【精选】小学数学教案合集6篇
作为一位不辞辛劳的人民教师,总不可避免地需要编写教案,教案是教学蓝图,可以有效提高教学效率。教案要怎么写呢?以下是小编为大家整理的小学数学教案6篇,欢迎大家借鉴与参考,希望对大家有所帮助。
小学数学教案 篇1
教学目标:
1.借助日常生活中的圆柱体,认识圆柱的特征和圆柱各部分的名称,能看懂圆柱的平面图;认识圆柱侧面的展开图。
2.培养学生细致的观察能力和一定的空间想像能力。
3.激发学生学习的兴趣。
教学重点:
认识圆柱的特征。
教学难点:
看懂圆柱的平面图。
教具准备:
学生准备圆柱,师自制圆柱体侧面展开纸,一张长方形纸。切好的圆柱形萝卜,水果刀。
教学过程:
一、复习
1.已知圆的半径或直径,怎样计算圆的周长?(指名学生回答,使学生熟悉圆的周长公式:C=2πr或C=πd)
2.求下面各圆的周长(教师依次出示题目,然后指名学生回答,其他学生评判答案是否正确)
(1)半径是1米
(2)直径是3厘米
(3)半径是2分米
(4)直径是5分米
二、认识圆柱特征
1.整体感知圆柱
(1)谈谈圆柱.你喜欢圆柱吗?请同学说说喜欢圆柱的理由。(美观、实用、安全、可滚动……)
(2)找找圆柱,请同学找出生活中圆柱形的物体。
2.圆柱的表面
(1)摸摸圆柱。请同学摸摸自己手中圆柱的表面,说说发现了什么?
(2)指导看书:摸到的上下两个面叫什么?它们的形状大小如何?摸到的圆柱周围的曲面叫什么?(上下两个面叫做底面,它们是完全相同的两个圆。圆柱的曲面叫侧面。)
3.圆柱的高
(1)一根竖放的大针管中的药水由高到低的变化过程,引导学生思考:药水水柱的高低和水柱的什么有关?
(2)引导小结:水柱的高低和水柱的高有关.
(3)结合课本回答什么叫圆柱的高。(板书:圆柱两个底面之间的距离叫做高。)
(4)讨论交流:圆柱的高的特点。
①装满牙签的塑料盒,问:这些牙签是圆柱的高吗?假如牙签细一些,再细一些,能装多少根?
②初步感知:面对圆柱的高,你想说些什么?
归纳小结并板书:圆柱的高有无数条,高的长度都相等。
③深化感知:面对这数不清的高,测量哪一条最为简便?
老师引导学生操作分析,得出测量圆柱边上的这条高最为简便,同时课件上的`圆柱体闪烁边上的一条高.也可以用笔筒来教学圆柱的高。
4.圆柱的侧面展开(例2)
(1)动手操作:请同学分小组拿出橡皮、蜡笔、水彩笔、固体胶水等有商标纸的圆柱形实物,分别把商标纸剪开,再打开,观察商标纸的形状.
(2)寻求发现.展开的长方形的长和宽与圆柱的关系.
①师生一起把展开的长方形还原成圆柱的侧面,再展开,在重复操作中观察。
②学生再观察上述过程.(用彩色线条突出圆柱底面周长和高转化成长方形长和宽的过程。)
③同学交流后说出自己的发现:这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。
(3)延伸发现.展开的平行四边形的底和高及正方形的边长与圆柱的关系。
①讨论:平行四边形能否通过什么方法转化成长方形?
②想一想:当圆柱底面周长与高相等时,侧面展开图是什么形?
③引导小结:不管侧面怎样剪,得到各种图形,都能通过割补的方法转化成长方形.其中正方形是特殊的长方形.
三、巩固练习
1.做第11页“做一做”,指出圆柱体的底面,侧面和高。
2.做第15页练习二的第2题找出圆柱体。
3.15页第3题,想一想,折一折,能得到什么图形。
4.做第15页练习二的第4题。教师行间巡视,对有困难的学生及时辅导。
四、布置作业
完成一课三练P15的1、2题。
小学数学教案 篇2
教学目标
1.认识直线、线段、射线及它们的联系和区别、初步认识角,知道角的各部分名称,会比较角的大小,会用尺子画角.
2.通过教学提高学生的观察能力、动手操作能力,发展生学的空间观念.
教学重点
理解角的概念,知道角的各部分名称.
教学难点
理解角的概念、用尺子画角.
教学过程
一、激情导入
1.演示动画角的认识.
2.师:今天老师要和同学们一起来认识一个新朋友角.
(揭示并板书课题角的认识)
二、引导探究
1.(1)演示动画直线、射线、线段
(2)启发提问:手电筒、太阳光射出来的光线都可以看成是射线.在日常生活中,还有哪些可以看作射线呢?
