五年级数学教案

时间:2023-03-07 18:19:22 数学教案 我要投稿

五年级数学教案【精】

  作为一名教学工作者,就难以避免地要准备教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。怎样写教案才更能起到其作用呢?下面是小编精心整理的五年级数学教案,仅供参考,希望能够帮助到大家。

五年级数学教案【精】

五年级数学教案1

  教学目标:

  1、知道容积的意义。

  2、掌握容积单位升和毫升的进率,及它们与体积单位立方分米、立方厘米之间的关系。

  3、会计算物体的容积。

  教学重点:

  1、容积的概念。

  2、容积与体积的关系。

  教学难点:

  容积与体积的关系。

  教具:量筒和量杯、不同的饮料瓶、纸杯

  教学过程:

  一、复习检查:

  说出长正方体体积计算公式。

  二、准备:

  把泥放入一个长方体的小木盒中(压实,与上口平),然后扣出来,量一量泥块的长、宽、高。计算泥块的体积。这个长方体小木盒所能容纳物体的体积是( )。

  三、新授:

  1、认识容积及容积单位:

  (1)箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积。

  通过上面的“做一做”,我们知道长方体小木盒所能容纳物体的体积就是这个小木盒的容积。

  (2)计量容积,一般就用体积单位。但是计量液体体积,如药水、汽油等,常用容积单位升和毫升。

  (3)演示:体积单位与容积单位的关系。

  说一说,在生活中哪些物品上标有升或毫升。升和毫升有什么关系呢?教具演示。

  ①1升(L)=1000毫升(mL)

  将1升 的水倒入1立方分米的容器里。

  小结:1升(L)=1立方分米(dm3 )

  ②1升 = 1立方分米

  1000毫升 1000立方厘米

  1毫升(mL)=1立方厘米( cm3 )

  练一练:

  1.8L=( )mL 3500mL=( )L 15000cm3 =( )mL=( )L

  1.5dm3 =( )L

  (4)小组活动:(1)将一瓶矿泉水倒在纸杯中,看看可以倒满几杯?

   (2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1升。

  2、长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但是要从容器的里面量长、宽、高。

  例一个小汽车上的油箱,里面长5分米,宽4分米,高2分米。这个油箱可以装汽油多少升?

  5×4×2 =40(立方分米) 40立方分米=40升

  答:这个油箱可以装汽油40升。

  做一做:一个正方体油箱,从里面量棱长是1.4米。这个油箱装油有多少升?(订正)

  小结:计算容积的.步骤是什么?

  3、我们知道了计算规则物体的体积的方法,如计算长方体的体积是用长乘宽乘高,计算正方体的体积是棱长的3次方。那有些不规则的物体怎么计算它的体积呢?

  出示一个西红柿,谁有办法计算它的体积?小组设计方案:

  四、巩固练习:

  1、生物小组买来一个长方体鱼缸,从里面量长是6分米,宽是4分米,深2.5分米,它的容积是多少升?

  2、一个长方体油箱的容积是20升。这个油箱的底长25厘米,宽20厘米,油箱的深是多少厘米?

  3、有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱内,量得水深3分米,这个长方体水箱得底面积是多少?

  4、提高题:p55、16

  五、作业:

五年级数学教案2

  【教学目标】

  1.使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。

  2.使学生通过自主探索,掌握2、5、3的倍数的特征。

  3.逐步培养学生的数学抽象思维能力。

  【重点难点】

  1.掌握因数、倍数、质数、合数等概念的联系及其区别。

  2.掌握2、5、3的倍数的特征。

  3.质数和奇数的区别。

  【教学指导】

  由于本单元内容较为抽象,很难结合生活实例或具体情境来进行教学,学生理解起来有一定的难度,所以教学应注意以下两点:

  1.加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。本单元中因数和倍数是最基本的两个概念,理解了因数和倍数的含义,对于一个数的因数的个数是有限的,倍数的个数是无限的等结论自然也就掌握了。对于后面的公因数、公倍数等概念的理解也就水到渠成了,要引导学生用联系的方法去掌握这些知识,而不是机械地记忆一堆支离破碎,毫无关联的概念和结论。

  2.由于本单元知识特有的抽象性,教学时要注意培养学生的抽象思维能力。虽然我们强调从生活的角度引出数学知识,但在过去的数学教学中,一些老师往往忽视概念的本质,而让学生死记硬背相关概念或结论,导致学生无法理清各概念间的前后承接关系,达不到融会贯通的程度,而学生到了五年级,抽象能力已经有了进一步提高,有意识地培养他们的抽象概括能力也是很有必要的,如让学生通过几个特殊的例子,自行总结出任何一个数的倍数的个数都是无限的结论,逐步形成从特殊到一般的归纳推理能力等等。

  【课时安排】

  建议共分7课时

  1.因数和倍数2课时

  2.2、5、3的倍数的特征3课时

  3.质数和合数2课时

  【知识结构】

  因数和倍数(1)

  学习内容认识因数和倍数(教材第5页内容,以及第7页练习二的第1题)。第1课时课型新授

  学习目标1.从操作活动中理解因数和倍数的意义,会

  2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。

  3.培养学生的合作意识、探索意识,以及热爱数学学习的情

  教学重点理解因数和倍数的含义

  教学难点判断一个数是不是另一个数的因数或倍数。

  教具运用课件

  教学方法二次备课

  教学过程

  【复习导入】

  1.教师用课件出示口算题。

  10÷5=16÷2=12÷3=100÷25=150×4=

  220÷4=18×4=25×4=24×3=20×86=

  学生口算

  2.导入:在乘法算式中,两个因数相乘,得到的结果叫做它们的.积。乘法算式表示的是一种相乘的关系,在除法算式中,两个数相除,得到的结果叫做它们的商。除法算式表示的是一种相除的关系,在整数乘法和除法中还有另一种关系,这就是我们这一节课要学习探讨的内容。

  (板书课题:因数和倍数(1)

  【新课讲授】

  1.学习因数和倍数的概念

  (1)教师用课件出示教材第5页例1,引导学生观察图上的算式,把这些算式分为两类。

  学生说出自己的分类方法,商是整数的分为一类,商不是整数的分为一类。教师以商是整数的第一题为例,板书:12÷2=6。

  教师:在这道除法算式中,被除数和除数都是整数,商也是整数,这时我们就可以说12是2和6的倍数,2和6是12的因数。

  谁来说一说其他的式子?

  学生回答。

  教师板书:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。

  (2)说一说第一类的算式中,谁是谁的因数?谁是谁的倍数?

  学生回答,如:在20÷10=2中,20是10和2的倍数,10和2是20的因数。或:20是10的倍数,20是2的倍数,10是20的因数,2是20的因数。(3)通过刚才同学们的回答,你发现了什么?

  学生回答,教师板书:倍数与因数是相互依存的。

  2.举例概括

  教师:请同学们注意,为了方便,我们在研究因数和倍数时,所说的数一般指的是自然数,而且其中不包括0。

  教师:在自然数中像这样的例子还有很多,我们每个同学都在心中想一个,想好了说给大家听。学生举例,并说出谁是谁的因数,谁是谁的倍数。

  教师同时板书。

  教师小结:像这样的例子举也举不完,那能不能用比较简洁的方式来叙述因数与倍数的关系呢?

  引导学生根据“用字母表示数”的知识表述因数与倍数的关系。

  如:m÷N=P,m、N、P都是非0自然数,那么N和P是m的因数,m是N和P的倍数。

  A×B=c,A、B、c、都是非0自然数,那么A和B是c的因数,c是A和B的倍数。

  你能从这些数中挑出两个数,说出谁是谁的因数,谁是谁的倍数吗?

  3、9、15、21、36

  学生独立思考并回答。

  【课堂作业】

  1.完成教材第5页“做一做”。

  2.完成教材第7页练习二第1题。

  3.下面每一组数中,谁是谁的倍数,谁是谁的因数。16和24和2472和820和5

  4.下面的说法对吗?说出理由。

  (1)48是6的倍数。

  (2)在13÷4=3……1中,13是4的倍数。

  (3)因为3×6=18,所以18是倍数,3和6是因数。

  【课堂小结】

  我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

  【课后作业】

  完成练习册中本课时练习。

  板书设计因数和倍数(1)

  在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。

  因数和倍数一般指的是自然数,而且其中不包括0。

  倍数与因数是相互依存的。

  教学反思

  【作业设计】

五年级数学教案3

  活动目标

  通过发豆芽活动,了解生活中的相关知识,运用多种途径查询和收集相关资料,并能运用数学的方法记录和描述豆芽的生长情况,培养同学们动手实践、分析问题以及解决问题的能力。

  活动准备

  教师收集相关资料,并先做一次实验。学生分组准备黄豆、绿豆各50g,以及发豆芽的器皿。

  活动过程

  一、提出问题,揭示课题?

