量关系式,你知道相遇问题中路程需要知道哪些条件?
6、学生看书质疑。
三、巩固练习,深化提高
1、根据题意连线。
两列火车从两地同时相向开出。甲车每小时行44千米,乙车每小时行52千米,经过2.5小时两车相遇。
44×2.5 两人的速度和 52×2.5 两地的距离 44 + 52 相遇时甲车所行的路程 (44 + 52)×2.5
相遇时乙车所行的路程 44×2.5 +52×2.5 2、用两种方法解答。
(59页做一做第1题)
2、只列式不计算。(练习十三1、2题)
学生独立完成,集体订正。反馈中引导学生把第2题与前面的习题比较,明确虽然两车运动方向、出发地点等情况与前面习题不同,但它们都是求两个物体所行路程的和,都可以用速度和×时间=路程得到。
[评析:练习的设计由浅入深,有坡度有层次,目的性强。先通过连线题强化相遇问题中的各个概念;然后解决与相遇问题类似的应用题,实现知识、技能和方法的迁移;最后解决有变化的相遇问题,突破固定的思维框架。重点突出,一题一得,既减轻了学生的过重负担,又提高了教学效益。]
四、闯关游戏,拓思创新:
电脑演示闯关画面,配音出示游戏规则。
1、第一关:猫和老鼠从两地相向而行,猫每分跑50米,老鼠每分跑6米。跑了2分,还相距120米,求两地相距多少米?
提问:用速度和乘以时间得到了路程,为什么还要加120?
2、第二关:甲、乙两辆汽车从两地相对行驶。甲车每小时行75千米,乙车每小时行69千米。甲车开出后1小时,乙车才开出,再过2小时两车相遇。两地相距多少千米?
3、第三关:甲乙两人从两地相向而行,甲每分行40米,乙每分行45米。相遇以后相交而过,走了4分,两人相距90米,求两地相距多少米?
提问:为什么每一种算法都要减90?
4、小结:今后同学们在解答两个物体运动的行程问题时,首先要弄清他们运动的时间、方向和结果,再灵活运用相遇问题的思路进行解答。
[评析:首先,通过游戏,激发了学生的学习兴趣,使学生在乐中学习;其次,通过变式练习,让学生灵活应用所学知识解答问题,让学生明白具体情况具体分析的道理,培养学生初步的辨证唯物主义观点。]
五年级数学教案9
1、教学目标
1.使学生在具体情境中认识列、行的含义,逐步制定统一规则,初步理解数对的含义,会用数对表示物体的位置;
2.使学生经历由具体的座位图抽象成用列、行表示的平面图的过程,提高抽象思维能力,发展空间观念;
3.使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。
2、学情分析
从学生已有知识经验出发,创设现实情境,增加学生参与、体验的机会,让其在实践中加深理解,在活动中感受数学与生活的紧密联系,培养学生的空间观念。
3、重点难点
教学重点:
体验创建数对的过程,掌握数对的书写形式,会用数对确定位置。
教学难点:
观察者角度的理解,方格线上和方格中位置描述的异同理解。
4、教学过程
4.1教学过程
4.1.1教学活动
活动1【讲授】用数对确定位置
一、探讨描述位置两要素
师:今天,谢老师的好朋友带来一份神奇的礼物。有请X先生
第一关:找地鼠
师:请描述小地鼠的位置。
师:还能怎么说?
生:从右往左数第2个。
师:这只地鼠的位置呢?
生:从上往下数第3个,从下往上数第2个。
师:看来,描述一条线上的位置,我们只需要一个数。
师:(平面上的一个地鼠)现在还能用一个数字来描述位置吗?不能。为什么?
师:我们全班来玩一个小游戏,请一位同学上台背对屏幕,其他同学描述地鼠的位置帮助他猜?
师:你来说,谁有不同的说法,还有吗?
师:看来同学们都认为,描述平面上某个位置需要两个数,这个发现很重要。
师:(面向猜的同学)听了这么多说法,能猜到位置吗?
师:你是怎样猜的?大家分析分析他为什么会猜错?(描述位置的方向不一样)怎样让你的描述更加准确些。(说清楚方向:从左往右数第2排,从下往上数第3个)(板书说法)
师:经过不断完善,终于能消除误解,并赢取第一块拼图。听(X先生录音)
二、从列和行引出数对确定位置
师:在第一关,我们发现由于每人所定规则不同,导致描述方法不一致,甚至有可能会出错。这时,我们就需要统一规定。
师:(我们进入第二关,确定你的位置)从游戏回到教室里,像同学们的座位有的竖着排,有的横着排,数学中统一规定,像这样的竖排,我们称作列(板书:列),确定第几列一般是从左往右数,请第一列同学起立。你是怎样数的?有道理。这位同学,我看出了你的犹豫,有什么想说的?