(3)小组讨论:直线、线段、射线有什么联系?又有什么区别?
(联系:都是直的`,线段是直线的一部分.
区别:端点数不同,线段的测量长度直线、射线是无限长的,无法测量)
2.初步认识角
(1)演示课件角的认识.(从一点引出4条射线)
提问:①你能从中找出多少个角?(最多6个)
②如果只想得到一个角?该怎么办?
(2)板书:从一点引出两条射线所组成的图形叫做角.
(3)继续演示课件角的认识,演示角各部分名称.
(4)引导学生利用两根硬纸条和一个小钉子摆角.
教师引导学生边操作边思考:
①怎样可以得到一个角?
②怎样可以得到一个较大的角?
③怎样可以得到一个较小的角?
3.联系实际,深入感知.
(1)提问:联系实际想一想,生活中哪有角?
(2)启发学生用不规则的纸折出或剪出一个角.
全班进行比赛,看谁的角最标准.
摸一摸自己得到的角的顶点和边、感受角,教师选择有代表的角巾在黑板上展示.
(3)观察黑板上的角,按照角的大小请同学们排出顺序.
(4)当学生在叙述顺序语言表达困难时,适时出示角的表示方法.(强调和的不同)
4.讨论尝试,比较大小.
(1)演示动画角的大小比较.通过故事,引出问题.
(2)同学讨论、尝试比较角大小的方法.
(3)继续演示动画角的大小比较.
(4)由学生小结比较角大小的方法.
(先把两个角的顶点和一条边重合,然后看另一条边的位置,哪个角的另一条边在外面哪个角就大.如果另一条边也重合,说明两个角相等.)
5.体验画角.
(1)由学生尝试用尺子画角,教师巡视.
(2)小结角的画法.(先画顶点,再从顶点起画两条射线)
三、巩固练习
完成第126页第1题.
下面的图形,哪些是直线?哪些是射线?哪些是线段?
2.比一比看谁的眼力好.哪些是角?哪些不是?
3.一张长方形纸、剪去一个角还有几个角?
四、质疑小结
提问:通过今天的学习,你都学会了什么?(射线、线段、什么叫角,角的各部分
名称、比较两角大小的方法和角的画法)
课后总结.教师出示顺口溜:
小小角,真简单,
一个顶点两条边,
画角时,要牢记,
先画顶点后画边.
五、布置作业
从一条射线的端点开始,截取一条4厘米长的线段.
小学数学教案 篇3
教学目标:
1.结合需要几个轮子的具体情境,经历3的乘法口诀的编制过程,发展自主学习能力。
2.通过怎样记住3的乘法口诀的交流活动,体会记忆的策略,培养数感。
3.会用乘法口诀进行乘法运算,解决生活中简单的乘法问题。
教学重点:编制3的乘法口诀,掌握3的乘法口诀会用3的乘法口诀进行计算解决实际问题。
教学难点:用乘法口诀解决现实中的实际问题。
教材分析:
需要几个轮子是北师大版小学数学二年级上册第16~17页的内容。教材创设需要几个轮子的问题情境,探索三轮车的数量与它们轮子总数之间的对应关系,并填表表示探索的结果;再根据表中的数量关系,列乘法算式,编出3的乘法口诀,这个过程是要学生经历的。学生已有学习5和2的乘法口诀的经验,这些经验能够增强他们学习3的乘法口诀的自主性,提高学习效率,体验成功,获得自信。日常生活中的数数,5个5个地数或2个2个地数是常见的,3个3个地数比较少,所以学生对3的乘法口诀比较陌生,因此教材特别强调了怎样记住3的乘法口诀。此外,还要注意到练习的安排,不仅要包括新学内容,还要包括前面已学过的乘法口诀的巩固和应用。
学生在探索车辆与车轮数量之间的对应关系时难以直观操作,所以笔者把教材中试一试的第一题摆一摆、说一说调整到填表之前,并改成画一画、说一说。
教学过程:
一、创设情境,激趣导入。
师:同学们,你们坐过三轮车吗?今天我们一起探索三轮车与车轮之间的数量关系,学习3的乘法口诀好吗?(板书:3的乘法口诀)
二、活动探究,获取新知。
师:1辆三轮车有3个轮子,2辆三轮车有几个轮子呢?3辆呢?9辆三轮车有几个轮子呢?(评析创设与学生生活实际相关联的学习情境,激发学生学习的积极性。通过设问,激活学生思维与探索的欲望。)
1.画一画、说一说。
师:你们能在这张纸上通过画图来解决这个问题吗?用小圆圈表示三轮车的轮子,请同学们来画一画。
师:同学们,同桌能互相说一说2辆车有几个轮子吗?3辆车呢?9辆车呢?