  1.师:同学们,你们知道豆芽的生长过程吗?你自己发过豆芽吗?

  2.学生根据查询的资料和咨询科学教师得到的知识进行交流。

  3.根据学生的'交流,提出:我们也来试一试发豆芽。

  揭示课题:发豆芽。

  二、讨论交流,得出活动步骤

  1.提问:发豆芽要做哪些准备?怎样记录发豆芽的过程呢?对最后的记录如何分析呢?

  结合学生的交流,得出本次活动的主要步骤:调查与收集;发制与记录;整理与分析;推测与应用。

  2.学生结合教材了解4个环节应该做什么,并在全班交流。

  教师重点提问:发豆芽的统计图画什么好?为什么?如何计算发豆芽的盈利情况?

  三、学生分组活动

  1.教师演示发豆芽的过程。

  2.教师提出要求:

  (1)发豆芽活动要做的事情比较多,我们要分组进行,每组5个人。

  (2)为了方便观察与记录,我们都将豆芽统一放在教室里进行观察,每天每个组在固定时间进行浇水。

  3.各组学生进行发豆芽实验。

  时间大约是6天。教师对各组实验的情况进行适时的指导,对各组的记录进行及时督促与检查。各组在发豆芽完成后,及时进行数据分析,制作好相应的统计图表,写好分析总结。

  四、小组交流,感受价值

  交流发豆芽的具体做法和注意事项。

  五、观察、记录、分析

  1.观察豆芽的生长情况。(大约6天时间)

  2.记录豆芽的生长情况。(每天进行记录)

  3.把豆芽的生长情况制成统计图表。

  4.分析统计图表,写好总结。

  六、总结反思

  小组结合统计图汇报豆芽生长情况,说说在发豆芽活动中的收获。

  注:五、六两个教学过程在课外进行。

  [简评:本课设计采取课内课外相结合的方式,突出发豆芽的相关资料收集,讨论发豆芽的活动步骤,对发豆芽活动进行分析、交流、评价。通过分组活动,培养学生的合作意识与能力;统一在教室进行,便于学生观察、比较、交流、互相激励。同时,把发豆芽活动的重点放在依据实验数据制作、分析统计图表上,以体现数学在生活中的价值,体现综合应用的数学味。]

五年级数学教案4

  设计说明

  1、利用多媒体创设教学情境。

  新课伊始,让学生观看“挑战者”号飞机失事的全过程,让学生从机毁人亡的事件中感受到“次品”带来的危害,领悟到检验的重要性,培养学生的责任意识。这样的情境创设,体现了数学来源于生活、服务于生活、高于生活的教学理念。

  2、重视引导学生用直观的方式清晰地表达出推理过程。

  《数学课程标准》指出:在解决问题的过程中,能进行有条理的思考,能对结论的合理性作出有说服力的说明,能表达解决问题的过程,并尝试解释所得的结果。本设计在教学例1时,通过组织学生进行试验的操作活动,让他们在充分的操作、试验、讨论、探究中,找到解决问题的多种策略,然后引导学生用直观、简明的方式,清晰地表示出推理的过程,进一步理清思路,为后面数量更多的找次品问题做好认知和方法上的准备。

  课前准备

  教师准备

  PPT课件 天平 3瓶钙片

  学生准备

  每人8张圆片学具 每组1张找次品记录表

  教学过程

  教学环节

  教师指导

  学生活动

  效果检测

  一、创设情境,引入新课。(5分钟)

  1、课件播放“挑战者”号飞机失事的`录像。

  2、引导学生猜测造成飞机失事的原因。

  3、导入新课。

  1、看录像。

  2、思考并回答老师提出的问题。

  生1:驾驶员操作不当。

  生2:飞机故障,零件不合格。

  3、明确本节课要学习的内容。

  1、列举生活中质量不合格的产品带来的危害有哪些?

  二、实践操作,自主探究。(10分钟)

  1、出示2瓶钙片:其中有1瓶少了3片,引导学生探究找次品的方法。

  2、出示一架天平:阐述天平的工作原理和特点。

  3、出示3瓶钙片:其中有1瓶少了3片,引导学生尝试找出轻的一瓶。

  4、引导学生汇报找次品的方法。

  5、引导梳理、比较:无论是先称哪2瓶,只要称一次就能找出次品了。

  1、自主探究找次品的方法。

  (1)打开瓶子把钙片倒出来数一数。

  (2)用手掂一掂。

  (3)用秤称一称。

  2、认识天平,明确天平的工作原理,并在天平两端放入质量相同的物体,感受天平平衡的条件。

  3、利用学具独立思考、自主探究,可以拿出3个学具代替3瓶钙片,进行实际操作。

  4、各小组派代表汇报找次品的方法。

  5、汇报:只要称一次就能找出次品了。

  2、有5瓶钙片,其中1瓶少了4片。如果用天平称,天平两端各放1瓶,至少称()次才能找出次品;如果天平两端各放2瓶,至少称()次才能找出次品。

  三、合作交流,发现最优方案。(15分钟)

  1、课件出示例2。

  指名读题,说一说“至少”的含义。

  2、组织小组合作找出次品,填写表格。

  3、引导学生观察表格,分组汇报找次品的方法。

  4、引导学生观察表格:

  (1)分成的份数、分的方法与找出次品所要称的次数有什么关系?

  (2)怎样分找出次品需要称的次数最少?

  5、用你发现的方法找出9个、10个、11个零件中的1个次品(次品重一些),看看是不是保证找出次品的次数也是最少的。

  1、读题,说一说“至少”的含义。

  2、小组合作,2名同学摆学具,1名同学用图示作记录,1名同学填写“找次品记录表”。

  3、利用实物和表格汇报:

  (1)分成8(3,3,2),至少要称2次。

  (2)分成8(4,4),至少要称3次。

  (3)分成8(2,2,2,2),至少要称4次。

  4、讨论、交流,明确:把8分成3份(每份数量尽量相等)去称,能保证称的次数最少。

  5、小组合作操作、验证,汇报试验结果。

  3、用天平从7件物品中找出1件次品(次品轻一些),把7件物品分成()份称较合适。

  4、有8瓶水,其中7瓶质量相等,另外有1瓶是糖水,比其他7瓶水略重一些,至少称()次能保证找出这瓶糖水。

  四、巩固练习,拓展延伸。(8分钟)

  1、引导学生完成教材112页“做一做”。

  2、补充说明:分成3份的方法最好,不能平均分的,每份的数量尽量相等。

  1、独立完成教材112页“做一做”。

  2、汇报,说明自己的最优方案。

  5、如果有12个零件,其中一个是次品(次品略重),那么应该怎么分,称的次数最少而且保证能找出次品?

  五、课堂总结,布置作业。(2分钟)

  1、通过今天的学习,你有什么收获?

  2、布置课后学习内容。

  谈自己本节课的收获。

五年级数学教案5

  教学目标:

  1、认识常用的体积单位:立方厘米、立方分米、立方米,在数学活动中建立体积是1立方厘米、1立方分米、1立方米的空间观念。

  2、自主探索得出相邻体积单位之间的进率,发展学生的空间观念,培养学生的推理能力。

  3、培养学习类比能力,从已有知识——面积单位引发思考,初步了解体积单位和面积单位之间的联系与区别。

  4、在动手操作、观察比较、质疑反思等活动中,培养团队意识,提升合作精神与质疑能力。

  教学重点:

  初步建立体积是1立方厘米、1立方分米、1立方米的空间观念,能正确应用体积单位估算常见物体的体积。

  教学难点:

  通过探索,自主推算出相邻体积单位间的进率。

  教学准备:

  多媒体课件、体积单位模型、彩泥、魔方等。

  教学过程:

  一、创设情境,引发思考

  师:上一节课,我们认识了体积,什么是物体的体积?

