初中数学教案

时间:2023-02-26 18:19:42 数学教案 我要投稿

初中数学教案通用15篇

  作为一名辛苦耕耘的教育工作者,时常需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。那么优秀的教案是什么样的呢?下面是小编为大家收集的初中数学教案,欢迎阅读与收藏。

初中数学教案通用15篇

初中数学教案1

  一、 教学目标

  1、 知识与技能目标

  掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

  2、 能力与过程目标

  经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

  3、 情感与态度目标

  通过学生自己探索出法则,让学生获得成功的喜悦。

  二、 教学重点、难点

  重点:运用有理数乘法法则正确进行计算。

  难点:有理数乘法法则的探索过程,符号法则及对法则的理解。

  三、 教学过程

  1、 创设问题情景,激发学生的求知欲望,导入新课。

  教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?

  学生:26米。

  教师:能写出算式吗?学生:……

  教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题

  2、 小组探索、归纳法则

  (1)教师出示以下问题,学生以组为单位探索。

  以原点为起点,规定向东的'方向为正方向,向西的方向为负方向。

  ① 2 ×3

  2看作向东运动2米,×3看作向原方向运动3次。

  结果:向 运动 米

  2 ×3=

  ② -2 ×3

  -2看作向西运动2米,×3看作向原方向运动3次。

  结果:向 运动 米

  -2 ×3=

  ③ 2 ×(-3)

  2看作向东运动2米,×(-3)看作向反方向运动3次。

  结果:向 运动 米

  2 ×(-3)=

  ④ (-2) ×(-3)

  -2看作向西运动2米,×(-3)看作向反方向运动3次。

  结果:向 运动 米

  (-2) ×(-3)=

  (2)学生归纳法则

  ①符号:在上述4个式子中,我们只看符号,有什么规律?

  (+)×(+)=( ) 同号得

  (-)×(+)=( ) 异号得

  (+)×(-)=( ) 异号得

  (-)×(-)=( ) 同号得

  ②积的绝对值等于 。

  ③任何数与零相乘,积仍为 。

  (3)师生共同用文字叙述有理数乘法法则。

  3、 运用法则计算,巩固法则。

  (1)教师按课本P75 例1板书,要求学生述说每一步理由。

  (2)引导学生观察、分析例子中两因数的关系,得出两个有理数互为倒数,它们的积为 。

  (3)学生做练习,教师评析。

  (4)教师引导学生做例题,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。

初中数学教案2

  一、目的要求

  1、使学生初步理解一次函数与正比例函数的概念。

  2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。

  二、内容分析

  1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。

  2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的',这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。

  3、“函数及其图象”这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。

  三、教学过程

  复习提问:

  1、什么是函数?

  2、函数有哪几种表示方法?

  3、举出几个函数的例子。

  新课讲解:

  可以选用提问时学生举出的例子,也可以直接采用教科书中的四个函数的例子。然后让学生观察这些例子(实际上均是一次函数的解析式),y=x,s=3t等。观察时,可以按下列问题引导学生思考:

  (1)这些式子表示的是什么关系?(在学生明确这些式子表示函数关系后,可指出,这是函数。)

  (2)这些函数中的自变量是什么?函数是什么?(在学生分清后,可指出,式子中等号左边的y与s是函数,等号右边是一个代数式,其中的字母x与t是自变量。)

  (3)在这些函数式中,表示函数的自变量的式子,分别是关于自变量的什么式呢?(这题牵扯到有关整式的基本概念,表示函数的自变量的式子也就是等号右边的式子,都是关于自变量的一次式。)

  (4)x的一次式的一般形式是什么?(结合一元一次方程的有关知识,可以知道,x的一次式是kx+b(k≠0)的形式。)

  由以上的层层设问,最后给出一次函数的定义。

  一般地,如果y=kx+b(k,b是常数,k≠0)那么,y叫做x的一次函数。

  对这个定义,要注意:

  (1)x是变量,k,b是常数;

  (2)k≠0 (当k=0时,式子变形成y=b的形式。b是x的0次式,y=b叫做常数函数,这点,不一定向学生讲述。)

  由一次函数出发,当常数b=0时,一次函数kx+b(k≠0)就成为:y=kx(k是常数,k≠0)我们把这样的函数叫正比例函数。

  在讲述正比例函数时,首先,要注意适当复习小学学过的正比例关系,小学数学是这样陈述的:

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

  写成式子是(一定)

  需指出,小学因为没有学过负数,实际的例子都是k>0的例子,对于正比例函数,k也为负数。

  其次,要注意引导学生找出一次函数与正比例函数之间的关系:正比例函数是特殊的一次函数。

  课堂练习:

  教科书13、4节练习第1题.

初中数学教案3

  把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。

  一、教材内容分析

  本节课是数学人教版七年级上册第三章第二节第二小节的内容。这是一节“概念加例题型”课,此种课型中的学习内容一部分是概念,一部分是运用前面的概念解决实际问题的例题。本节课主要内容是利用移项解一元一次方程。是学生学习解一元一次方程的基础,这一部分内容在方程中占有很重要的地位,是解方程、解一元一次不等式、解一元二次不等式的重要基础。这类课一般采用“导学导教,当堂训练”的方式进行,教师指导学生学习的重点一般不放在概念上,要特别留意学生运用概念解题或做与例题类似的习题时,对概念的理解是否到位。

  二、教学目标:

  1.知识与技能:(1)找相等关系列一元一次方程;(2)用移项解一元一次方程。(3)掌握移项变号的基本原则

  2.过程与方法:经历运用方程解决实际问题的过程,发展抽象、概括、分析问题和解决问题的能力,认识用方程解决实际问题的关键是建立相等关系。

  3.情感、态度:通过具体情境引入新问题,在移项法则探究的过程中,培养学生合作意识,渗透化归的思想。

  三、学情分析

  针对七年级学生学习热情高,但观察、分析、概括能力较弱的特点,本节从实际问题入手,让学生通过自己思考、动手,激发学生的求知欲,提高学生学习的兴趣与积极性。在课堂教学中,学生主要采取自学、讨论、思考、合作交流的`学习方式,使学生真正成为课堂的主人,逐步培养学生观察、概括、归纳的能力。

  四、教学重点:利用移项解一元一次方程。

  五、教学难点:移项法则的探究过程。

  六、教学过程:

  (一)情景引入

  引例:请同学们思考这样一个有趣的问题,我国民间流传着许多趣味算题,多以顺口溜的形式表达,请看这样一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一个,一人两个少两个,老头和梨分别是( )

  A.3个老头,4个梨 B.4个老头,3个梨 C.5个老头,6个梨 D.7个老头,8个梨

  设计意图:大部分同学会用算术法(答案代入法)来解答的,而这类问题我们如何用方程来解答呢?激起学生求知的欲望,巧妙过渡,揭示课题。板书课题:解一元一次方程——移项

  (二)出示学习目标

  1.理解移项法,明确移项法的依据,会解形如ax+b=cx+d类型 的一元一次方程。

  2.会建立方程解决简单的实际问题。

  设计意图:这两个目标的达成,也验证了本节课学生自学的效果,这也是本节课的教学重难点。

  (三)导教导学

  1.出示自学指导

  自学教材问题2到例3的内容,思考以下问题:(1)问题2中这批书的总数有哪几种表示法?它们之间有什么关系?本题可作为列方程的依据的等量关系是什么?(2)什么是移项?移项的依据是什么?移项时应该注意什么问题?解形如“ax+b=cx+d”类型的方程中移项起了什么作用?自学例3后请归纳解这类一元一次方程的步骤(8分钟后,比谁能仿照问题2和例3的格式正确解答问题)

  2.学生自学

  学生根据自学提纲进行独立学习,教师巡视,对自学速度慢的、自学能力差的、注意力不够集中的学生给以暗示和帮扶,有利于自学后的成果展示。

  3.交流展示(小组合作展示)

  (合作交流一)教材问题2中这批书的总数有哪几种表示法?它们之间有什么关系?本题哪个相等关系可作为列方程的依据呢?