师:勇于表达自己的想法,真了不起。两个第一列!这个时候又需要规定,列要站在观察者的角度从左往右数,教室里的观察者就是(老师),那你们就是被观察者。站在我的角度从左往右请第一列同学起来,第二列,第三列,原来你们是第6列。请记住自己是第几列了。
师:竖排是列。像这样的横排,我们称作行(板书:行)确定第几行一般从前往后数(手势从前向后点),第一行同学在哪?第二行,第三行……同样,记住自己是第几行。
师:列和行的观察方向已经确定了,请用列和行表示自己的位置。写在草稿纸上。你的位置是、你的位置是、你的位置是。都很准确。
师:回到大屏幕,当教室中的'座位画在图上就成了这样。面对这幅图,谁是观察者?站在我们的角度,从左往右数第一列在哪里?第二列,接着……
师:教室中行是从前往后数,到了这幅图上就变成了从下往上数了。第一行在哪?第二行……张亮的位置是?还可以怎么说。
师:发现张亮的位置在从左往右第2列,从下往上数第3行的交点处。图上,还有两位同学的位置,谁来说。同意吗?看来,大家用列和行描述位置的已经比较熟练了。
师:把座位图变化一下,用图形代替了桌子,还能描述张亮的位置吗?(能)来个小考验把,能快速记下包括张亮在内的四个位置吗?拿出草稿纸,准备。怎么了?(太快了)想想有没有快速记录的方法,再来一次?准备。这次好些了。以张亮的位置为例,谁来说说你的好方法。(2 3)什么意思?(2表示第2列,3表示第3行)还可以怎么说(3 2)。这个想法很好,更加简洁了。
师:这些都是张亮位置的描述方法,你喜欢哪一种?
(1、列和行的方法,很具体但数学应该追求简洁明了,2、两个数字的方法,很简洁但容易误解。)都有道理,但是数学家还是选了其中的一种方法来描述位置。你觉得是那种?(手势上下移动)这种。
师:数学家也发现了漏洞,怎么办呢?干脆,一不做二不休,来了个规定:以后凡是用两个数表示位置时,都先说列(板书),再说行。中间用逗号隔开,再用括号把他们括起来,最后给它取个名字,叫做数对,而今天我们就重点研究用数对确定位置。(板书课题)
师:所以张亮的位置用数对表示是(指板书对的)读作数对(2,3)。
师:剩下的三个位置也用数对表示吧。写在草稿纸上。
师:四个数对中有两个比较特别,谁来说?
师:归纳的真准确,(3,4)不能表示赵雪的位置(4,3)也不能能表示王艳的位置。我们说一个数对只能确定一个位置,也就是说数对和位置一一对应。以后,一看到这样表示的形式,就知道是数对,是用来确定位置的。这也是数学符号的独特性。
师:回到同学中间(指向同学)请用数对表示自己的位置。你的位置是、你的位置是、和张亮同一个位置的是谁?(课件强调张亮)。
师:你是怎样判断的?
师:其实,从图上到教室里,观察者角度转变了,同学们还能灵活的用数对来确定位置,非常棒。听。(X先生评价)
三、点子图中的位置表示
师:祝贺大家,回到大屏幕,座位图再次发生变化,变成了(用点)来表示位置,再把这些点用线连起来,形成了一个方格图,规范的方格图会多出这样一列和一行(课件强调),我们把它们叫做起始列和起始行,他们的交点我们用0来表示,称作起始点。从起始点开始,我们可以数出列数和行数。在这里你还能确定张亮的位置吗?数对(2,3)。
师:X先生又有话说:(第三关找场馆。)这是动物园的平面图,我们一起来看看。大门的位置是(数对(3,0))什么意思?
师:图上的四个场馆,能用数对表示他们的位置吗?第二题呢?翻开书第20页,直接写在图上。
师:老师也有感兴趣的场馆,先给个提示(,4)能确定是哪个场馆吗?为什么?)能确定的只是(在第4行上)。换个提示,这个场馆在(1,)上,可能是哪些场馆。老师感兴趣的场馆其实就是(大象馆)。也就是第4行和第1列的交点处。
师:再次请出X先生:第四关摆放花盆(课件出示第四关)确定花盆的位置需要知道什么?(确定行列)
师:随意指两个位置提问。(单击课件)这四盆草围成一个长方形,能找出这四盆小草的位置吗?X表示几,Y表示几。请拿出练习纸,用圆圈表示4盆小草的位置。
师:根据已知数对可以很快确定三个点的位置,根据长方形的特性找到第四个点的位置。同学们都做对了吗?掌声送给自己。
四,数对的日常运用
师:数对的运用的确广泛。日常生活中还有那些地方会用到数对呢?像同学们说到的电影票、围棋棋盘等等。
国际象棋棋盘上也有行和列,这是白王,它的位置用数对表示是?(g,2)
这是南昌的经纬图,南昌位置可以用数对(116,25)来表示,在这里116表示的是?29表示的是?(经度和纬度)
师:学到这里我不禁想问:这么简单准确的数对又是谁发明的呢?数对背后又隐藏着怎样的故事呢?感兴趣的同学可以课后百度:笛卡尔和蜘蛛
五、拓展总结。
师:同学们我们还差一块拼图了,听听X先生带来了什么问题:第五关:确定位置,需要几个数?)