  问:体积有大有小,小胖和小巧运用所学知识搭积木、比体积。哪个体积比较大?(生生交流)

  师:今天这节课就让我们一起来探究体积单位(揭示课题:体积单位)。

  二、合作学习,探究新知

  (一)探寻学生已有知识:

  问:关于体积单位你已经了解了些什么?让我们先相互交流一下!(生生交流)

  (预设:知道常用体积单位有立方厘米、立方分米、立方米,并会用字母表示)

  【设计意图:教学是从学生原有的基础和经验出发的,了解学生已知的,分析他们未知的,有针对性地设计教学,才能构建高效课堂】

  (二)建立1cm3、1dm3、1m3的空间观念

  1、建立1立方厘米的空间观念:

  (1)初步感知1cm3有多大:

  问:让我们先畅所欲言,你认为1cm3有多大?哪些物体接近1 cm3?(课件展示)

  【设计意图:“你认为1cm3有多大?”引导学生用自己的方式表达自己心中1立方厘米的大小,或用身边的物体参照、或用手势比划,或对或错,形式不一的表达方式,更激发了学生探究的热情——究竟1立方厘米有多大。】

  <<<123>>>

  (2)触类旁通,定义1 cm3的大小:

  师:我们已经知道边长为1cm的正方形,面积是1cm2,你能触类旁通定义1 cm3的大小吗?(同桌讨论)

  【设计意图:在教学中,我们应当注意对学生迁移意识的培养,也就是说要注重运用类比的思想。】

  (3)进一步感知1cm3的大小:

  做一做:请大家四人为一小组,用彩泥捏出一些体积是1立方厘米的正方体。拼一拼,2立方厘米、5立方厘米、10立方厘米分别有多大。

  (4)想一想,填一填:

  师:我们知道计量一个物体的体积,就是看它含有多少个体积单位。下列长方体或正方体是用几个1立方厘米的正方体积木搭出的?体积是多少?(课件展示)

  2、建立1立方分米、1立方米的空间观念:

  (1)举一反三:从1 cm3定义1 dm3、1 m3的大小。(生生交流)

  【设计意图:在类比的基础上尝试举一反三,不仅使数学知识容易理解,而且对概念的记忆有水到渠成之感,自然、简洁,从而激发起学生的创造力。】

  (2)想象一下:1 dm3、1 m3有多大?哪些物体接近1 dm3、1 m3?(学生举例,课件、教具辅助)

  【设计意图:学会定义1dm3和1m3,不等同于就能正确感悟它们实际的空间大小,教师事先准备了3阶魔方、4阶魔方和1个标准1dm3的模型,让学生选择哪一个立方体更接近1dm3,学生通过观察、猜测、验证,从而获得对知识的真正意义。】

  (3)学生活动:4个同学为一组,手拉手,围出一个大约1m3的空间。

  【设计意图:用3根1m长的木条做成一个互成直角的架子,放在墙角,想象一下1m3的空间有多大。这样的想象也能提升学生对1立方米的空间观念,但是如果能创造一个有趣的学生活动,让学生们在实践活动中体验1立方米的大小,不仅提升了团队协作能力,而且在做中学,更能有效帮助学生建立体积是1立方米的空间大小。】

  3、练习(用合适的体积单位表示下面物体):

  一块橡皮的体积约是8( )。

  一台录音机的体积约是10( )。

  运货集装箱的体积约是40( )。

  一本新华字典的体积约是0.4( )。

  一个西瓜的体积约是5( )。

  一间教室的体积约是180( )。

  (三)继续类比,探究相邻体积单位间的'进率:

  1、师:学好知识要能触类旁通,今天我们从已知知识cm2、dm2、m2出发,探索了cm3、dm3、m3这一新知识,同时我们也要关注它们的区别,它们有哪些区别呢?(同桌交换意见)

  2、追问:cm2、dm2、m2每相邻两个面积单位间的进率是100,猜想一下cm3、dm3、m3相邻体积单位间的进率又是多少呢?(学生猜想)

  【设计意图:安排“猜想”有两层含义,一是进一步引导学生关注到面积单位与体积单位间的区别,更重要的是为了让学生掌握知识、提升能力,我们必须带领学生“再创造”,虽然知识是前人证明和研究出来的,但我们更应该让学生也像数学家们一样学会自己发现,“没有大胆的猜想就做不出伟大的发现”(牛顿)。】

  3、验证:你们有什么好方法证明1cm3和1dm3间的关系呢?(课件辅助演示1个——10个——100个——1000个的过程)

  【设计意图:在小学数学教学中,我们应当重视“猜想—验证”这一重要思想方法的渗透与培养,使学生在猜想验证中获得探究的乐趣。】

  4、运用:同桌合作,请说一说1dm3和1m3间的关系。(课件演示)

  5、拓展:通过探究,我们知道每相邻两个体积单位之间的进率是1000,你们还有什么疑问吗?(预设:你能试着说一说1cm3和1m3之间的关系吗?)

  【设计意图:学生自己提出探索1cm3和1m3之间的关系,进一步激发学生探究的热情。同时也继续渗透类比的思想方法,或用100×100×100,或用1000×1000,鼓励学生能多角度思考与验证,收获成功的喜悦。】

  三、动手操作,质疑反思:(机动,也可作为课后拓展)

  学生活动:用一些棱长为1厘米的小正方体,做下面的活动。

  1、用4个小正方体可以摆成一个大正方体吗?

  2、最少要用多少个小正方体才可以摆成一个大正方体?

  3、你能再摆一个大一些的正方体吗?用了多少个小正方体?

  【设计意图:以“猜想—验证”为核心,引导学生多角度探索问题,发现规律,并打通与体积单位进率之间的关系。】

  四、总结全课,感悟学习方法:

  师:通过今天的学习,你有哪些新的收获?(生生互动)

  小结:今天我们从已知知识cm2、dm2、m2出发,探索了cm3、dm3、m3这一新知识,学习就要学会触类旁通、举一反三。

五年级数学教案6

  教学目标:

  1.通过学生的动手操作,借助图形语言,理解分数乘法的意义和分数乘以分数的算理,掌握计算方法,并能熟练地进行计算;

  2.让学生经历猜想、验证等过程,体验数学研究的方法;

  3.培养逻辑推理能力,渗透一定的数学思维方法。

  教学重难点:

  学生能够熟练的计算出分数乘以分数的结果。

  教学过程:

  一、创设情境激趣揭题

  1.出示我国古代哲学著作的情景。

  2.出示复习题

  3×2/54/5×2

  二、扶放结合探究新知

  1.画图引导学生理解1/21/2的'算例。

  2.出示3/41/4引导学生验证上面的计算方法,岩石推理过程。

  3.出示2/31/5,5/62/3写出计算过程,

  小结计算方法:

  分子乘分子,分母乘分母。

  三、反馈矫正落实双基

  1.出示教材第8页试一试1-3题。

  2.引导学生发现规律。

  四、小结评价布置预习

  1.引导学生进行课堂小结。

  2.布置预习:教材10-11页练习一。

  板书

  意义:

  求一个数的几分之几是多少?

  计算法则:

  分子乘分子作分子,分母乘分母作分母。

五年级数学教案7

  教学内容:冀教版《数学》五年级上册第10、11页。

  教学目标:

  1、在动手操作的活动中,经历探索莫比乌斯圈神奇特征的过程。

  2、学会制作简单的莫比乌斯圈,了解莫比乌斯圈的特征。

  3、感受莫比乌斯圈的神奇,体会数学活动的趣味性和探索性。

  教学准备:三根长30厘米、宽3厘米的白纸条,彩笔,剪刀,胶水。

  教学方案:

  教学环节

  设计意图

  教学预设

  一、创设情境

  1.学生阅读书中的文字,初步了解莫比乌斯圈。

  2.拿出一张纸条让学生估计它的长和宽。

  二、探索活动1

  1.师生一起动手制作莫比乌斯圈。

  教师一边口述制作莫比乌斯圈的方法一边演示制作,然后让每个人制作一个。

  2.交流、展示学生作品。

  3.提出涂色要求,学生涂色。鼓励学生合作完成。

  4.观察、交流学生涂色的结果,让学生说一说发现了什么?