  问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?

  1)设未知数:设这个班有X名学生,根据两种不同分法这批书的总数就有两种表示方法,即这批书共有(3 X+20)本或(4X-25)本。

  2)找相等关系:这批书的总数是一个定值,表示同一个量的两个不同的式子相等。(板书)

  3)根据等量关系列方程: 3x+20 = 4x-25(板书)

  【总结提升】解决“分配问题”应用题的列方程的基本要点:

  A.找出能贯穿应用题始终的一个不变的量.

  B.用两个不同的式子去表示这个量.

  C.由表示这个不变的量的两个式子相等列出方程.

  设计意图:因为在自学提纲的引领下,每个小组自主学习的效果不同,反馈的意见不同,所以在展示中首先要展示学生对课本例题的理解思路。采取主动自愿的方式,一个小组主讲,其它小组补充。

  (变式训练1)某学校组织学生共同种一批树,如果每人种5棵,则剩下3棵;如果每人种6棵,则缺3棵树苗,求参与种树的人数

  (只设列即可)

  (变式训练2)我国民间流传着许多趣味算题,多以顺口溜的形式表达,请看这样一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一个,一人两个少两个,老头和梨各多少?

  设计意图:检查提问学生对“分配问题”应用题掌握的情况,学生回答后教师板书所列方程为后面教学做好铺垫。学生会带着“如何解这类方程?”的好奇心过渡到下一个环节的学习。

  (合作交流二)什么是移项?移项的依据是什么?移项时应该注意什么问题?解形如“ax+b=cx+d”类型的方程中移项起了什么作用?自学例3后请归纳解这类一元一次方程的步骤。

  (板书 )把等式一边的某项改变符号后,从等式的一边移到另一边,这种变形叫做移项。

  《解一元一次方程——移项》教学设计(魏玉英)

  师:为什么等式(方程)可以这样变形?依据什么?

  (出示)依据等式的基本性质1.即:等式两边都加上或减去同一个数或同一个整式,所得结果仍是等式.

  师:解一元一次方程中“移项”起了什么作用?

  (出示) 通过移项,使等号左边仅含未知数的项,等号右边仅含常数的项,使方程更接近x=a的形式.(与课题对照渗透转化思想)

  (基础训练)抢答:判断下列移项是否正确,如有错误,请修改

  《解一元一次方程——移项》教学设计(魏玉英)

  设计理念:让各个小组凭着势力去抢答。这五个习题重点考察学生对移项的掌握是本节课的重难点,习题分层设计且成梯度分布。

  【归纳板书】 解“ax+b=cx+d”型的一元一次方程的步骤:(1) 移项,(2) 合并同类项,(3) 系数化为1

  (综合训练) 解下列方程(任选两题)

  设计理念:第(2)、(3)两题未知数系数是相同类型的,所以让学生任选一题即可。通过综合训练能让学生更进一步巩固用移项和合并同类项去解方程了。

  (中考试练)若x=2是关于x的方程2x+3m-1=0的解,则m的值为

  设计理念:通过本题的训练让学生明确中考在本节的考点,同时激励学生在数学知识的学习中要抓住知识的核心和重点。

  (四)我总结、我提高:

  通过本节课的学习我收获了。

  设计意图:通过小组之间互相谈收获的方式进行课堂小结,让学生相互检查本节课的学习效果。可以引导学生从本节课获得的知识、解题的思想方法、学习的技巧等方面交流意见。

  (五)当堂检测(50分)

  1.下列方程变形正确的是( )

  A.由-2x=6, 得x=3

  B.由-3=x+2, 得x=-3-2

  C.由-7x+3=x-3, 得(-7+1)x=-3-3

  D.由5x=2x+3, 得x=-1

  2.一批游客乘汽车去观看“上海世博会”。如果每辆汽车乘48人,那么还多4人;如果每辆汽车乘50人,那么还有6个空位,求汽车和游客各有多少?(只设出未知数和列出方程即可)

  3.(20分)已知x=1是关于x的方程3m+8x=m+x的解,求m的值。

  (师生活动)学生独立答题,教师巡回检查,对先答完的学生进行及时批改,并把得满分的学生作为小老师对后解答完的学生的检测进行评定,最后老师进行小结。

  (六)实践活动

  请每一位同学用自己的年龄编一 道“ax+b=cx+d”型的方程应用题,并解答。先在组内交流,选出组内最有创意的一个记在题卡上,自习在全班进行展示 。

  设计意图:

  让学生课后完成,让学生深深体会到数学来源于生活而又服务于生活,体现了数学知识与实际相结合。

初中数学教案4

  一、指导思想

  教育教学工作是一个头绪众多的系统工程,在纷繁的头绪中需要各项工作有序进展,尤为重要的是强化常规,做好细节,教学常规是对学校教学工作的基本要求,落实教学常规是学校教学工作得以正常有序开展的根本保证。只有搞好教学常规才有可能获得成功的教育。教师教学水平的高低体现于教学各个步骤的细节中,空洞地谈教学能力是苍白的,只有用教师的备课情况、讲课细节、作业批改情况。教学常规培养着教师的`基本功,决定着教师的教学能力,可以说教师的教学水平就是在这些常规细节中培养起来。

  二、检查反馈

  本次检查大多数教师都比较重视,检查内容完整、全面。现将检查情况总结如下教案方面的特点与不足。

  特点:

  1、绝大多数教案设计完整,教学重点、难点突出,设置得当,紧紧围绕新课标,例如:刘兴华、孙菊、江文等能突出对学科素养的高度关注。教师撰写的课后反思能体现教师对教材处理的新方法,能侧重对自己教法和学生学法的指导,并且还能对自己不得法的教学手段、方式、方法进行深刻地解剖,能很好地体现课堂教学的反思意识,反思深刻、务实、有针对性。

  2、教学环节齐全,注重引语与小结,使教学设计前后呼应,环节完整。

  3、注重选择恰当的教学方法,注重在灵活多样的教学方法中培养学生的合作意识和创新精神。

  4、教案能体现多媒体教学手段,注重培养学生的探究精神和创新能力。

  不足:

  1、教案后的教学反思不够认真、不够详细,没能对本堂课的得与失作出记录与小结,从中也可以看出我们对课后反思还不够重视。

  2、个别教师教案过于简单。

  作业方面的特点与不足

  特点:

  1、能按进度布置作业,作业设置量度适中,难易适中,上交率较高,且都能做到全批全改。

  2、作业批改公平、公正,有一定的等级评定。教师批改要求严格、细致,能够反映学生作业中的错误做法及纠正措施。

  不足:

  1、对于学生书写的工整性,还需加强教育。

  2、教师在批阅作业时,要稍细心些,发现问题就让学生当时改正,学生也就会逐渐养成做事认真的习惯。

初中数学教案5

  《正方形》教学设计

  教学内容分析:

  ⑴学习特殊的平行四边形—正方形,它的特殊的性质和判定。

  ⑵前面学习了平行四边形、矩形菱形,类比他们的性质与判断,有利于对正方形的研究。

  ⑶对本节的学习,继续培养学生分类研究的思想,并且建立新旧知识的联系,类比的基础上进行归纳,梳理知识,进一步发展学生的推理能力。

  学生分析

  ⑴学生在小学初步认识了正方形,并且本节课之前,学生又学习了几种平行四边形,已经具备了观察研究平行四边形的经验与知识基础。

  ⑵学生在上几节已有了推理的经历,但是对于证明,学生的思维能力还不成熟,有待于提高。

  教学目标:

  ⑴知识与技能:了解正方形是特殊的平行四边形,掌握它的性质和判定,会利用性质与判定进行简单的说理。

  ⑵过程与方法:通过类比前边的四边形的研究,探索并归纳正方形的性质与判定。通过运用提高学生的推理能力。

  ⑶情感态度与价值观:在学习中体会正方形的完美性,通过活动获得成功的喜悦与自信。

  重点:掌握正方形的性质与判定,并进行简单的推理。

  难点:探索正方形的判定,发展学生的推理能

  教学方法:类比与探究

  教具准备:可以活动的四边形模型。

  一、教学分析

  (一)教学内容分析

  1.教材:义务教育课程标准实验教科书《数学》九年级上册(人民教育出版社)

  2.本课教学内容的地位、作用,知识的前后联系

  《中心对称图形》是新人教版九年级数学上册第二十三章第二单元第二节课的内容。本节教材属于图形变换的内容,是在学习了“轴对称和轴对称图形”、“旋转和中心对称”后的一种对称图形,因此涉及归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义。

  3.本课教学内容的特点,重点分析体现新课程理念的特点

  本节课主要介绍中心对称图形的概念、中心对称图形的识别、中心对称图形与轴对称图形与中心对称的比较、中心对称图形的性质。为使学生感受、理解知识的产生和发展过程,培养学生的抽象思维,我将通过:(1)例举日常生活中的一些旋转对称图形引出中心对称图形的概念;(2)引导学生观察、猜想、实验、归纳、类比等方法探究中心对称图形的性质,(3)通过多媒体演示使学生对中心对称图形的性质有直观的表象。我认为这环环相扣、层层深入、循序渐进的活动过程,符合新课程标准理念和学生建构知识的规律,有利于激发学生的学习情趣。

  (二)教学对象分析

  1.学生所在地区、学校及班级的特色

  我授课的班级是西安市阎良区振兴中学九年级一班,作为九年级的学生,在图形的对称方面已经积累一些经验,已经具有一定的观察、猜想、实验、归纳、类比等研究图形对称变换的能力;班级学生具有个性活泼,思维活跃,对各种事物充满好奇,学习情绪易于调动,学习积极性高的特点,但学生的抽象思维能力个体差异较大,并且班级中已出现分化现象。

  2.学生的年龄特点和认知特点

  班级学生的年龄大多在15岁到17岁间。他们已具备了一定的独立分析、解决问题的能力,表现欲望较为强烈,喜好发表个人见解并且具有一定的合作交流、共同探讨的意识与经验,因此在课程内容的安排中,适当地创设一些具有一定思维深度的问题,加强学生在学习过程中自主探索与合作交流的紧密结合,促使学生在探究的过程中,更多地获得成功的体验,感受学习思考的乐趣。

  教学过程

  一:复习巩固,建立联系

  【教师活动

  问题设置:①平行四边形、矩形,菱形各有哪些性质?

  ②()的四边形是平行四边形。()的.平行四边形是矩形。()的平行四边形是菱形。()的四边形是矩形。()的四边形是菱形。

  【学生活动

  学生回忆,并举手回答,对于填空题,让更多的学生参与,说出更多的答案。

  【教师活动

  评析学生的结果,给予表扬。

  总结性质从边角对角线考虑,在填空时也考虑这几方面之外,还应该考虑三者之间的联系与区别。

  演示平行四边形变为矩形菱形的过程。

  二:动手操作,探索发现

  活动一:拿出一张矩形纸片,拉起一角,使其宽AB落在长AD边上,如下图所示,沿着B′E剪下,能得到什么图形?

  【学生活动

  学生拿出自备矩形纸片,动手操作,不难发现它是正方形。

  设置问题:①什么是正方形?

  观察发现,从活动中体会。

  【教师活动】:演示矩形变为正方形的过程,菱形变为正方形的过程。

  【学生活动】认真观察变化过程,思考之间的联系,举手回答设置问题。

  设置问题②正方形是矩形吗,是菱形吗?是平行四边形吗?为什么?

  【学生活动】

  小组讨论,分组回答。

  【教师活动】

  总结板书:㈠(一组邻边相等)的矩形是正方形,(一个角是直角)的菱形是正方形。

  设置问题③正方形有那些性质?

  【学生活动】

  小组讨论,举手抢答。

  【教师活动

  表扬学生发言,板书学生发现,㈡正方形每一条对角线平分一组对角

  活动二:拿出活动一得到的正方形折一折,正方形是轴对称图形吗?有几条对称轴?

  学生活动

  折纸发现,说出自己的发现。得到正方形的又一性质。正方形是轴对称图形。

  教师活动

  演示从平行四边形变为正方形的过程,擦去板书㈠中的括号内容,出示一下问题:你还可以怎样填空?

  ()的菱形是正方形,()的矩形是正方形,()的平行四边形是正方形,()的四边形是正方形。

  学生活动

  小组充分交流,表达不同的意见。

  教师活动

  评析活动,总结发现:

  一组邻边相等的矩形是正方形,对角线互相平分的矩形是正方形;

  有一个角是直角的菱形是正方形,对角线相等的菱形是正方形,;

  有一组邻边相等且有一个角是直角的平行四边形是正方形,对角线相等且互相平分的平行四边形是正方形;

  四边相等且有一角是直角的四边形是正方形,对角线相等且互相垂直平分的四边形是正方形。

  以上是正方形的判定方法。

  正方形是一个多么完美的平行四边形呀?大家互相说一说,它的完美体现在哪里?生活中有哪些利用正方形的例子?

  学生交流,感受正方形

  三,应用体验,推理证明。

  出示例一:正方形ABCD的两条对角线AC,BD交与O,AB长4cm,求AC,AO长,及的度数。

  方法一解:∵四边形ABCD是正方形

  ∴∠ABC=90°(正方形的四个角是直角)

  BC=AB=4cm(正方形的四条边相等)

  ∴=45°(等腰直角三角形的底角是45°)

  ∴利用勾股定理可知,AC===4cm

  ∵AO=AC(正方形的对角线互相平分)

  ∴AO=×4=2cm

  方法二:证明△AOB是等腰直角三角形,即可得证。

  学生活动

  独立思考,写出推理过程,再进行小组讨论,并且各小组指派代表写在黑板上,共同交流。

  教师活动

  总结解题方法,从正方形的性质全面考虑,准确利用条件,减少麻烦。评析解题步骤,表扬突出学生。

  出示例二:在正方形ABCD中,E、F、G、H分别在它的四条边上,且AE=BF=CG=DH,四边形EFGH是什么特殊的四边形,你是如何判断的?

  学生活动

  小组交流,分析题意,整理思路,指名口答。

  教师活动

  说明思路,从已知出发或者从已有的判定加以选择。

  四,归纳新知,梳理知识。

  这一节课你有什么收获?

  学生举手谈论自己的收获。

  请把平行四边形,矩形,菱形,正方形分别填写在下图的ABCDC处,说明它们的关系。

  发表评论

  教学目标:

  情意目标:培养学生团结协作的精神,体验探究成功的乐趣。

  能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。

  认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。

  教学重点、难点

  重点:等腰梯形性质的探索;

  难点:梯形中辅助线的添加。

  教学课件:PowerPoint演示文稿

  教学方法:启发法、

  学习方法:讨论法、合作法、练习法

  教学过程:

  (一)导入

  1、出示图片,说出每辆汽车车窗形状(投影)

  2、板书课题:5梯形

  3、练习:下列图形中哪些图形是梯形?(投影)

  结梯形概念:只有4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。

  5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)

  6、特殊梯形的分类:(投影)

  (二)等腰梯形性质的探究

  【探究性质一】

  思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影)

  猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答)

  如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C

  想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么?