生:需要两个数。
师:什么情况下用两个数?(平面上的位置)(课件出图)一个数不行吗?(课件出示打地鼠图片)行。
师:什么情况下我们用一个数就能确定位置?(直线上的)。
师:直线上的点用一个数字确定位置,平面上的点用数对确定位置,那有没有用三个数确定位置的可能?(出现省略号)这个就留到以后学习了。
师:听听X先生对大家的最终评价吧。
师:其实,老师给大家带来的神奇的礼物就是一句话?齐读。学好数学将会是一个让你终生受益的财富。这节课就上到这里。下课。
五年级数学教案10
教学内容:冀教版《数学》五年级上册第10、11页。
教学目标:
1、在动手操作的活动中,经历探索莫比乌斯圈神奇特征的过程。
2、学会制作简单的莫比乌斯圈,了解莫比乌斯圈的特征。
3、感受莫比乌斯圈的神奇,体会数学活动的趣味性和探索性。
教学准备:三根长30厘米、宽3厘米的白纸条,彩笔,剪刀,胶水。
教学方案:
教学环节
设计意图
教学预设
一、创设情境
1.学生阅读书中的文字,初步了解莫比乌斯圈。
2.拿出一张纸条让学生估计它的长和宽。
二、探索活动1
1.师生一起动手制作莫比乌斯圈。
教师一边口述制作莫比乌斯圈的方法一边演示制作,然后让每个人制作一个。
2.交流、展示学生作品。
3.提出涂色要求,学生涂色。鼓励学生合作完成。
4.观察、交流学生涂色的结果,让学生说一说发现了什么?
三、探索活动Ⅱ
1.让学生在另一张纸条的正中画好一条线,再粘成一个莫比乌斯圈。通过沿莫比乌斯圈一面涂色却使纸圈两面都有了颜色的事实,使学生初步感受莫比乌斯圈的神奇。
2.提出:如果用剪刀沿中线把莫比乌斯圈剪开,结果会怎样?的问题,让学生先大胆猜测,再动手操作。
3.交流沿中线剪开后的结果。
4.提出书中(2)的操作要求,让学生想象剪开后的结果。
5.鼓励学生按要求实际操作。
6.交流学生沿画线剪开后的结果。使学生发现把一个三等分的莫比乌斯圈沿等分线剪开,变成了一大一小两个套在一起的纸圈。
四、课外延伸
教师进行激励性谈话,鼓励学生课下继续探索
通过激励性谈话引起学生的学习兴趣,通过阅读让学生初步了解莫比乌斯圈。
培养估计的意识,了解纸条的长和宽,方便下面的语言表述。
通过教师边口述边示范,让学生学会制作简单的莫比乌斯圈。每人制作一个,为下面的探索活动提供材料。
展示学生的作品,检查莫比乌斯圈做的是否正确。
让学生经历探索莫比乌斯圈的全过程。
通过自己动手做莫比乌斯圈,亲身体验它的神奇。
通过教师叙述制作要求,培养学生倾听的习惯,为探索活动提供材料。
通过让学生想象猜测,一方面培养学生联想的意识,更重要的`是引出探索的活动。
在操作结果和提供的数据中,让学生感受莫比乌斯圈的神奇和数学活动的探索性。
在前面探索活动的基础上,对看似相关问题进行猜测,激发学生探索的愿望。
带着问题进行实际操作,体验数学问题的探索性。
在猜测、操作、交流等探索活动中,进一步感受莫比乌斯圈的神奇和数学活动的趣味性。
激发学生的探索的积极性,培养科学探索精神。
师:同学们,今天我们就用老师给大家准备的纸条来探索一种神奇的纸圈,这个纸圈是什么呢?大家请打开书第10页,读一读前两段。
学生阅读书中的文字。
师:通过读书,你了解到哪些信息?
学生回答可能不同,只要是意思对就给予肯定。
师:德国数学家莫比乌斯发明的这个“纸圈”到底有什么神奇之处,下面我们就一起去探索。
师:请同学们拿出一张纸条,估计一下这张纸条有多长、多宽?