  三、探索活动Ⅱ

  1.让学生在另一张纸条的正中画好一条线,再粘成一个莫比乌斯圈。通过沿莫比乌斯圈一面涂色却使纸圈两面都有了颜色的事实,使学生初步感受莫比乌斯圈的神奇。

  2.提出:如果用剪刀沿中线把莫比乌斯圈剪开,结果会怎样?的问题,让学生先大胆猜测,再动手操作。

  3.交流沿中线剪开后的结果。

  4.提出书中(2)的操作要求,让学生想象剪开后的结果。

  5.鼓励学生按要求实际操作。

  6.交流学生沿画线剪开后的结果。使学生发现把一个三等分的莫比乌斯圈沿等分线剪开,变成了一大一小两个套在一起的纸圈。

  四、课外延伸

  教师进行激励性谈话,鼓励学生课下继续探索

  通过激励性谈话引起学生的学习兴趣,通过阅读让学生初步了解莫比乌斯圈。

  培养估计的意识,了解纸条的长和宽,方便下面的语言表述。

  通过教师边口述边示范,让学生学会制作简单的莫比乌斯圈。每人制作一个,为下面的探索活动提供材料。

  展示学生的作品,检查莫比乌斯圈做的是否正确。

  让学生经历探索莫比乌斯圈的全过程。

  通过自己动手做莫比乌斯圈,亲身体验它的神奇。

  通过教师叙述制作要求,培养学生倾听的习惯,为探索活动提供材料。

  通过让学生想象猜测,一方面培养学生联想的意识,更重要的是引出探索的活动。

  在操作结果和提供的数据中,让学生感受莫比乌斯圈的神奇和数学活动的探索性。

  在前面探索活动的基础上,对看似相关问题进行猜测,激发学生探索的愿望。

  带着问题进行实际操作,体验数学问题的探索性。

  在猜测、操作、交流等探索活动中,进一步感受莫比乌斯圈的神奇和数学活动的趣味性。

  激发学生的探索的积极性,培养科学探索精神。

  师:同学们,今天我们就用老师给大家准备的纸条来探索一种神奇的纸圈,这个纸圈是什么呢?大家请打开书第10页,读一读前两段。

  学生阅读书中的文字。

  师:通过读书,你了解到哪些信息?

  学生回答可能不同,只要是意思对就给予肯定。

  师:德国数学家莫比乌斯发明的这个“纸圈”到底有什么神奇之处,下面我们就一起去探索。

  师:请同学们拿出一张纸条,估计一下这张纸条有多长、多宽?

  学生估计,对估计准确给予表扬。使大家知道:纸条的`长30厘米,宽3厘米。

  师:我们就用这张纸条做一个莫比乌斯圈。怎样做呢?把纸条儿的一端扭转180°,与另一端粘在一起,这样一个莫比乌斯圈就做好了。

  教师边说边示范制作莫比乌斯圈。

  师:下面同学们就用准备好的纸条也做一个莫比乌斯圈!

  学生动手制作,教师巡视指导。

  师:谁来展示一下你的莫比乌斯圈?

  学生展示,关注是否都对。

  师:同学们都有了自己的莫比乌斯圈,我们给它涂上颜色让它更漂亮。涂色的要求是:用一种颜色的彩笔在纸圈的一面涂色。可以同桌合作完成。

  学生给莫比乌斯圈涂色,教师巡视指导。

  师:请同学们仔细观察涂好色的莫比乌斯圈,你发现了什么?

  生:两面都有颜色了。

  生:太奇怪了。

  师:沿一面涂色纸圈的两面都出现了颜色,真是个奇迹!这就是神奇的莫比乌斯圈!

  教师板书:神奇的莫比乌斯圈。

  师:请同学们接着做,你会发现更神奇的事情。听清这次的操作要求:取出一张新的纸条,在正中画一条线,再把它粘成莫比乌斯圈。

  学生操作,教师巡视指导。

  师:同学们想象一下,如果用剪刀沿中线把这个莫比乌斯圈剪开,结果会怎么样?

  生:会得到2个莫比乌斯圈。

  师:结果到底怎么样呢?请同学们用剪刀沿中线把它剪开,看一看结果会怎样。用剪刀时注意安全。

  学生操作,教师巡视指导。

  师:沿中线剪开后怎样?和你想象的结果一样吗?

  学生可能回答:

  ●沿中线剪开后结果不是两个莫比乌斯圈,而是一个。

  ●这个新的纸圈比原来的大了。

  ……

  师:真是出乎意料!把莫比乌斯圈沿中线剪开结果不是两个纸圈,而是一个更大的纸圈。那同学们,你们猜想一下,要是在纸条上画两条线,把纸条分成三等分,粘成莫比乌斯圈,再用剪刀沿画线剪开,猜一猜结果会怎么样?

  学生可能回答:

  ●得到一个更大的纸圈。

  ●得到3个纸圈。

  ……

  师:请同学们实际动手做一做,看一看结果会怎样?

  学生动手操作,教师巡视指导。

  师:这次剪开后结果怎么样?

  生:得到了一大一小两个套在一起的纸圈。

  师:这就是莫比乌斯圈的神奇之处!要是在纸条上画三条线,把它四等分,再粘成莫比乌斯圈,接着沿画线剪开,结果会怎样?要是画四条线呢?有兴趣的同学课下可以继续探索!

五年级数学教案8

  学习目标

  1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。

  2、结合现实情景,体验数学与日常生活的密切联系,激发学生对数学的兴趣

  学情分析重点、难点:

  在现实情景中理解正负数及零的意义。

  易混点、易错点:感受用正数和负数来表示一些相反意义的量

  学生认知基础:生活中见到过负数。

  时间分配学20讲10练10

  教法学法

  自主探索法,练习法,讲授法。

  教学准备

  第一课时

  一、自学例1

  1、通过查资料了解“℃”和“℉”的含义,并学会看温度计的方法。

  2、从图中你能知道些什么?上海的气温和南京比,怎么样?北京的气温和南京比,怎么样?

  3、上海和北京的气温一样吗?不一样在哪儿?

  4、那你知道在数学上是怎样区分和表示这两个不同的温度的呢?

  二、自学例2

  1、了解海拔的意义。

  2、思考从图上你知道了什么?

  3、试着用今天所学的知识来表示这两个地方的海拔高度。

  学生活动教师助学课后改进

  第一课时

  第一板块:学生汇报预习情况。第二板块:根据预习情况,学习例1

  (1)交流“℃”和“℉”的含义,说明我国是用“℃”来计量温度的,并指导看温度计的方法。

  (2)交流:从图中你能知道些什么?上海的气温和南京比,怎么样?北京的气温和南京比,怎么样?

  (3)上海和北京的气温一样吗?不一样在哪儿?

  (5)那你知道在数学上是怎样区分和表示这两个不同的温度的呢?(零上4摄氏度记作+4℃或4℃,零下4摄氏度﹣4℃)

  第三板块:正数和负数的读、写方法。

  根据课本要求,记住读写方法。

  学生看温度计,选择合适的卡片表示各地气温。

  第三板块:交流学习例2

  交流:从图上你知道了什么?

  交流:你能用今天所学的知识来表示这两个地方的海拔高度吗?

  共同小结:以海平面为基准,比海平面高8844米,通常称为海拔8844.43米,可以计作+8844.43米;比海平面低155米,通常称为海拔负155米,可以计作﹣155米。

  学生根据今天所学知识把这些数分类。

  正数都大于0,负数都小于0。

  先指名读一读,再用正数或负数表示图中数据。

  先读一读,再说说这些海拔高度是高于海平面还是低于海平面。

  一:教学例1

  1.出示例1的三幅分别显示三个城市某一天最低气温的温度计图。

  根据学生的预习,共同学习交流认识新知。

  (4)上海的气温是零上4摄氏度,北京的气温是零下4摄氏度。以0摄氏度分界,一个在0摄氏度以上,一个在0摄氏度以下。一上一下,正好相反。

  2.教学正数和负数的读、写方法。

  “+4”读作正四,“+4”的正号也可以省略不写,直接把“+4”写成“4”。“﹣4”读作负四。

  3.指导完成“试一试”。

  (卡片上分别写有+11℃、﹣11℃、19℃、+19℃、﹣7℃、+7℃)

  二:教学例2

  1.师:同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。

  2.出示例2中珠穆朗玛峰与吐鲁番盆地的.海拔高度图。

  三:初步归纳正数和负数。

  ⑴出示+4、﹣4、﹣7、﹣11 、19、+8844.43、﹣155这些数,提出要求:前面,我们用这些数来表示零上和零下的温度以及海平面以上和以下的高度。大家仔细观察这些数,你能将它们分分类吗?

  ⑵小结:像+4、19、+8844.43这样的数都是正数。像-4、﹣7、﹣11 、-155这样的数都是负数;而0既不是正数,也不是负数。

  ⑶提问:正数、负数和0比一比,它们的大小关系怎样?

  四:练习

  做“练一练”1,2题

  2.做练习一第1题。

  3.做练习一第2题。

  4、练习一4、5、6题。

  五:作业

  练习一第3题。

  交流认识新知。

  正数和负数的读、写方法。

  根据课本要求,记住读写方法。

  交流:你能用今天所学的知识来表示这两个地方的海拔高度吗?