  等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。

  【操练】

  (1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影)

  (2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影)

  【探究性质二】

  如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)

  如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影)

  等腰梯形性质:等腰梯形的两条对角线相等。

  【探究性质三】

  问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答)

  问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)

  等腰梯形性质:同以底上的两个内角相等,对角线相等

  (三)质疑反思、小结

  让学生回顾本课教学内容,并提出尚存问题;

  学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。

初中数学教案6

  教学内容:在学生初步了解,年月日、季度的概念后,寻找历法与扑克之间的关系。

  教学目标:1、通过对"扑克"有趣的研究,培养起学生对生活中平常小事的.关注。

  2、调动学生丰富的联想,养成一种思考的习惯。

  教学重难点:"扑克"与年月日、季度的联系。

  教学过程:

  一、谈话引入

  师:同学们,这个你们一定见过吧!这是我们生活中比较常见的"扑克"。谁愿意告诉我们,你对扑克的了解呢?

  生:......

  (教师补充,引发学生的好奇心。)

  师: "扑克"还有一种作用,而且与数学有关!

  生:......

  二、新课

  1、桃、心、梅、方4种花色可以代表一年四季春、夏、秋、冬

  2、大王=太阳 小王=月亮 红=白天 黑=夜晚

  3、A=1 2=2 3=3 4=4 5=5 6=6 7=7 8=8 9=9 10=10 J=11 Q=12 K=13 大王=1 小王=1

  4、所有牌的和+小王=平年的天数

  所有牌的和+小王+大王=闰年的天数

  5、扑克中的K、Q、J共有12张,3×4=12,表示一年有12个月

  6、365÷7≈52一年有52个星期。54张牌中除去大王、小王有52张是正牌,表示一年有52个星期。

  7、一种花色的和=一个季度的天数

  一种花色有13张牌=一个季度有13个星期

  三、小结

  生活中有很多的数学,他每时每刻都在我们的身边出现,只是我们大家没有注意到。请大家都要学会留心观察,做生活的有心人。

初中数学教案7

  1.知识结构

  2.重点和难点分析

  重点:本节的重点是平行四边形的概念和性质.虽然平行四边形的概念在小学学过,但对于概念本质属性的理解并不深刻,为了加深学生对概念的理解,为以后学习特殊的平行四边形打下基础,所以教师不要忽视平行四边形的概念教学.平行四边形的性质是以后证明四边形问题的基础,也是学好全章的关键.尤其是平行四边形性质定理的推论,推论的应用有两个条件:

  一个是夹在两条平行线间;

  一个是平行线段,具备这两个条件才能得出一个结论平行线段相等,缺少任何一个条件结论都不成立,这也是学生容易犯错的地方,教师要反复强调.

  难点:本节的难点是平行四边形性质定理的灵活应用.为了能熟练的应用性质定理及其推论,要把性质定理和推论的条件和结论给学生讲清楚,哪几个条件,决定哪个结论,如何用数学符号表示即书写格式,都要在讲练中反复强化.

  3.教法建议

  (1)教科书一开始就给出了平行四边形的定义,我感觉这样引入新课,不利于调动学生的积极性.自己设计了一个动画,建议老师们用它作为本节的引入,既可以激发学生的学习兴趣,又可以激活学生的思维.

  (2)在生产或生活中,平行四边形是常见图形之一,教师可以多给学生提供一些平行四边形的图片,增加学生的感性认识,然后,让他们自己总结出平行四边形的定义,教师最后做总结.平行四边形是特殊的四边形,要判定一个四边形是不是平行四边形,要判断两点:首先是四边形,然后四边形的两组对边分别平行.平行四边形的定义既是平行四边形的一个判定方法,又是平行四边形的一个性质.

  (3)对于教师来说讲课固然重要,但讲完课后有目的的强化训练也是不可缺少的,通过做题,帮助学生更好的理解所讲内容,也就是我们平时说的要反思回顾,总结深化.

  平行四边形及其性质第一课时

  一、素质教育目标

  (一)知识教学点

  1.使学生掌握平行四边形的概念,理解两条平行线间的距离的概念.

  2.掌握平行四边形的性质定理1、2.

  3.并能运用这些知识进行有关的证明或计算.

  (二)能力训练点

  1.知道解决平行四边形问题的基本思想是化为三角形问题来处理,渗透转化思想.

  2.通过推导平行四边形的性质定理的过程,培养学生的推导、论证能力和逻辑思维能力.

  (三)德育渗透点

  通过要求学生书写规范,培养学生科学严谨的学风.

  (四)美育渗透点

  通过学习,渗透几何方法美和几何语言美及图形内在美和结构美

  二、学法引导

  阅读、思考、讲解、分析、转化

  三、重点·难点·疑点及解决办法

  1.教学重点:平行四边形性质定理的应用

  2.教学难点:正确理解两条平行线间的距离的概念和运用性质定理2的推论;在计算或证明中综合应用本节前一章的知识.

  3.疑点及解决办法:关于性质定理2的推论;两点的距离,点到直线的距离,两平行直线中间的距离的区别与联系,注重对概念的教学,使学生深刻理解上述概念,搞清它们之间的关系;平行四边形的高有关问题.

  四、课时安排

  2课时

  五、教具学具准备

  教具(做两个全等的三角形),投影仪,投影胶片,小黑板,常用画图工具

  六、师生互动活动设计

  教师复习提问,学习思考口答;教师设疑引思,学生讨论分析;师生共同总结结论,教师示范讲解,学生达标练习

  第一课时

  七、教学步骤

  【复习提问】

  1.什么叫做四边形?什么叫四边形的一组对边?

  2.四边形的两组对边在位置上有几种可能?

  (教师随着学生回答画出图1)

  图1

  【引入新课】

  在四边形中,我们常见的实用价值最大的就是平行四边形,如汽车的防护链,无轨电车的击电杆都是平行四边形的形象,平行四边形有什么性质呢?这是这节课研究的主要内容(写出课题).

  【讲解新课】

  1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.

  注意:一个四边形必须具备有两组对边分别平行才是平行四边形,反过来,平行四边形就一定是有“两组对边分别平行”的'一个四边形.因此定义既是平行四边形的一个判定方法(定义判定法)又是平行四边形的一个性质.

  2.平行四边形的表示:平行四边形用符号“

  ”表示,如图1就是平行四边形

  ,记作“

  ”.

  align=middle>

  图1

  3.平行四边形的性质

  讲解平行四边形性质前必须使学生明确平行四边形从属于四边形,因此它具有四边形的一切性质(共性),同时它又是特殊的四边形,当然还有其特性(个性),下面介绍的性质就是其特性,这是一般四边形所不具有的.

  平行四边形性质定理1:平行四边形的对角相等.

  平行四边形性质定理2:平行四边形对边相等.

  (教具用两个全等的三角形拼凑的平行四边形演示,由此得到证明以上两个定理的方法.如图2)

  图2如图3

  所以四边形是平行四边形,所以.由此得到

  推论:夹在两条平行线间的平行线段相等.

  图3

  要注意:必须有两个平行,即夹两条平行线段的两条直线平行,被夹的两条线段平行,缺一不可,如图4中的几种情况都不可以推出图4

  4.平行线间的距离

  从推论可以知道,如果两条直线平行,那么从一条直线上所有各点到另一条直线的距离相等,如图5.

  我们把两条平行线中一条直线上任意一点到另一条直线的距离,叫做平行线的距离.