学生估计,对估计准确给予表扬。使大家知道:纸条的长30厘米,宽3厘米。
师:我们就用这张纸条做一个莫比乌斯圈。怎样做呢?把纸条儿的一端扭转180°,与另一端粘在一起,这样一个莫比乌斯圈就做好了。
教师边说边示范制作莫比乌斯圈。
师:下面同学们就用准备好的纸条也做一个莫比乌斯圈!
学生动手制作,教师巡视指导。
师:谁来展示一下你的莫比乌斯圈?
学生展示,关注是否都对。
师:同学们都有了自己的莫比乌斯圈,我们给它涂上颜色让它更漂亮。涂色的要求是:用一种颜色的彩笔在纸圈的一面涂色。可以同桌合作完成。
学生给莫比乌斯圈涂色,教师巡视指导。
师:请同学们仔细观察涂好色的莫比乌斯圈,你发现了什么?
生:两面都有颜色了。
生:太奇怪了。
师:沿一面涂色纸圈的两面都出现了颜色,真是个奇迹!这就是神奇的莫比乌斯圈!
教师板书:神奇的莫比乌斯圈。
师:请同学们接着做,你会发现更神奇的事情。听清这次的操作要求:取出一张新的纸条,在正中画一条线,再把它粘成莫比乌斯圈。
学生操作,教师巡视指导。
师:同学们想象一下,如果用剪刀沿中线把这个莫比乌斯圈剪开,结果会怎么样?
生:会得到2个莫比乌斯圈。
师:结果到底怎么样呢?请同学们用剪刀沿中线把它剪开,看一看结果会怎样。用剪刀时注意安全。
学生操作,教师巡视指导。
师:沿中线剪开后怎样?和你想象的结果一样吗?
学生可能回答:
●沿中线剪开后结果不是两个莫比乌斯圈,而是一个。
●这个新的纸圈比原来的大了。
……
师:真是出乎意料!把莫比乌斯圈沿中线剪开结果不是两个纸圈,而是一个更大的纸圈。那同学们,你们猜想一下,要是在纸条上画两条线,把纸条分成三等分,粘成莫比乌斯圈,再用剪刀沿画线剪开,猜一猜结果会怎么样?
学生可能回答:
●得到一个更大的纸圈。
●得到3个纸圈。
……
师:请同学们实际动手做一做,看一看结果会怎样?
学生动手操作,教师巡视指导。
师:这次剪开后结果怎么样?
生:得到了一大一小两个套在一起的纸圈。
师:这就是莫比乌斯圈的神奇之处!要是在纸条上画三条线,把它四等分,再粘成莫比乌斯圈,接着沿画线剪开,结果会怎样?要是画四条线呢?有兴趣的同学课下可以继续探索!
五年级数学教案11
单元教学目标:
1.结合具体情境与直观操作,体验分数产生的实际背景,进一步理解分数,能正确用分数描述图形或简单的生活现象。
2.认识真分数、假分数,理解分数与除法的关系,能正确进行假分数与带分数、整数的互化。
3.探索分数的基本性质,会进行分数的大小比较。
4.能找出10以内两个自然数的公倍数和最小公倍数,能找出100以内两个自然数的公因数和最大公因数,会正确进行约分和通分。
5.体会分数与现实生活的联系,初步了解分数在实际生活中的应用,提高综合运用数学知识和方法解决具体问题的能力,能运用分数知识解决一些简单的实际问题。
6.能积极参与操作活动,主动地观察、操作、分析和推理,体验数学问题的探索性与挑战性。
分数的再认识
教学内容:
北师大版小学数学五年级上册34---35分数的再认识。
教学目标:
1.在具体的情境中,进一步认识分数,发展学生的数感,理解分数的意义。2.结合具体的情境,体会“整体”与“部分”的关系,感受分数的相对性。3、体验数学与生活的密切联系。
教学重点:
理解整体“1”,体会一个分数对应的“整体”不同,所表示的具体数量也不相同。
教学难点:
结合具体情境,体会“整体”与“部分”的关系,感受分数的相对性。
教具准备:
22支铅笔、多媒体课件(或1个红苹果、3个青苹果、6个白色圆片、2个红色圆片、34页“画一画”的三种画法图)
教学过程:
一、了解起点,引入新课(3分钟)
1、师:我们三年级的时候认识了分数,能说几个你熟悉的分数吗?(生:,......)
2、师:你能选择一个分数说说这个分数的含义吗?(指2人说,同桌说一次。)
3、简单做一总结:就是把一个物体或者一个图形平均分成2份,其中的1份就是,今天我们来继续认识一下分数。(板书课题:分数的再认识。)
二、结合具体情境,深化理解分数的意义
1、活动一:(5分钟)
呈现4个不同颜色的水果(1个红苹果3青苹果。)
师:你能从这些水果中看出分数吗?