  正数、负数和0比一比,它们的大小关系怎样?

  正数都大于0,负数都小于0。

  课后反思

  得:

  首先,对教材的编排作了重新的审视。在教材编排中,我们可以观察到,在学习负数的过程中,学生更多的是经历“具体情境中的数——解释数的意义”这样的过程。在教学中我设计了通过观察生活中的盈亏、收支、增减及朝两个相反的方向运动中应用负数进一步理解负数的意义,明白用正负数可以表示一些具有相反意义的量,从而让学生体验负数产生的原因,接着引导学生列举生活中正负数应用的实例。

  失:

  《认识负数》单元的教学看似简单,教起来似乎觉得轻松,学生学习起来也看似轻松,可在解决实际问题的时候,却会发现有各种各样的问题出现。

  由于正负数表示的是相反意义的量,如何帮助学生正确的解决实际生活情境下的正负数问题,这是值得我们在教学中进行思考的问题。由于问题的存在,不得不想一些办法去解决这样的问题。

五年级数学教案9

  教学内容

  质数和合数

  教材第14页的内容及练习四第1~3题。

  教学目标

  1.理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按因数的个数进行分类。

  2.通过自主探究、合作交流的方法,理解质数和合数的意义,经历概念的形成过程。

  3.培养学生自主探索、独立思考、合作交流的能力,充分展示数学的魅力。

  重点难点

  重点:初步学会准确判断一个数是质数还是合数。

  难点:区分奇数、质数、偶数、合数。

  教具学具

  投影仪。

  教学过程

  一、创设情境,激趣导入

  师:“六一”快到了,老师给大家送来了礼物!(出示百宝箱)大家想要吗?可是这上面有锁,而且是一个密码锁,打不开,怎么办?

  师:密码是一个三位数,它既是一个偶数,又是5的倍数;最高位上的数是9的最大因数;十位上的`数是最小的质数。你能打开密码锁吗?

  学生质疑:什么是质数。教师引入本节课内容,板书:质数和合数。

  二、探究体验,经历过程

  1.认识质数与合数。

  师:找因数--找出1到20的各个数的因数,看一看它们的因数的个数有什么特点?

  学生分组进行,找出之后进行分类。

  生:老师,我发现这些数的因数有的只有1个,有的有2个,有的有3个,还有的有4个或更多。

  师:很好,我们可以把它们分类,大家把分类结果填在表中。

  投影展示学生的分类结果。

  【设计意图:在学生独立思考的基础上,找出1~20的因数后总结出特点,为下文概念的出示做准备,使学生亲身经历概念的形成过程,印象深刻】

  师:一个数,如果只有1和它本身两个因数,这样的数叫做质数。如2、3、5、7都是质数。一个数,除了1和它本身还有别的因数,这样的数叫做合数。如4、6、15、49都是合数。1既不是质数也不是合数。

  师:再举出几个质数和合数的例子,举得完吗?说明了什么?(质数和合数都有无数个)

  想一想:最小的质数(合数)是几?最大的呢?

  师:所以按照因数个数的多少,自然数又可以分为哪几类呢?

  课件出示:可以把非0自然数分为质数和合数以及1,共三类。

  2.制作质数表。

  投影出示例1。

  师:怎样找出100以内的质数呢?

  生1:可以把每个数都验证一下,看哪些是质数。

  生2:先把2的倍数划去,但2除外,划掉的这些数都不是质数。然后划掉3的倍数,但3不划掉……

  【设计意图:通过教师的引导,学生自主建构知识,完成100以内的质数表,使学生形成一个知识网络,进一步培养了学生的数感】

  三、课末总结,梳理提升

  这节课我们学习了质数和合数的概念,知道了1既不是质数也不是合数。在利用所学知识进行判断时,我们要抓住质数与合数的本质特点,从因数的个数入手进行判断。在对整数进行分类时,要明确分类标准,不能把质数和合数与奇数和偶数混淆。

  板书设计

  教学反思

  1.学生是数学学习的主人,是数学课堂上主动求知、主动探索的主体。教师是数学学习的组织者、引导者和合作者。课堂上,我尽一切所能为学生创设可观察、可探索、可发现的问题情境,让学生以科学探究的方法学习数学,促进每一位学生的发展。

  2.学生是知识建构过程的主体。自主探究要让学生根据自己的生活经验或已有的知识背景去探索知识,从某种意义上说,自主探究的目的不单纯在于数学知识的掌握,而在于数学方法的掌握和情感体验的获得,通过自己探索获得“再创造”的体验。

五年级数学教案10

  教学内容:小数四则混合运算和简便算。

  教学目标:

  通过复习使学生进一步掌握小数四则混合运算的顺序和计算的方法,能正确、合理、灵活、迅速地进行四则混合运算和简便计算。

  教学过程:

  一、挂出小黑板视算。

  4.8÷81.6÷0.412.12÷120.32÷0.4

  4÷0.51÷250.25×400.13×5

  2.5×4÷40.1×0.8÷1004.2÷0.6÷7

  0.125×1.5×88.4÷8.4+61-0.25÷0.5

  二、先说出运算顺序,再计算。

  课本第34页的第7题,请4个学生板演后,师讲评。

  比一比,看谁算得又对又快。把得数直接填在课本第35页的第4题上,请一个学生报得数,其他同学对得数,检查视算的情况,表扬好的,激励差的。

  三、简便计算。

  引导学生看课本第34页的第8题,讨论各题怎样算简便,再独立算。(指名板演,集体讲评)

  整数的运算定律对于小数同样适用。在计算中能简便的要自觉用简便方法计算。

  四、幻灯演示课本第36页的第7题。

  这是一张不完整的`发货票,指导学生根据总价、单价、数量之间的关系以及金额与总计金额的关系来推想,先算什么,再算什么,课内完成。

  五、独立作业

  第35--36页的第5、6题。

五年级数学教案11

  教学目标和要求

  1、通过练习,进一步理解分数乘法的意义;

  2、较熟练地进行分数乘法的计算;

  3、能正确解决简单的`分数乘法的实际问题,体会数学与生活的密切联系。

  教学重点

  教学难点

  教学准备

  教学时数2课时

  教学过程

  一、计算练习

  1、教科书第10页第3题。

  学生独立计算,指名板演,集体讲评。

  2、教科书第11页第11题。

  先让学生根据分数的意义进行判断,再计算确认。

  二、基本练习

  1、教科书第10页第1、2、4、5、6、7题。

  学生独立完成,指名板演并说说解题思路,集体讲评。

  2、教科书第11页第8题。

  如果有时间,可以把剩下用品的现价全部算出来。

  3、教科书第12页第12、13、14题。

  同桌互相讨论完成,集体讲评。

  三、拓展练习

  教科书第11页第9题。

  每人提三个问题后尝试解决。同桌交流。有异议提出来让全班评议。

  四、尝试练习

  教科书第12页“你知道吗?”。

  鼓励学生回家查找资料,把问题求出来。比一比,谁完成得最快。

五年级数学教案12

  分数除法同分数乘法一样,都是小学阶段重要的数学内容,从过去的教学实践来看,这部分知识历来是学生数学学习的难点。原《大纲》的要求是:理解分数除法的意义;掌握分数除法计算法则;会计算分数除法;会口算简单的分数除法;会进行分数四则混合运算(不超过三步);会解答分数应用题(最多不超过两部)。《数学课程标准》关于分数除法的具体标准是:会进行分数除法运算和混合运算(以两步为主,不超过三步)。会解决有关分数的简单实际问题。《数学课程标准》与原《大纲》相比,分数除法计算方面的要求没有大的变化,只是把《大纲》中的混合运算的步数”不超过三步“改为”以两步为主,不超过三步“。变化较大的同分数乘法一样,仍然是淡化分数除法的意义,强调会进行分数除法计算和解决简单实际问题。本单元教材与传统教材相比,从编写思想、内容编排、教学方式等方面都有了较大的变化,主要有以下几个方面的特点:

  一、结合具体情境理解分数除法的意义强化计算方法的掌握和应用。

  从传统分数除法教材来看,主要有三个重点。第一,分数除法的意义;第二,分数除法法则。即:一个数除以分数,等于这个数乘以分数的倒数。第三,用方程或算术两种方法解决分数除法问题。从知识的建构上看,学生学习整数除法时对除法就是”平均分“已经非常熟悉,而现实生活中,又很难找到具体的事例来说明”一个数除以分数“的实际意义。所以,传统教材中选用”已知两个因数的积和其中一个因数,求另一个因数的运算“来说明分数除法的意义。这种乘除互逆关系是重要的数学结论,应该在学生乘除计算的知识背景下让学生认识。但是,现在用这个关系来定义分数除法意义的表述,对学生来说实在难于理解,再加上枯燥的看算式说意义的练习,使学生一开始接触分数除法就一头雾水。另外,这个分数除法的意义与”一个数除以分数,等于这个数乘以分数的倒数“这一分数除法的核心知识点又没有一点联系。所以,造成既增加学生的学习难度,又不利于学生掌握知识的情况。本着”降低难度,突出重点“的原则,本套教材首先不安排分数除法意义的内容。而是利用学生已有的整数除法意义的知识,通过现实的,学生能理解的具体事例,学习除法计算。明白为什么用除法?为什么这样算?如,为了解决”一个数除以分数,等于这个数乘分数的倒数“这一分数除法的核心知识点。教材首先安排了三组整数除法和分数乘法相对应口算练习,通过观察计算结果和算式的特点,让学生发现”甲数÷乙数=甲数×乙数的倒数“的规律。然后,选择学生生活中的现实问题,妈妈买来1/2张饼,把它平均分成3份,每份是整张大饼的几分之几?解决这个问题,学生自己的知识和经验是把半张饼平均分成3份,列式是÷3。甲数÷乙数=甲数×乙数的倒数以及3的倒数是。在解决问题的过程中,借助直观图,把学生已有的知识和经验整合在一起,生成新的数学知识,分析除以一个数(0除外)等于分数乘这个数的倒数。这样设计分数除法法则的学习,首先删去了学生难于理解的计算方法推导的过程,另外,由整数除法和分数乘法的规律迁移到分数除法,是一个计算方法验证过程,也是计算方法形成和巩固的过程。在这里,删去的是次要的、过高的要求,强化的是学生扎扎实实进行分数除法计算最基本、最有价值的内容。同时,培养了学生自主建构知识的能力。

  二、渗透数学建模思想,强化用方程解答分数除法问题。

  从过去的经验看,分数除法应用问题的特点是”已知部分和所对应的分率,求整体“。实事求是地讲,这样的应用问题都是已发生的事物,是经过人为”加工“、”编造“的应用问题。这样的问题解决虽然在现实生活中应用较少,但在传统教材和教学中,一直是教材内容的重点和教学评价选题的焦点。众所周知,在很长时期内,分数除法问题要求用算术方法和方程两种方法解答,而用算术方法解答无论如何也找不到学生能够理解的、能够说明并理解数量关系的问题情境。所以,人们就用”已知部分和所对应的分率,求整体,用除法“的解题套路来解决问题。这样的学习,不利于学生理解问题中的数量关系,没有思维的条理性训练,有的只是死记硬背和机械的模仿训练。本教材有关分数除法问题的解决只采用列方程解答。这样设计的思考有以下几点:第一,有利于学生应用已有知识解决问题。即:把单位”1“看作χ,根据”求一个数的几分之几是多少,用乘法“找到题中的等量关系。第二,渗透数学建模的思想。方程是现实运算的一个有效的数学模型。结合分数除法问题的解决,通过一些典型事例,让学生经历分析问题(找等量关系)--列出方程表示--解方程等过程。这是《数学课程标准》提倡的数学建模思想的具体体现。

  三、借助线段图分析数量关系,发挥其工具性。

  线段图作为小学阶段数形结合,分析数量关系的工具,历来成为小学数学中的重要内容。传统教材和教学中,人们在关注用线段直观描述数量关系的同时,也把用线段图表示数量关系作为一般要求。即,把画线段表示题中的数量关系作为学习要求,增加了学习的难度。本套教材,只发挥线段图的工具性。即:借助线段图分析数量关系,不把画线段图表示数量关系作为学习要求。通过线段图来分析问题中的数学信息和数量关系,从而找出问题中隐含的等量关系。让学生在自主解决问题中,体会画图分析问题、解决问题的优越性和工具性。

  本单元共安排5课时。主要内容包括:分数除以整数;一个数除以分数;简单的应用问题;混合运算。

  本单元的教育目标是:

  1、会进行简单的分数除法以及分数四则混合运算,能用方程解决有关分数除法的简单实际问题。

  2、能借助线段图分析数量关系,在用方程解简单分数除法应用问题的过程中,能进行有条理的思考,并对结论的合理性作出有说服力的说明。

  3、能够表达解决简单分数除法实际问题的过程,并尝试解释所得的结果。

  4、体验画线段图分析问题的直观性和用方程解决问题时思维的条理性,认识到许多分数除法问题可以用方程的方法来解决。

  ●分数除法,安排4课时。

  第1课时,分数除以整数。教材首先设计了三组有关系的口算题。如:20÷5,20×。通过计算20÷5=4,20×=4,发现它们的结果相同,进而得出:甲数÷乙数=甲数×乙数的倒数。接着,设计了”把张大饼平均分成3份,每份是这张大饼的几分之几?“的问题,探索分数除以整数的计算方法。教材以学生交流的形式呈现了学生计算和验证的过程。一是利用图示和已有的分数知识,推导出÷3==,二是直接利用发现的规律得出:÷3=×=。得到:分数除以一个数等于分数乘这个数的倒数。然后,在”试一试“,设计了分数除以整数的三道题,让学生应用上面的方法尝试计算。教学时,要给学生充分的口算和讨论规律的时间,然后,启发学生利用以前学过的除法的意义,倒数的知识,分数乘法的知识解决问题,说明结果的正确性。把分数除以整数计算方法的学习过程,变成知识扩展、方法验证的过程。

  第2课时,一个数除以分数。教材贯彻在解决问题中学习计算的设计思路,选择了把消毒液分装在每瓶能装升的小瓶中的典型事例,设计了两个问题。(1)把2升消毒液分装在每瓶能装升的小瓶中,需要几个瓶子?学习整数除以分数的除法;(2)把升消毒液分装在每瓶能装升的小瓶中,需要几个瓶子?学习分数除以分数的计算方法。两个问题都呈现了算术和用方程解的两种方法。这节课的内容,计算方法是上节课的进一步拓展,根据题意列算式和方程是重点。教学中,首先要帮助学生理解题意,明白把2升消毒液倒入每瓶能装升的小瓶中,需要几个瓶子,就是求2升中有几个升。再鼓励学生用自己的方法试着解答。χ=2和χ=,除根据等式的基本性质解方程外,还可以利用倒数的知识,即两边直接乘的倒数来解决。如果学生只用方程两边同时除以的方法解答,教师就提出兔博士的问题”χ=2还可以怎样解?“启发学生用倒数的知识列方程χ×=2×解答。”试一试“中安排了三道除数是分数的式题,要给学生充分的试算和交流的时间,重点说一说自己是怎样想的。教师还可以引导学生讨论一下分数除以整数、分数除以分数有什么共同点,进一步巩固分数除法的'计算方法。

  第3课时,简单的已知一个数的几分之几是多少,求这个数的简单问题。教材选择了同学们开联欢会布置会场的事情,呈现了布置会场的情境图和”用的红气球占总数的“、”红气球有28个“等文字信息,以及”一共用了多少个气球?“的问题。通过兔博士的话,提出”把气球的总数看作单位‘1’,画出线段图分析一下的要求“,并呈现了线段图。教学时,要在学生了解数学信息和知道了要解决的问题后,师生共同画线段图来分析数量关系,找到等量关系式,再鼓励学生自己试着解答,并检验计算的结果。交流时,重点让学生说说是怎样想的、怎样解答的,用自己的方法解释计算结果的正确性。”试一试“中,安排了一个数的几分之几是两数和,求这个数的问题,鼓励学生画线段图并解答。

  第4课时,稍复杂的”已知一个数的几分之几是多少,求这个数“的问题。教材首先选择了玩具厂计划生产碰碰车的事例,用图文结合的方式呈现了已经完成计划的,还要生产190辆等信息和”这批碰碰车有多少辆?“的问题。通过兔博士的话,提示画线段图来分析数量关系并呈现了完整的线段图。这是一道需要两步计算的分数除法的实际问题,可找到两组等量关系,列出两个方程解答。(1)计划生产的辆数-已经生产的辆数=还要生产的辆数,方程为:χ-χ=190。(2)计划生产的辆数×还剩下的几分之几(1-)=还要生产的辆数,方程为:χ(1-)=190。教学时,要充分利用线段图指导、帮助学生分析问题中的数学信息和数量关系,找到题中给出的等量关系,再鼓励学生用列方程的方法解答。