  图5

  注意:(1)两相交直线无距离可言.

  (2)连结两点间的线段的长度叫两点间的距离,从直线外一点到一条直线的垂线段的长,叫点到直线的距离.两条平行线中一条直线上任意一点到另一条直线的距离,叫做这两条平行线的距离,一定要注意这些概念之间的区别与联系.

  例1 已知:如图1,

初中数学教案8

  教学目标:

  1、 在现实情境中理解线段、射线、直线等简单图形(知识目标)

  2、 会说出线段、射线、直线的特征;会用字母表示线段、射线、直线(能力目标)

  3、 通过操作活动,了解两点确定一条直线等事实,积累操作活动的经验,培养学生的兴趣、爱好,感受图形世界的丰富多彩。(情感态度目标)

  教学难点:了解“两点确定一条直线”等事实,并应用它解决一些实际问题

  教 具: 多媒体、棉线、三角板

  教学过程:

  情景创设:观察电脑展示图,使学生感受图形世界的丰富多彩,激发学习兴趣。

  如何来描述我们所看到的现象?

  教学过程:

  1、 一段拉直的棉线可近似地看作线段

  师生画线段

  演示投影片1:①将线段向一个方向无限延长,就形成了______

  学生画射线

  ②将线段向两个方向无限延长就形成了_______

  学生画直线

  2、 讨论小组交流:

  ① 生活中,还有哪些物体可以近似地看作线段、射线、直线?

  (强调近似两个字,注意引导学生线段、射线、直线是从生活上抽象出来的`)

  ②线段、射线、直线,有哪些不同之处, 有哪些相同之处?

  (鼓励学生用自己的语言描述它们各自的特点)

  3、 问题1:图中有几条线段?哪几条?

  “要说清楚哪几条,必须先给线段起名字!”从而引出线段的记法。

  点的记法: 用一个大写英文字母

  线段的记法:①用两个端点的字母来表示

  ②用一个小写英文字母表示

  自己想办法表示射线,让学生充分讨论,并比较如何表示合理

  射线的记法:

  用端点及射线上一点来表示,注意端点的字母写在前面

  直线的记法:

  ① 用直线上两个点来表示

  ② 用一个小写字母来表示

  强调大写字母与小写字母来表示它们时的区别

  (我们知道他们是无限延长的,我们为了方便研究约定成俗的用上面的方法来表示它们。)

  练习1:读句画图(如图示)

  (1) 连BC、AD

  (2) 画射线AD

  (3) 画直线AB、CD相交于E

  (4) 延长线段BC,反向延长线段DA相交与F

  (5) 连结AC、BD相交于O

  练习2:右图中,有哪几条线段、射线、直线

  4、 问题2 请过一点A画直线,可以画几条?过两点A、B呢?

  学生通过画图,得出结论:过一点可以画无数条直线

  经过两点有且只有一条直线

  问题3 如果你想将一硬纸条固定在硬纸板上,至少需要几根图钉?

  为什么?(学生通过操作,回答)

  小组讨论交流:

  你还能举出一个能反映“经过两点有且只有一条直线”的实例吗?

  适当引导:栽树时只要确定两个树坑的位置,就能确定同一行的树坑所在的直线。建筑工人在砌墙时,经常在两个墙角分别立一根标志杆,在两根标志杆之间拉一根绳,沿这根绳就可以砌出直的墙来。

  5、 小结:

  ① 学生回忆今天这节课学过的内容

  进一步清晰线段、射线、直线的概念

  ② 强调线段、射线、直线表示方法的掌握

  6、 作业:①阅读“读一读” P121

  ②习题4的1、2、3。4作为思考题

初中数学教案9

  一、课题

  27.3 过三点的圆

  二、教学目标

  1.经历过一点、两点和不在同一直线上的三点作圆的过程.

  2.. 知道过不在同一条直线上的三个点画圆的方法

  3.了解三角形的外接圆和外心.

  三、教学重点和难点

  重点:经历过一点、两点和不在同一直线上的三点作圆的过程.

  难点:知道过不在同一条直线上的三个点画圆的方法.

  四、教学手段

  现代课堂教学手段

  五、教学方法

  学生自己探索

  六、教学过程设计

  (一)、新授

  1.过已知一个点A画圆,并考虑这样的圆有多少个?

  2.过已知两个点A、B画圆,并考虑这样的圆有多少个?

  3.过已知三个点A、B、C画圆,并考虑这样的圆有多少个?

  让学生以小组为单位,进行探索、思考、交流后,小组选派代表向全班学生展示本小组的探索成果,在展示后,接受其他学生的质疑.

  得出结论:过一点可以画无数个圆;过两点也可以画无数个圆;这些圆的圆心都在连结这两点的线段的垂直平分线上;经过不在同一直线上的三个点可以画一个圆,并且这样的圆只有一个.

  不在同一直线上的`三个点确定一个圆.

  给出三角形外接圆的概念:经过三角形三个顶点可以作一个圆,这个圆叫作三角形的外接圆,外接圆的圆心叫做三角形的外心.

  例:画已知三角形的外接圆.

  让学生探索课本第15页习题1.

  一起探究

  八年级(一)班的学生为老区的小朋友捐款500元,准备为他们购买甲、乙 两种图书共12套.已知甲种图书每套45元,乙种图书每套40元.这些钱最多能买甲种图书多少套?

  分析:带领学生完成课本第13页的表格,并完成2、3 问题,使学生清楚通过列表可以更好的分析题目,对于情景较为复杂的问题情景可采用这种分析方法解题.另外通过此题,使学生认识到:在应不等式解决实际问题时,当求出不等式的解集后,还要根据问题的实际意义确定问题的解.

  (二)、小结

  七、练习设计

  P15习题2、3

  八、教学后记

  后备练习:

  1. 已知一个三角形的三边长分别是 ,则这个三角形的外接圆面积等于 .

  2. 如图,有A, ,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()

  A.在AC,BC两边高线的交点处

  B.在AC,BC两边中线的交点处

  C.在AC,BC两边垂直平分线的交点处

  D.在A,B两内角平分线的交点处

初中数学教案10

  教学目标:

  (一)知识与技能

  理解单项式及单项式系数、次数的概念;能准确迅速地确定一个单项式的系数和次数;会用含字母的式子表示实际问题中的数量关系。

  (二)过程与方法

  1.在经历用字母表示数量关系的过程中,发展符号感;

  2. 通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力

  (三)情感态度价值观

  1.通过丰富多彩的现实情景,让学生经历从具体问题中抽象出数量关系,在解决问题中了解数学的价值,增长“用数学”的信心.

  2.通过用含字母的式子描述现实世界中的数量关系,认识到它是解决实际问题的重要数学工具之一。

  教学重、难点:

  重点:单项式及单项式系数、次数的概念。

  难点:单项式次数的概念;单项式的书写格式及注意点。

  教学方法:

  引导——探究式

  在感性材料的基础上,学生自主探究现实情景中用字母表示数的问题,通过观察、分析、比较,找出材料中个体的共同点,教师引导学生共同抽象、概括单项式及相关的概念.

  教具准备:

  多媒体课件、小黑板.

  教学过程:

  一、 创设情境,引入新课

  出示一张奔驰在青藏铁路线上的列车照片,并配上歌曲《天路》,边欣赏边向学生介绍青藏铁路所创造的历史之最。

  情境问题:

  青藏铁路西线上,在格尔木到拉萨之间有一段很长的冻土地段。列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答:列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?