生1:红苹果是
师:谁的?
生1:红苹果是整体水果的(是四个苹果的)
生2:青苹果是整体水果的。
师:刚才这个同学说的很好,他说整体水果,你怎么理解呢?
生:就是把1个红苹果和3个青苹果看成一个整体。(板书:一个整体)
师:大家也是这样理解的吗?(是)假如我再给你们一个更为强大的队伍,你还能找到分数吗?
出示6个白色圆片2个红色圆片,让学生观察,写下自己找到的分数,然后指名汇报,要求解释自己所写分数的意义。学生可能出现:、、、、(红、白两色圆片占整体圆片的,师:假如老师拿走八分之八的圆片,其实就是拿走了多少?生:拿走了整体“1”。)
师:原来我们不但可以把一个物体或者图形中的一部分用分数表示出来,而且还可以把几个物品或者图形看成一个整体,然后用分数表示其中的一部分。
2、活动二:(10分钟)
出示三个盒子,分别装有8、6、8支铅笔。
师:这里有三盒铅笔,你能不能从每一盒铅笔中分别拿出整体的?请注意观察,你发现了什么?
请三名学生到前面准备拿铅笔
师:请先说说你打算怎么拿?
生1:我准备把全部铅笔平均分成2份,拿出其中的一份。
生2:我准备用铅笔的总支数除以2,看看得几就拿出几支。
现场组织活动:(请三位同学分别从一堆铅笔中拿出。结果三位学生的结果不一样多,两位学生拿出的是4支,另一位学生拿出的是3支)
师:你发现了什么现象?你有什么疑问?想提什么问题呢?
生:他们拿出的支数有的一样多,有的不一样多,为什么呢?
师:他们都是拿出全部铅笔的,可是拿出来的铅笔却有的一样多,有的不一样多,这是为什么呢?请想一想,然后小组交流一下。
学生交流后全班反馈。
生1:我认为三盒的铅笔总数不一样多。
生2:可能是数错了。
师:请你上来帮助数一数,看看是不是数错了呢?
让学生上来数一数,证实数对了。
师:现在大家的意见都认为是铅笔的总支数不一样,也就是整体“1”不一样了?
学生都表示同意。
师:现在请台上的三位同学把所有的铅笔都拿出来,告诉大家每个盒子里铅笔的总支数到底是多少支?
生1:我这个盒子里全部的铅笔是8支,全部铅笔的是4支。
生2:我这个盒子里全部的铅笔是6支,全部铅笔的是3支。
生3:我这个盒子里全部的铅笔也是8支,全部铅笔的是4支。
师生一起小结:哦~~原来是盒子里的铅笔数量不同造成的!一盒铅笔的表示的是把这盒铅笔平均分成两份,其中的一份就是这个整体的。但由于分数所对应的整体不同(也就是铅笔的总支数不一样多),所以表示的具体数量也不一样多。
师:喔,原来分数还有这样一个特点,你对它是不是又有了新的认识?(是)
3、说一说(2分钟)
出示教材P34的说一说情境图。
师:根据你对分数新的认识,请你帮助判断一下这两个小朋友看的页数一样多吗?为什么?
指名学生说一说,重点是关注学生的思维过程,以及判断的依据。
4、画一画(5分钟)
师:机灵狗也想和大家一起来学习,可是被一道题目难住了,你们愿意帮助它吗?(课件出示题目)
师:看懂题目了吗?你觉得这三个小朋友画的'对吗?为什么?
生:我觉得他们画的对,因为一个图形的是□,就说明这个图形有4个□,而这三个小朋友画的都是4个□,所以都是对的。(一个学生说不完整,可以由其他同学补充说明。)
师:哦,原来这个图形只要是4个□就可以了,形状可以不同。你们还有其他画法吗?在作业本上试一试。
学生独立画一画,然后交流展示。注意让学生判断画的是否正确。
三、巩固练习
完成教材P35练一练中的题目。
1、第1题(3分钟)
先让学生独立填一填,在组织学生交流。重点让学生说一说第1、2、3、6个图形的思考过程,进一步加深对分数的认识。(图1是把一个正六边形平均分成六份,取其中的4份,可以用或表示;图2是把一个正方形平均分成8份,其中有两份没有分开,但分数表示的时候要注意应是;图3是12个小圆圈组成的一个整体,蓝色部分占整体的,也可以用表示;图6则是需要旋转,把内圆和外圆组合起来看,用分数或表示。)
2、第2题(2分钟)
让学生独立涂一涂,并说想法,让学生体会涂法的多样性。
3、第3题(4分钟)
学生画一画,并说一说画法,体现画法的多样性,用展示台展示学生作品。然后判断这些图形的大小一样吗?进一步让学生体会一个分数对应的“整体”不同,所表示的具体数量也不相同。
4、第4题(3分钟)
结合“捐零花钱”的实际问题,进一步理解分数的意义,体会分数的相对性。学生读题后,让学生说说自己的想法,关键是让学生解释理由。
四、你知道吗?(1分钟)
学生自己阅读,感受分数的历史悠久和中华民族的聪明才智
五、课堂小结(2分钟)
1、今天你有什么收获?对自己的评价怎么样?