  分数混合运算的顺序与整数一样,本节课的混合运算主要是根据分数除法的特点,解决运算过程中的方法问题。教材设计了三道分数混合运算式题,(1)题是除加混合运算,运算中要先算除法,并把除法变成乘除数的倒数。(2)题是乘除混合运算。运算时,把除法转化为乘除数的倒数后,可以有不同的约分方法。第一,直接在三个分数上约分;第二,把三个分数相乘写成分子乘分子,分母乘分母的式子,再约分。(3)是带小括号的除减混合运算。教学中,由于两步混合运算的顺序学生已经非常熟悉,所以,让学生说一说运算顺序,自己计算。在交流学生计算方法和结果的同时,掌握分数两步混合运算方法。

五年级数学教案13

  教学目标

  1、知识与技能:

  (1)使学生知道小数的运算顺序和整数运算顺序相同。

  (2)使学生掌握小数连乘、乘加乘减的计算方法,正确地进行小数连乘、乘加乘减的计算,并能解答有关应用题。

  2、过程与方法:让学生通过旧知迁移新知识的方法来学习小数连乘、乘加、乘减的计算。

  3、情感、态度与价值观:培养学生认真审题的好习惯。

  教学重点

  使学生掌握小数连乘、乘加乘减的计算方法,正确地进行小数连乘、乘加乘减的计算。

  教学难点

  能解答小数连乘、乘加乘减的有关应用题。

  教学过程:

  一、复习、

  1、口算:5×2×7 25×4×8 9×10×6

  2、说出运算顺序:12×(5+60)30+7×85250×4÷200

  小结:刚才我们复习了整数四则混合运算的运算顺序,而小数的四则运算顺序跟整数是一样的。

  二、新授

  1、教学教材第11页例题7、

  (1)出示例题7:

  (2)分析:题目的已知条件和问题分别是什么?怎样列式计算?

  (3)生尝试练习。

  抽生板演:0、9×0、9×100

  =0、81×100

  =81(平方米)

  (4)分析订正:大家有什么不明白的地方吗?(学生质疑或师提问:)

  ①这个算式是先算的什么,再算的什么?(先算0、9×0、9,再乘100、)

  ②0、9×0、9是什么意思?(求的是一块砖的面积)

  ③为什么要用0、9×0、9呢?不可以就用0、9×100吗?(因为占地的`是瓷砖的面积,而不是瓷砖的边长。)

  ④再乘100呢?求的是什么?(100块砖能够铺地的面积。)

  ⑤同桌之间互相说一说每一步求的是什么?

  (5)如果有110块够吗?

  ①学生独立完成,汇报思路:

  第一种:0、9×0、9×110第二种:0、9×0、9×10+81

  =0、81×110=0、81×10+81

  =89、1(平方米)=89、1(平方米)

  ②学生说出第二种算法先算的什么,再算什么,并说出每一步的意思。

  (6)小结:小数四则混合运算的顺序与整数四则混合运算的顺序是一样的,今后我们在进行小数四则运算的时候一定要先搞清楚运算顺序再计算。

  三、练习

  1、完成第11页“做一做”。

  生完成在练习本上,抽生板演,并说出运算顺序。

  2、课堂作业:第13页练习二5—10题。

  3、拓展练习:计算(2、4+3、6)×0、5你能想到哪些方法?

  教学后记:

  成功之处:利用课件出示例题,激发了学生学习数学的乐趣,通过学生探索不同的解题思路,使学生体会到小数的混合运算也是生活中解决实际问题的重要工具,通过让学生用自己的话表达解答过程,逐步培养了学生具有回顾与分析解决问题过程的意识。

  不足之处:教学中只重视了计算顺序,而忽视了计算的准确性,在后面的学习中还要加强计算方面的训练。

五年级数学教案14

  首先,我对本节教材进行一些分析:

  一、教材分析:

  教材所处的地位和作用:

  本节课的主要内容是方程的定义,方程的性质和利用方程性质解方程。

  从知识结构上看:本节课是在学生学习了一定的算术知识(如整数,小数的四则运算及其应用),已初步接触了一些代数知识(如用字母表示数及其运算定律)的基础上,进一步学习的关键。这为过渡到下节的学习起着铺垫作用。

  从认知结构上看:本节课在初等代数中占有重要地位,中学生在学习代数的整个过程中,几乎都要接触这方面的知识。

  二、教育教学目标:

  根据本节课的地位和作用,依据教学大纲,以及学生已有的认知结构心理特征,我制定了如下目标:

  (1)知识目标:根据等式的性质,使学生初步掌握解方程及检验的方法,并理解解方程及方程的解的概念。

  (2)能力目标:培养学生的分析能力应用所学知识解决实际问题的能力。

  (3)情感目标:通过教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。帮助学生养成自觉检验的学习习惯,培养学生的分析能力和应用能力,渗透代数的数学思想和方法。

  这三个目标将为后面的教学起到一个导向作用。

  三、重点与难点:

  那么根据上面的分析不难看出《解简易方程》这节课在整个教材中将起到承上启下的作用,特别是利用方程性质解未知数,它是后续知识发展的起点,学生对未知数的理解对今后一元一次方程,一元二次方程的学习起着决定作用,所以我认为这节课的重点是:

  (1)重点:理解方程的解和解方程的含义。

  另一方面,对于学生来说,弄清方程和等式的异同,正确设未知数,找出等量关系是很困难的,所以我认为这节课的难点是:

  (2)难点:掌握解方程的方法。

  五、教学过程:

  下面,对于如何突出重点,突破难点,从而实现教学目标,在教学过程中拟定计划进行如下操作:(1、复习铺垫;2、探究新知;3、例题解析;4、巩固练习;5、归纳小结;6、布置作业。)六个步骤

  1.复习铺垫:

  (1)抛出问题:

  师:同学们我们上节课学了方程的意义,你还记得什么叫方程吗?

  生:含有未知数的等式叫方程。

  提问的目的:让学生回忆旧知识,巩固旧知识,引出方的解、解方程的定义。结合引导复习的方法,激发学生的学习兴趣。

  (2)判断下面哪些是方程:

  师:你能判断下面哪些是方程吗?

  (1)a+24=73(2)4x<36+17(3)234÷a>12

  (4)72=x+16(5)x+85(6)25÷y=0.6

  生:(1)(4(6)是方程。

  师:你为什么说这三个是方程呢?

  生:因为它含有未知数,而且是等式)

  这样做的目的:在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式教法,课堂讨论法。巩固方程的性质,承接后面利用方程的性质解方程的应用。

  理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。

  2、探究新知

  (1)、看图写方程

  师:同学们真厉害把学过的知识全都记得,请同学观察这幅图(看书上57页天平图)从图中你知道了什么?

  生:我知道杯子重100克,水重X克,合起来是250克。

  师:你能根据这幅图列出方程吗?

  生:100+X=250.

  这样做的目的:运用知识迁移,结合直观图例,应用方程的性

  质,让学生自主探索列出方程。

  (2)、求方程中的未知数

  师:那么方程中的x等于多少呢?请同学们同桌交流,说说你是怎么想的?(交流后汇报)

  生1:根据加减法之间的关系250-100=150,所以X=150.

  生2:根据数的组成100+150=250,所以X=150.

  生3:100+X=250=100+150,所以X=150.

  生4:假如在方程左右两边同时减去100,那么也可得出X=150.

  目的:这样的提问,有多种回答,锻炼学生的发散性思维,有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。

  (3)、验证方程中的未知数,引出方程的解和解方程两个概念。

  师:同学们都很聪明用不同的方法算出X=150,研究对不对呢?

  生:对,因为X=150时方程左边和右边相等。

  师:这时我们说x=150是方程100+X=250的解,刚才我们求X的过程叫解方程。这两个概念具体是怎样的.呢?请同学们翻到课本57页,(使方程左右两边相等的未知数的值叫做方程的解,解出方程的解的过程叫解方程。)勾上这两句话并齐读三遍。

  这样做的目的:学生齐读的时候,我可以把解方程和方程的解的概念板书在黑板上,并且,在学生读的过程中学生可以加深印象。

  (4)辨析方程的解和解方程两个概念

  师:方程的解是未知数的值,它是一个数,怎样判断一个数是不是方程的解呢?

  生:要看这个数能不能使方程左右两边相等。

  师:而解方程是求未知数的过程,是一个计算过程,它的目的是求出方程的解。同学们要注意两个概念之间的区别与联系。

  3、例题解析

  师:前几天我们学习了等式的性质,今天我们又学习了请根据等式的性质完成填空吗?