  设计意图:从学生熟悉的情境出发,创设情境,让学生感受青藏铁路的伟大成就,激发

  爱国主义情感,得到一次情感教育。

  解:根据路程、速度、时间之间的关系:路程=速度×时间

  2小时行驶的路程是:100×2=200(千米)

  3小时行驶的路程是:100×3=300(千米)

  t小时行驶的路程是:100×t=100t(千米)

  注意:在含有字母的式子中若出现乘号,通常将乘号写作“ · ”或省略不写。

  如:100×a可以写成100a或100a。

  代数式:用基本的运算符号(运算包括加、减、乘除、乘方等)把数和表示数的字母连接起来的式子。

  代数式可以简明地表示数量和数量的关系,本节我们就来学习最基本也是最重要的一类代数式整式。

  设计意图:从学生已有的数学经验:路程=速度×时间出发,建立新旧知识之间的联系

  让学生历一个从一般到特殊再到一般的认识过程,发展学生的认知观念。

  二、合作交流,探究新知

  探究

  思考:用含字母的式子填空(独立完成),并观察列出的式子有什么共同特点(小组可交流讨论)。

  1、边长为a的正方体的表面积是__,体积是__.

  2、铅笔的单价是x元,圆珠笔的单价是铅笔的2.5倍,则圆珠笔的单价是___元。

  3、一辆汽车的速度是v千米∕小时,它t小时行驶的路程为__千米。

  4、数n的相反数是__。

  解:(1)6a2、 a3 (2)2.5x (3) vt (4)-n

  思考:它们有什么共同的特点?

  6a 2=6·a·a a3=a·a·a 2.5x=2.5·x vt=v·t -n=-1·n

  单项式:数与字母、字母与字母的乘积。

  注意:单独的一个数或字母也是单项式。

  设计意图:从熟悉的实际背景出发,充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,获得数学猜想和数学经验,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。

  火眼金睛

  下列各代数式中哪些是单项式哪些不是?

  (1)a (2) 0 (3) a2

  (4) 6a (5)

  (6)

  (7)3a+2b (8)xy2

  设计意图:加强学生对不同形式的单项式的直观认识。

  解剖单项式

  系数:单项式中的数字因数。

  如:-3x的系数是 ,-ab的系数是 , 的系数是 。

  次数:一个单项式中的所有字母的指数的和。

  如:-3x的次数是 ,ab的次数是 。

  小试身手

  单项式 2a 2 -1.2h xy2 -t2 -32x2y

  系数

  次数

  设计意图:了解学生对单项式系数、次数的概念是否理解,找出存在的问题,从而进一步巩固概念。

  单项式的注意点:

  (1)数与字母相乘时,数应写在字母的___,且乘号可_________;

  (2)带分数作为系数时,应改写成_______的`形式;

  (3)式子中若出现相除时,应把除号写成____的形式;

  (4)把“1”或“-1”作为项的系数时,“1”可以__不写。

  行家看门道

  ①1x ②-1x

  ③a×3 ④a÷2

  ⑤ ⑥m的系数为1,次数为0

  ⑦ 的系数为2,次数为2

  设计意图:单项式的书写和表示有其特有的格式和注意点,通过以上两个题目让学生进一步明确注意点。

  三、例题讲解,巩固新知

  例1:用单项式填空,并指出它们的系数和次数:

  (1)每包书有12册,n包书有 册;

  (2)底边长为a,高为h的三角形的面积 ;

  (3)一个长方体的长和宽都是a,高是h,它的体积是 ;

  (4)一台电视机原价a元,现按原价的9折出售,这台电视机现在的售价

  为 元;

  (5)一个长方形的长0.9,宽是a,这个长方形的面积是 .

  解:(1)12n,它的系数是12,次数是1

  (2) ,它的系数是 , 次数是2;

  (3)a2h,它的系数是1,次数是3;

  (4)0.9a,它的系数是0.9,次数是1;

  (5)0.9a,它的系数是0.9,次数是1。

  设计意图:学生能用单项式表示简单的实际问题中的数量关系,并进一步巩固单项式的系数、次数的概念。

  试一试

  你还能赋予0.9a一个含义吗?

  设计意图:同一个式子可以表示不同的含义,通过这个例子让学生进一步体会式子更具有一般性,而且发散学生思维。

  大胆尝试

  写出一个单项式,使它的系数是2,次数是3.

  设计意图:充分发挥学生的想象力,让每一个学生都有获得成功的体验,为不同程度的学生一个展示自我的机会,激发他们的学习兴趣。

  四、拓展提高

  尝试应用

  用单项式填空,并指出它们的系数和次数:

  (1)全校学生总数是x,其中女生占总数48%,则女生人数是 ,男生人数是 ;

  (2)一辆长途汽车从杨柳村出发,3小时后到达相距s千米的溪河镇,这辆长途汽车的平均速度是 ;

  (3)产量由m千克增长10%,就达到 千克;

  设计意图:让学生感受单项式在实际生活中的应用,进一步掌握单项式及单项式系数、次数的概念。

  能力提升

  1、已知-xay是关于x、y的三次单项式,那么a= ,b= .

  2、若-ax2yb+1是关于x、y的五次单项式,且系数为-3,则a= ,b= .

  设计意图:照顾学有余力的学生,拓展学生思维,让学生体会跳一跳、摘桃子的乐趣。

  五、小结:

  本节课你感受到了吗?

  生活中处处有数学

  本节课我们学了什么?你能说说你的收获吗?

  1、单项式的概念: 数与字母、字母与字母的乘积。

  2、单项式的系数、次数的概念。

  系数:单项中的数字因数;

  次数:单项中所有字母的指数和。

  3、会用单项式表示实际问题中的数量关系,注意列式时式子要规范书写。

  设计意图:通过回顾和反思,让学生看到自己的进步,激励学生,使学生相信自己在今后的学习中不断进步,不断积累数学活动经验,促进学生形成良好的心理品质。

  结束寄语

  悟性的高低取决于有无悟“心”,其实,人与人的差别就在于你是否去思考,去发现!

  设计意图:这是对学生的激励也是对学生的一种期盼,可以增进师生间的情感交流。

  六、板书设计

  2.1 整式

  单项式概念 探究 例1 多

  单项式的系数概念 观察交流 尝试应用 媒

  单项式的次数概念 能力提升 体

  七、作业:

  1.作业本(必做)。

  2. 请下面图片设计一个故事情境,要求其中包含的数量关系能够用单项式表示,并且指出它们的系数和次数(选做)。

  设计意图:布置分层作业,既让学生掌握基础知识,又使学有余力的学生有所提高。让学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,活跃学生思维,使学生能够透彻理解知识,同时培养同学之间的竞争意识。

  八、设计理念:

  本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习。为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫。

  针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将提供大量感性材料,以启发引导为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,同时注重培养学生由感性认识上升到理性认识,为进一步学习同类项打下坚实的基础。

初中数学教案11

  知识技能目标

  1、理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质;

  2、利用反比例函数的图象解决有关问题。

  过程性目标

  1、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质;

  2、探索反比例函数的图象的性质,体会用数形结合思想解数学问题。

  教学过程

  一、创设情境

  上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线。那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质。

  二、探究归纳

  1、画出函数的图象。

  分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x≠0。

  解

  1、列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:

  2、描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(—6,—1)、(—3,—2)、(—2,—3)等。

  3、连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支。这两个分支合起来,就是反比例函数的图象。

  上述图象,通常称为双曲线(hyperbola)。

  提问这两条曲线会与x轴、y轴相交吗?为什么?

  学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤)。

  学生讨论、交流以下问题,并将讨论、交流的结果回答问题。

  1、这个函数的图象在哪两个象限?和函数的图象有什么不同?

  2、反比例函数(k≠0)的图象在哪两个象限内?由什么确定?

  3、联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?