2、学过今天的知识,你想到哪些分数?你是怎么想的?
教学反思:
小学五年级数学教案——分数中的单位“1”的认识教案
五年级数学教案12
教学目标:
1、知识与技能:使学生理解并掌握质数、合数的概念,并能进行正确的判断。
2、过程与方法:采用探究式学习法,通过操作、观察自主学习、提出猜想、合作、交流验证、分类、比较、抽象、归纳总结、巩固提高学习过程,培养学生动手操作、观察和概括能力,培养学生积极探究的意识。
3、情感态度与价值观:在体验与探究的活动中,让学生体验数学活动充满着探索与创新,感受数学文化的魅力,培养学生勇于探索的科学精神。
教学重点:
理解质数和合数的意义
教学难点:
判断一个数是质数还是合数的方法,明确自然数按因数的个数可分为三类
教具学具准备:
学生每人准备一张学号牌、课件
教学过程:
(一)创设情境,激趣导入
1、介绍学号数字9和12,引出整数的第一次分类:偶数、奇数。
2、学生介绍数字时出现质数,教师借机引入本节课学习内容:质数和合数。
3、学生汇报预习结果,同时提出学习目标。
(二)主动参与,探索新知
1.课前预习。每个同学都有自己的学号,课前大家已经在自己的学号牌上写出1—20的所有因数。(课前完成)
2、交流:课件出示1—12所有的因数,现在请所有同学一起来观察屏幕,看看你把1—12依据什么标准进行分类的?你又是如何理解质数与合数的?课前大家在预习的时候已经有了自己的想法,现在在组内互相说一说。(交流、汇报)
【设计意图:根据给定的标准观察、分析,突出了有关概念的本质特征,又能使学生体会到分类标准的合理性。通过对“1”的研究,完善对非0自然数的认识,促进学生对质数和合数概念的.理解。】
3、教师提问:我们班有29个人,谁的学号是质数?谁的学号是合数?1号同学呢?引出整数的第二次分类(板书)
4、判断下面各数,哪些是质数,哪些是合数。
17 22 29 35 37 87
学生先自己想一想,然后分组讨论,汇报交流。
【设计意图:课堂上充分发挥学生的主体作用,营造独立思考的时间和空间,使他们积极参与课堂讨论,促进学生的自主学习和探究。】
(三)动手实践,制作100以内的质数表。
1、51是质数还是合数?要想马上知道一个数是什么数还真不容易。(过渡)如果有质数表可查就方便了。我们一起制作一个质数表,拿出100以内的数表,想想怎样找出100以内的质数,制成质数表。
2、刚才,我们有些同学接受任务后,有的马上就去找,有人在思考。要是我,我可不及于去找,而是想一想用什么方法去找。说说你们是怎样找的?
(把质数留下,其他的数去掉,古代数学家就是用这种筛选的方法制作质数表的。我们都来筛吧!)
3、怎样筛选的更快?……同学们自己发现了规律制成了100以内的质数表。你们真了不起!
【设计意图:通过教师的引导,学生自主建构知识,完成100以内的质数表,使学生形成一个知识网络,进一步发展了学生的数感。】
(四)巩固练习,拓展延伸
1、你能写成几个质数相乘的形式吗?
6= 、、、 28 = 、、、、
2、判断下面这段话中的数字是质数还是合数。
2月8日,13名河北唐山农民自费来到遭受最严重冰雪灾害的湖南郴州抗冰救灾,他们每天凌晨5点准时起床,忙到晚上12时才能休息,每天工作近20小时,16天时间他们帮助灾区重建了10座电塔。
3、猜一猜:小红家的电话号码是多少?
最小的合数,它的因数只有1和3,既不是合数也不是质数,10以内最大的偶数它的最大的因数是8,10以内3的倍数同时又是偶数,10以内最大的合数
【设计意图:通过设计一组有层次的练习,既巩固了新知,又联系了以前的知识。通过交流,充分展示学生的思维,强化探究学习的效果,取长补短,达到共同进步。】
4、课堂反馈:
(五)归纳总结,师生评价
1、总结:本节课学习了什么?你有什么收获?还有什么疑问?