  (1)如果5+3=8,那么5+3-3=8()

  (2)如果50-13=37,那么50-13+13=50()

  (3)如果a-7=8,那么a-7+7=8()

  (4)如果X+9=45,那么X+9-9=45()

  师:你是根据什么填空的?

  生:等式的性质。

  师:等式有什么性质呢?我们齐来说一遍。

  2、理解方程与等式的联系,引出课题。

  师:(3)(4)题不但是等式而且是方程,我们知道方程是等式的一部分,所以等式的性质对方程同样适用,今天我们将应用等式的性质来帮我们解方程。(板书课题:解简易方程)

  3、出示例1图,列出方程。

  师:图上画的是什么?你能列出方程吗?

  生:X+3=9

  师:这个方程用天平怎么表示呢?

  生:天平左边放X个和3个球,右边放9个球。(电脑显示)

  4、引导学生思考怎样解方程。

  师:我们解方程的目的是求X,怎样使天平一边只剩x呢?

  生:天平两边同时减去3个球。(电脑显示)

  师:天平两边还平衡吗?怎样反映在方程上呢?

  生:方程两边同时减3。(结合学生回答板书)

  师:为什么同时减3而不是其它数呢?

  生:方程两边同时减3就可以使方程一边只剩X。

  5、检验方程的解。

  师:X=6是不是方程的解呢?

  生:是,因为X=6是方程左边是6+3=9,右边是9,左右两边相等,所以X=6是方程X+3=9的解。

  6、强调解方程的格式步骤

  电脑显示:解方程要注意:

  (1)先写“解”,等号要对齐。

  (2)做完后要注意检验。

  2.学情分析:

  (1)学生特点分析:积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。

  (2)知识障碍上:知识掌握上,学生原有的知识,许多学生出现知识遗忘,所以应全面系统的去讲述;学生学习本节课的知识障碍,知识学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。

  (3)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力

  最后我来具体谈谈这一堂课的教学过程:

  三、教学程序及设想:

  (1)引入:把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”继而紧张的沉思,期待录找理由和证明过程。抛出问题,什么叫方程?什么是方程的性质?让学生回忆上节课内容,引出方的解、解方程的定义。揭示课题:这节课我们就利用等式的性质来解简易方程。

  (2)由例题得出本课新的知识点:

  解方程:X+6=7.8;X-6=7.8;6X=7.8;X÷6=7.8。

  讲解例题。说明在方程的两边什么情况应该同时加,什么情况该同时减,什么情况该同时乘,什么情况该同时除?在讲例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于学生的思维能力。

  (3)接下来,我们用今天学习的知识解决实际问题。

  出示情景图:

  X元X元X元

  18元

  提问:从图中你知道了哪些信息?会列方程吗?然后说出图意并列出方程。

  (4)能力训练。课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。

  ①列出方程并解答:每个福娃X元,买5个共花80元。

  ②看题回答:1.6X=6.4(要解这个方程,方程两边应同时?)

  (看来解法掌握得不错,下面看谁的反应最快。)

  ①选择正确答案,说说你是怎样判断的?

  X+8=30的解是()A.X=22B.X=38

  0.3X=0.21的解是()A.X=7B.X=0.7

  X=5是方程()的解。A.15X=3B.6X=30

  X=30是方程()的解。A.0.2X=6B.2X=15

  (5)总结结论:知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。(这节课学习了什么?解简易方程的依据和方法是什么?)

  *(6)变式延伸:针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高进行重构,适当对题目进行引申,使教学的作用更加突出,有利于优等学生对知识的串联,累积,加工,从而达到举一反三的效果。(对有能力接受的学生)

  (7)板书:略

  (8)布置作业。P66第5—7题。

五年级数学教案15

  教学内容:教材第1--3页的内容及练一练。教学目标:

  1.在实际操作活动中,经历了解容量概念和认识测量工具、以及认识“升”和“毫升”的过程。

  2.了解容量的含义,认识“升”和“毫升”,了解升和毫升怎样用字母表示;会读量杯和量筒中液体的多少。

  3.积极参与“玩水”实验活动,获得愉快的学习体验和数学活动经验。重点、难点

  重点:使学生感知“升”和“毫升”这两个容量单位的大小,会读量杯和量筒上的刻度。

  难点:理解容量的含义。

  教学具准备:课件,水盆、杯子。

  教学过程:

  一、揭题示标。

  1、设疑导入

  师手拿两个杯子,提出问题:如果两个杯子都装满了水,哪个杯子装的水多呢?这里面隐藏着有趣的数学知识,谁来猜一猜是什么?(让生自由猜)

  2、板书课题。

  师:今天我们就一起来学习“认识升和毫升”(板书课题)

  3、出示目标

  我们这节课要达到的目标是:(学生齐读)

  1、知道“容量”的概念,认识容量单位“升”和“毫升”。

  2、了解升和毫升怎样用字母表示;我会读量杯和量筒中液体的多少。

  师:接下来就让我们带着目标根据自学指导的要求认真自学,相信每位同学都会有所收获。

  二、学习指导。

  认真看课本第1-2页的.内容,然后动手试一试,比一比,思考:

  1、哪个杯子装的水多?你是怎样比较的?

  2、你认为什么是容量?容量的单位有哪些?

  3、升和毫升用字母怎样表示?

  师:自学时,可以边看边动手做一做,重点的地方用笔画下来。

  (自学时间5分钟,看书-思考-动手-交流-汇报)

  三、自研共探

  1、看一看(自学探究)

  生认真看书自学,师巡视,督促人人认真地看书,也可参与学生的活动中。

  2、议一议(对子交流,疑难问题小组讨论,整合答案)

  针对自学探究中的问题先对子交流,还不能解决的问题可以小组讨论。

  教师在学生合作交流时巡视,观察小组交流情况,对合作不太好的小组给以帮助和提醒,促使每个组及组员都能积极参与到合作交流活动中。

  3.动手演示说一说(汇报展示)

  师:同学们学的怎么样呢?下面,就让我们一起来检测一下大家的自学成果。以小组为单位由老师指定题目进行汇报,没有得到展示机会的小组可以在期间举手示意要求汇报,但只展示不同方式或质疑补充。各组展示后,可以自评,他评或老师评价。对疑难地方师及时点评讲解。

  4.小结归纳

  生说,师生共同总结:容器中所能装液体的多少,就是容器的容量。

  常用的容量单位:升和毫升

  四、学情展示。

  1、课本第3页试一试。

  2、练一练中的1题.

  3、练一练中的第2题。

  要求:

  1、独立完成、对子交流。

  学法指导:先自己独立完成题目,然后举手示意对子,待对子完成后小声讨论

  2、组内讨论、整合答案。

  学法指导:待组内成员全部完成后交流各自答案和理由,最终形成统一答案。

  3、分工合作、板演展示。

  学法指导:每两组展示一题,预展速度快的组先展示,另外一组只展示不同之处,或质疑补充评价。由组长分工:展示题1可板演口答,展示题2可以边演示边说明理由,展示题3可以口答。展示形式可以多样化。(预展时间:2分钟)

  4、汇报讲解、补充评价。

  学法指导:由一个小组做讲解展示,讲解时可以组内补充,也可其它组补充或质疑。展示后,其它组或教师给予评价。

  5、操作指导:教师要在预展时巡视各小组,指导并帮助小组快速分工,让每一个学生都参与其中,做到人人有事做。

  五、归纳总结

  同学们,经过这节课的学习我们学到了哪些知识呢?你还存在什么疑惑?

  教师可从以下几方面引导学生说一说:1、知识点(表格、知识树等)2、方法3、易混易错点4、疑惑5、学情。

  六、巩固提升

  1、在()内填入升或毫升。

  (1)一瓶大瓶可乐的容量是2()

  (2)一瓶牛奶的容量是250()

  (3)一瓶眼药水的容量是5()

  (4)一桶饮用水的容量是15()

  (5)一瓶洗发水的容量是200()

  2、课本练一练第3题。

  3、拓展:课本第3页练一练的第4题。

【五年级数学教案】相关文章:

五年级数学教案01-13

五年级数学教案08-31

小学五年级数学教案02-28

五年级《分数的意义》数学教案08-29

小学五年级数学教案08-25

五年级数学教案《小数》01-10

【热】五年级数学教案03-07

【热门】五年级数学教案03-07

五年级数学教案精选15篇02-23