  反比例函数有下列性质:

  (1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

  (2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。

  注

  1、双曲线的两个分支与x轴和y轴没有交点;

  2、双曲线的两个分支关于原点成中心对称。

  以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?

  在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少。

  在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小。

  三、实践应用

  例1若反比例函数的图象在第二、四象限,求m的值。

  分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+1<0,由这两个条件可解出m的值。

  解由题意,得解得。

  例2已知反比例函数(k≠0),当x>0时,y随x的增大而增大,求一次函数y=kx—k的图象经过的象限。

  分析由于反比例函数(k≠0),当x>0时,y随x的增大而增大,因此k<0,而一次函数y=kx—k中,k<0,可知,图象过二、四象限,又—k>0,所以直线与y轴的交点在x轴的上方。

  解因为反比例函数(k≠0),当x>0时,y随x的增大而增大,所以k<0,所以一次函数y=kx—k的图象经过一、二、四象限。

  例3已知反比例函数的图象过点(1,—2)。

  (1)求这个函数的解析式,并画出图象;

  (2)若点A(—5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上?

  分析(1)反比例函数的图象过点(1,—2),即当x=1时,y=—2。由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;

  (2)由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原点的对称点是否在图象上。

  解(1)设:反比例函数的解析式为:(k≠0)。

  而反比例函数的图象过点(1,—2),即当x=1时,y=—2。

  所以,k=—2。

  即反比例函数的解析式为:。

  (2)点A(—5,m)在反比例函数图象上,所以,

  点A的坐标为。

  点A关于x轴的对称点不在这个图象上;

  点A关于y轴的对称点不在这个图象上;

  点A关于原点的对称点在这个图象上;

  例4已知函数为反比例函数。

  (1)求m的值;

  (2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?

  (3)当—3≤x≤时,求此函数的最大值和最小值。

  解(1)由反比例函数的定义可知:解得,m=—2。

  (2)因为—2<0,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大。

  (3)因为在第个象限内,y随x的增大而增大,

  所以当x=时,y最大值=;

  当x=—3时,y最小值=。

  所以当—3≤x≤时,此函数的.最大值为8,最小值为。

  例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米。

  (1)写出用高表示长的函数关系式;

  (2)写出自变量x的取值范围;

  (3)画出函数的图象。

  解(1)因为100=5xy,所以。

  (2)x>0。

  (3)图象如下:

  说明由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支。

  四、交流反思

  本节课学习了画反比例函数的图象和探讨了反比例函数的性质。

  1、反比例函数的图象是双曲线(hyperbola)。

  2、反比例函数有如下性质:

  (1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

  (2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。

  五、检测反馈

  1、在同一直角坐标系中画出下列函数的图象:

  (1);(2)。

  2、已知y是x的反比例函数,且当x=3时,y=8,求:

  (1)y和x的函数关系式;

  (2)当时,y的值;

  (3)当x取何值时,?

  3、若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值。

  4、已知反比例函数经过点A(2,—m)和B(n,2n),求:

  (1)m和n的值;

  (2)若图象上有两点P1(x1,y1)和P2(x2,y2),且x1<0

初中数学教案12

  教学目标

  1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

  2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;

  3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

  4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。

  教学建议

  1. 知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。

  2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法 ,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解:

  (1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.

  (2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2,m都是代数式.

  等都不是代数式.

  3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。

  如:说出代数式7(a-3)的意义。

  分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。

  4.书写代数式的注意事项:

  (1)代数式中数字与字母或者字母与字母相乘时,通常把乘号简写作“·”或省略不写,同时要求数字应写在字母前面.

  如3×a ,应写作3.a 或写作3a ,a×b 应写作3.a 或写作ab .带分数与字母相乘,应把带分数化成假分数,

  #FormatImgID_0#

  .数字与数字相乘一般仍用“×”号.

  (2)代数式中有除法运算时,一般按照分数的写法来写.

  (3)含有加减运算的代数式需注明单位时,一定要把整个式子括起来.

  5.对本节例题的分析:

  例1是用代数式表示几个比较简单的数量关系,这些小学都学过.比较复杂一些的数量关系的代数式表示,课文安排在下一节中专门介绍.

  例2是说出一些比较简单的代数式的意义.因为代数式中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个代数式所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已.

  6.教法建议

  (1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。

  (2)在本节的学习过程中,要使学生理解代数式的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是代数式,理清代数式中的运算和运算顺序,才能正确说出一个代数式所表示的数量关系,从而认识字母表示数的意义——普遍性、简明性,也为列代数式做准备。

  (3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。

  (4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。

  (5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。

  7.教学重点、难点:

  重点:用字母表示数的意义

  难点:学会用字母表示数及正确说出一个代数式所表示的数量关系。

  教学设计示例

  课堂教学过程设计

  一、从学生原有的认知结构提出问题

  1在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?

  (通过启发、归纳最后师生共同得出用字母表示数的五种运算律)

  (1)加法交换律 a+b=b+a;

  (2)乘法交换律 a·b=b·a;

  (3)加法结合律 (a+b)+c=a+(b+c);

  (4)乘法结合律 (ab)c=a(bc);

  (5)乘法分配律 a(b+c)=ab+ac

  指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;

  (2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数

  2(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少?

  3若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?

  4(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?

  (用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米)

  此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b,s/t 以及a2等等都叫代数式.那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容.

  三、讲授新课

  1代数式

  单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式.学习代数,首先要学习用代数式表示数量关系,明确代数上的意义

  2举例说明

  例1 填空:

  (1)每包书有12册,n包书有__________册;

  (2)温度由t℃下降到2℃后是_________℃;

  (3)棱长是a厘米的正方体的体积是_____立方厘米;

  (4)产量由m千克增长10%,就达到_______千克

  (此例题用投影给出,学生口答完成)

  解:(1)12n; (2)(t-2); (3)a3; (4)(1+10%)m

  例2 说出下列代数式的意义:

  解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积;

  (5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方

  说明:(1)本题应由教师示范来完成;

  (2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等

  例3 用代数式表示:

  (1)m与n的和除以10的商;

  (2)m与5n的差的平方;

  (3)x的2倍与y的和;

  (4)ν的立方与t的3倍的积

  分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面

  四、课堂练习

  1填空:(投影)

  (1)n箱苹果重p千克,每箱重_____千克;

  (2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米;

  (3)底为a,高为h的三角形面积是______;

  (4)全校学生人数是x,其中女生占48%?则女生人数是____,男生人数是____

  2说出下列代数式的意义:(投影)

  3用代数式表示:(投影)

  (1)x与y的和; (2)x的平方与y的'立方的差;

  (3)a的60%与b的2倍的和; (4)a除以2的商与b除3的商的和

  五、师生共同小结

  首先,提出如下问题:

  1本节课学习了哪些内容?2用字母表示数的意义是什么?

  3什么叫代数式?

  教师在学生回答上述问题的基础上,指出:①代数式实际上就是算式,字母像数字一样也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号

  六、作业

  1一个三角形的三条边的长分别的a,b,c,求这个三角形的周长

  2张强比王华大3岁,当张强a岁时,王华的年龄是多少?

  3飞机的速度是汽车的40倍,自行车的速度是汽车的1/3 ,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?

  4a千克大米的售价是6元,1千克大米售多少元?

  5圆的半径是R厘米,它的面积是多少?

  6用代数式表示:

  (1)长为a,宽为b米的长方形的周长;

  (2)宽为b米,长是宽的2倍的长方形的周长;

  (3)长是a米,宽是长的1/3 的长方形的周长;

  (4)宽为b米,长比宽多2米的长方形的周长

初中数学教案13

  初中数学分层次教学案例

  【案例主题:】学生参与教学,体现了现代教学理念:活动、合作、自由、民主、创新。

  【背景:】我在进行数学七年级上册图形的认识的应用教学时,处理定理时,随着教学过程的深入,很有感想:??