2、回到课始情境,你能打开密码锁了吗?里面是什么?屏显示:“快乐学习,快乐成长”八个大字。
3、师:这就是老师送给你们的礼物。你们快乐吗?说说感受。
【设计意图:通过总结与反思,及时反馈,学生内化知识。通过评价,使学生体验成功,树立学好数学的信心。】
五年级数学教案13
教学内容:教材第1--3页的内容及练一练。教学目标:
1.在实际操作活动中,经历了解容量概念和认识测量工具、以及认识“升”和“毫升”的过程。
2.了解容量的含义,认识“升”和“毫升”,了解升和毫升怎样用字母表示;会读量杯和量筒中液体的多少。
3.积极参与“玩水”实验活动,获得愉快的学习体验和数学活动经验。重点、难点
重点:使学生感知“升”和“毫升”这两个容量单位的大小,会读量杯和量筒上的刻度。
难点:理解容量的.含义。
教学具准备:课件,水盆、杯子。
教学过程:
一、揭题示标。
1、设疑导入
师手拿两个杯子,提出问题:如果两个杯子都装满了水,哪个杯子装的水多呢?这里面隐藏着有趣的数学知识,谁来猜一猜是什么?(让生自由猜)
2、板书课题。
师:今天我们就一起来学习“认识升和毫升”(板书课题)
3、出示目标
我们这节课要达到的目标是:(学生齐读)
1、知道“容量”的概念,认识容量单位“升”和“毫升”。
2、了解升和毫升怎样用字母表示;我会读量杯和量筒中液体的多少。
师:接下来就让我们带着目标根据自学指导的要求认真自学,相信每位同学都会有所收获。
二、学习指导。
认真看课本第1-2页的内容,然后动手试一试,比一比,思考:
1、哪个杯子装的水多?你是怎样比较的?
2、你认为什么是容量?容量的单位有哪些?
3、升和毫升用字母怎样表示?
师:自学时,可以边看边动手做一做,重点的地方用笔画下来。
(自学时间5分钟,看书-思考-动手-交流-汇报)
三、自研共探
1、看一看(自学探究)
生认真看书自学,师巡视,督促人人认真地看书,也可参与学生的活动中。
2、议一议(对子交流,疑难问题小组讨论,整合答案)
针对自学探究中的问题先对子交流,还不能解决的问题可以小组讨论。
教师在学生合作交流时巡视,观察小组交流情况,对合作不太好的小组给以帮助和提醒,促使每个组及组员都能积极参与到合作交流活动中。
3.动手演示说一说(汇报展示)
师:同学们学的怎么样呢?下面,就让我们一起来检测一下大家的自学成果。以小组为单位由老师指定题目进行汇报,没有得到展示机会的小组可以在期间举手示意要求汇报,但只展示不同方式或质疑补充。各组展示后,可以自评,他评或老师评价。对疑难地方师及时点评讲解。
4.小结归纳
生说,师生共同总结:容器中所能装液体的多少,就是容器的容量。
常用的容量单位:升和毫升
四、学情展示。
1、课本第3页试一试。
2、练一练中的1题.
3、练一练中的第2题。
要求:
1、独立完成、对子交流。
学法指导:先自己独立完成题目,然后举手示意对子,待对子完成后小声讨论
2、组内讨论、整合答案。
学法指导:待组内成员全部完成后交流各自答案和理由,最终形成统一答案。
3、分工合作、板演展示。
学法指导:每两组展示一题,预展速度快的组先展示,另外一组只展示不同之处,或质疑补充评价。由组长分工:展示题1可板演口答,展示题2可以边演示边说明理由,展示题3可以口答。展示形式可以多样化。(预展时间:2分钟)
4、汇报讲解、补充评价。
学法指导:由一个小组做讲解展示,讲解时可以组内补充,也可其它组补充或质疑。展示后,其它组或教师给予评价。
5、操作指导:教师要在预展时巡视各小组,指导并帮助小组快速分工,让每一个学生都参与其中,做到人人有事做。
五、归纳总结
同学们,经过这节课的学习我们学到了哪些知识呢?你还存在什么疑惑?
教师可从以下几方面引导学生说一说:1、知识点(表格、知识树等)2、方法3、易混易错点4、疑惑5、学情。
六、巩固提升
1、在()内填入升或毫升。
(1)一瓶大瓶可乐的容量是2()
(2)一瓶牛奶的容量是250()
(3)一瓶眼药水的容量是5()
(4)一桶饮用水的容量是15()
(5)一瓶洗发水的容量是200()
2、课本练一练第3题。
3、拓展:课本第3页练一练的第4题。
五年级数学教案14
活动目标
通过发豆芽活动,了解生活中的相关知识,运用多种途径查询和收集相关资料,并能运用数学的方法记录和描述豆芽的生长情况,培养同学们动手实践、分析问题以及解决问题的能力。
活动准备
教师收集相关资料,并先做一次实验。学生分组准备黄豆、绿豆各50g,以及发豆芽的器皿。
活动过程
一、提出问题,揭示课题?
1.师:同学们,你们知道豆芽的生长过程吗?你自己发过豆芽吗?
2.学生根据查询的资料和咨询科学教师得到的知识进行交流。
3.根据学生的交流,提出:我们也来试一试发豆芽。
揭示课题:发豆芽。
二、讨论交流,得出活动步骤
1.提问:发豆芽要做哪些准备?怎样记录发豆芽的过程呢?对最后的'记录如何分析呢?
结合学生的交流,得出本次活动的主要步骤:调查与收集;发制与记录;整理与分析;推测与应用。
2.学生结合教材了解4个环节应该做什么,并在全班交流。
教师重点提问:发豆芽的统计图画什么好?为什么?如何计算发豆芽的盈利情况?
三、学生分组活动
1.教师演示发豆芽的过程。
2.教师提出要求:
(1)发豆芽活动要做的事情比较多,我们要分组进行,每组5个人。
(2)为了方便观察与记录,我们都将豆芽统一放在教室里进行观察,每天每个组在固定时间进行浇水。
3.各组学生进行发豆芽实验。
时间大约是6天。教师对各组实验的情况进行适时的指导,对各组的记录进行及时督促与检查。各组在发豆芽完成后,及时进行数据分析,制作好相应的统计图表,写好分析总结。
四、小组交流,感受价值
交流发豆芽的具体做法和注意事项。
五、观察、记录、分析
1.观察豆芽的生长情况。(大约6天时间)
2.记录豆芽的生长情况。(每天进行记录)
3.把豆芽的生长情况制成统计图表。
4.分析统计图表,写好总结。
六、总结反思
小组结合统计图汇报豆芽生长情况,说说在发豆芽活动中的收获。
注:五、六两个教学过程在课外进行。
[简评:本课设计采取课内课外相结合的方式,突出发豆芽的相关资料收集,讨论发豆芽的活动步骤,对发豆芽活动进行分析、交流、评价。通过分组活动,培养学生的合作意识与能力;统一在教室进行,便于学生观察、比较、交流、互相激励。同时,把发豆芽活动的重点放在依据实验数据制作、分析统计图表上,以体现数学在生活中的价值,体现综合应用的数学味。]
五年级数学教案15
一、教学目标:掌握有括号的小数四则混合运算的运算顺序。
二、教学重点:掌握有括号的小数四则混合运算的运算顺序。
难点:弄清有括号的'运算顺序。
三、教学准备:多媒体。
四、教学过程:
A、准备题:
19 ×(935-875÷ 25) [51÷(120 -103)+24]×64
1、先让学生说一说运算顺序。
2、让学生独立完成。校对。
B、导入新课:
有括号的小数四则混合运算和有括号的整数四则混合运算 相同。今天我们就来学习有括号的小数四则混合运算。
C、讲授新课:
例 3 :4.38 ÷ (36.94 + 34.3×0.2)
提问:1、在有括号的算式里要先算什么?
2、先算什么,再算什么?
3、学生独立完成 。校对。
4.38 ÷ (36.94 + 34.3×0.2)
= 4.38 ÷(36.94 + 6.86)
= 4.38 ÷ 43.8
= 0.1
例 4 : [(5.84 - 3.9 ) ÷0.4 + 0.15] ×0.92
提问:1、先算什么,再算什么?
2、独立完成。校对。
3、做错的说一说错的原因。
[(5.84 - 3.9 ) ÷0.4 + 0.15] ×0.92
= [1.94 ÷0.4 + 0.15] ×0.92
= [4.85 + 0.15] ×0.92
= 5 ×0.92
= 4.6
D、巩固练习:
1.8×(1.4 - 0.26 ÷2) [7.6 - 5 ×(0.3 + 0.9)]÷10
1、先说一说运算顺序,再进行计算。
2、抽两名学生板演。
E、课堂小结:
在既有中括号,又小括号应该先算什么,再什么?
F、布置作业:
P - 52 第一题、第二题和第三题。
课堂作业本
练习 十一
【五年级数学教案】相关文章:
五年级数学教案08-31
五年级数学教案01-13
五年级《分数的意义》数学教案08-29
五年级数学教案《小数》01-10
小学五年级数学教案08-25
小学五年级数学教案02-28
五年级数学教案设计10-22
五年级上册数学教案范文10-18
相遇问题的五年级数学教案01-22
五年级数学教案(精选10篇)12-26