  例题:课本p123证明两个角之间的关系,

  请同学们总结一下他们可能出现的情况。

  【活动过程】师:谁能总结一下判定两个角比较大小的方法?(学生都在紧张的思考中)(突然间,我发现一名平时学习较困难的学生闫家衔这次第一个举起了手,很惊奇,便马上让他发言了。也有了我思想上的一次飞跃。)

  生:我认为前面,度量,而刚才第一条,第二条的叠合法。(这时,教室里鸦雀无声,个别同学在讥笑,这位学生顿时有些难堪,想坐下去,我赶紧制止。)

  师:很好!那你准备应该怎么做呢?生:嗯,(一下子来劲了):接着这位同学上黑板画了图,写出自己度量的方法和自己的想法。

  师:刚才闫家衔同学真的不错,不但提出了新的方法,而且还给出了说理,我和全班同学都为你今天的表现感到非常高兴(教室里响起一片掌声)。要有勇气展示自己,你今天的表现就非常非常地出色,你今后的表现一定会更出色。好,下面我就让我们一同来总结一下菱形的证明方法。

  在师生的共同研讨下得出了这些方法。

  师:今天的.课程内容还有一项,那就是请闫家衔同学谈谈这堂课的感想。

  生:??以前我不敢发言,我怕说的不对会被同学们笑话,而今天的他的方法恰好是我前几天才预习过的,所以一下子??我今天才发现不是这样??我今后还会努力发言的??

  【理念反思】:从这一个学生的举手发言到说得头头是道的“意外”中,我明白了:学生需要一个能充分展示自我的自由空间,作为老师,我们需要给学生一个自由的民主的氛围,能充分培养学生的自信,使“学困生”也能产生发言的欲望,也能对问题畅所欲言,教师还应能及时捕捉到这一闪光点,给每一位学生都有展示的机会。也就是说要使学生全部积极参与教学,因为它集中体现了现代课程理念:活动、合作、自由、民主、创新。

  1、活动、合作是现代课程中的新的理念,只有参与,才能合作创新。

  2、民主是现代课程中的重要理念。民主最直接的体现是在课程实施中学生能够平等地参与。没有主动参与,只有被动接受,就没有民主可言。相反,如果没有民主,学生的参与

  就不是主动性参与,而是被动的、消极的参与。

  3、在提问时,应设计开放性的问题,如:“请你帮助设计一下,有几种方案等问题?这样才没有限制学生的思维,给学生创设一个自由的空间,学生在这个空间中可以按自己的方式展开想象,才能畅所欲言。

  4、在课堂上,老师应不只关注“优等生”,而应平等地对待每一个学生,让学困生”和“学优生”同时享有尊严和拥有一份自信。特别是发现到一个学困生在举了手时,应及时给“学困生”展示的机会,让他们发言,学生在发言中,虽然有时不能把问题完全解决,老师也要充分的肯定这个学生的成绩和能够大胆发言的勇气。

初中数学教案14

  一、教材分析

  本节内容是人民教育出版社出版《义务教育课程实验教科书(五四学制)数学》(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。

  二、设计思想

  本节内容是学生掌握了“整式”有关概念的延展学习,为后继学习整式运算、因式分解、一元二次方程及函数知识奠定基础,是“数”向“式”的正式过度,具有十分重要地位。

  八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的技能。因此,我结合教材,立足让每个学生都有发展的`宗旨,我采用合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生提供充足的、和谐的探索空间让学生学习。通过学习活动不但培养学生化简意识,提升数学运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。

  三、教学目标:

  (一)知识技能目标:

  1、理解同类项的含义,并能辨别同类项。

  2、掌握合并同类项的方法,熟练的合并同类项。

  3、掌握整式加减运算的方法,熟练进行运算。

  (二)过程方法目标:

  1、通过探究同类项定义、合并同类项的方法的活动,培养学生观察、归纳、探究的能力。

  2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的准确率培养学生化简意识,发展学生的抽象概括能力。

  3、通过研究引例、探究例1的活动,发展学生的形象思维,初步培养学生的符号感。

  (三)情感价值目标:

  1、通过交流协商、分组探究,培养学生合作交流的意识和敢于探索未知问题的精神。

  2、通过学习活动培养学生科学、严谨的学习态度。

  四、教学重、难点:

  合并同类项

  五、教学关键:

  同类项的概念

  六、教学准备:

  教师:

  1、筛选数学题目,精心设置问题情境。

  2、制作大小不等的两个长方体纸盒实物模型,并能展开。

  3、设计多媒体教学课件。(要凸显①单项式中系数、字母、指数的特征②长方体纸盒立体图、展开图。)

  学生:

  1、复习有关单项式的概念、有理数四则运算及去括号的法则)

  2、每小组制作大小不等的两个长方体纸盒模型。

初中数学教案15

  问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?

  这个方程不像例l中的方程(1)那样容易求出它的解,小敏同学的方法启发了我们,可以用尝试,检验的方法找出方程(2)的解。也就是只要将x=1,2,3,4,……代人方程(2)的两边,看哪个数能使两边的值相等,这个数就是这个方程的解。

  把x=3代人方程(2),左边=13+3=16,右边=(45+3)=48=16,

  因为左边=右边,所以x=3就是这个方程的解。

  这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。

  问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?

  同学们动手试一试,大家发现了什么问题?

  同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?

  这正是我们本章要解决的问题。

  三、巩固练习

  1、教科书第3页练习1、2。

  2、补充练习:检验下列各括号内的数是不是它前面方程的解。

  (1)x-3(x+2)=6+x(x=3,x=-4)

  (2)2y(y-1)=3(y=-1,y=2)

  (3)5(x-1)(x-2)=0(x=0,x=1,x=2)

  四、小结。本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。

  五、作业。教科书第3页,习题6。1第1、3题。

  解一元一次方程

  1、方程的简单变形

  教学目的

  通过天平实验,让学生在观察、思考的基础上归纳出方程的两种变形,并能利用它们将简单的方程变形以求出未知数的值。

  重点、难点

  1、重点:方程的两种变形。

  2、难点:由具体实例抽象出方程的两种变形。

  教学过程

  一、引入

  上一节课我们学习了列方程解简单的应用题,列出的方程有的我们不会解,我们知道解方程就是把方程变形成x=a形式,本节课,我们将学习如何将方程变形。

  二、新授

  让我们先做个实验,拿出预先准备好的天平和若干砝码。

  测量一些物体的质量时,我们将它放在天干的左盘内,在右盘内放上砝码,当天平处于平衡状态时,显然两边的质量相等。

  如果我们在两盘内同时加入相同质量的砝码,这时天平仍然平衡,天平两边盘内同时拿去相同质量的.砝码,天平仍然平衡。

  如果把天平看成一个方程,课本第4页上的图,你能从天平上砝码的变化联想到方程的变形吗?

  让同学们观察图6.2.1的左边的天平;天平的左盘内有一个大砝码和2个小砝码,右盘上有5个小砝码,天平平衡,表示左右两盘的质量相等。如果我们用x表示大砝码的质量,1表示小砝码的质量,那么可用方程x+2=5表示天平两盘内物体的质量关系。

【初中数学教案】相关文章:

初中数学教案01-24

初中数学教案01-10

初中数学教案范例07-08

人教版初中数学教案07-08

初中数学教案:实数07-08

初中优秀数学教案07-08

初中数学教案模板01-12

初中数学教案反思集锦07-08

初中数学教案检查总结07-08

青岛版初中数学教案07-08