(评析通过画一画的活动,让学生建立三轮车与轮子的图形表象,通过数一数说一说进一步感受三轮车有几辆与轮子有几个之间的对应关系,发展学生的数感。)
2.填一填,议一议。
师:填一填,将下面的表格填完整。
师:需要几个轮子的'答案,都可以从这张表格中找到。究竟需要几个轮子,取决于有几辆三轮车。
师:小组讨论一下,从这张表格中能发现什么规律。
(全班汇报交流时,着重引导学生感受两点:①轮子随着车辆的增加而增加;②每多1辆三轮车就要增加3个轮子。)
(评析用表格表示数值的对应关系,具有直观性,进一步引导学生发现数值对应的变化规律,有助于培养数感。)
3、利用表格,编制口诀
师:利用表格,独立完成试一试的第2题。
您现在正在阅读的北师大版小学数学《需要几个轮子》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!北师大版小学数学《需要几个轮子》教学设计(请同桌同学互相交换课本,互相检查,再读一读,看口诀编得顺不顺口。然后展示一位学生所编的乘法口诀,让大家再读一读。)
师:乘法口诀会帮助我们做乘法运算,所以要把3的乘法口诀记牢。请想想,你怎样记住3的乘法口诀,有什么好办法可以向大家介绍。
(在全班介绍交流时,特别要提倡或肯定利用知识的内在联系来加强记忆的方法。如,三五十五记得牢,它加个3是三六十八,减个3是三四十二;十个三是三十,减个3就是三九二十七等。)
(评析强调利用知识内在联系加强记忆的方法,也是对学生进行学习方法的指导。)
三、巩固应用。
师:请同学们打开课本17页,独立完成练一练的第1题和第2题。
师:现在用练一练的第3题,(五)回归生活,解决问题。
师:请大家都来欣赏第17页的数学故事,谁看懂了这个故事,并愿意说给大家听?
(这个故事的教育性不仅仅体现在其中所包含的现实数学问题,能够让学生感受到数学与生活的密切联系,而且淘气诚实、不贪小便宜的好品质,更值得大家学习。故事最重要的情节是淘气还给书店多找给他的钱。帮助学生理解了故事的情节及意义后,再让小组合作解决淘气买书时遇到的数学问题:淘气买书应付多少钱?淘气还给书店多找给他的钱是多少?)
(评析数学故事不仅增添了数学学习内容的趣味性,而且打破了学科本位,加强了数学与语文学科的联系与综合;把做人的道理寓于数学故事的情节之中,是实现新课程多元目标的一项举措。)
总结:
师:今天你学到了什么?有哪些收获和体会?谁愿意来说一说?(对学生的发言进行点评,重在激励进步,增强学习的信心。)回家后,要做两件事:①把3的乘法口诀背给爸爸妈妈听;②把今天的数学故事讲给爸爸妈妈听,考考他们知道不知道淘气还给书店多找给他的钱是多少。
(评析低年级不布置笔头练习作业,但要把课堂学习自然地延伸到课后,教师可以恰当地布置一些家庭学习任务,主要目的是促进学生与家长的沟通与互动,让家长了解、关注孩子的成长和进步,并及时发现问题,给予指导,或反馈给老师。)
板书设计:
需要几个轮子
13=323=633=9 34=12
一三得三 二三得六三三得九 三四十二
35=15 36=18 37=2138=24
三五一五 三六十八 三七二十一 三八二十四
39=27
三九二十七
小学数学教案 篇4
建议思考的问题
1.教学中课本上的结论是否就是定论?
2.课堂上采用小组讨论形式,万一发言一发不可收,提出令人尴尬的问题或课堂教学秩序混乱,教学任务完不成怎么办?
3.课堂上小组讨论是否会流于形式,反而浪费了课堂时间?
背景
最近,我教《约数和倍数》这一章,感到非常头疼。因为我教书8年来,一直认为这章概念多,难理解,要想学生学好,必须讲得细,扎扎实实练好每一节。所以,我认真备课,把要学的每一个知识点都准备讲得清清楚楚。但事与愿违,上课时,许多学生觉得挺简单,我在讲解时,他们不停地插话,打断我的思路;可让他们做作业时,却错误百出,真是“自以为是”!但是不让他们插话,认真听我讲,结果他们兴趣索然,趴在桌上不想听课!我真是不知该怎么办,甚至埋怨这班学生不如其他班的,真是“朽木不可雕也!”。
后来,我停止了抱怨,开始反思:如何能让学生积极、主动地参与呢?嗯……对!要转变学生的学习方式,使他们成为学习的主人。
案例描述
一、复习。
1.什么叫公约数?什么叫最大公约数?
2.自己默默地想一想如何求两个数的最大公约数。
二、教学新课。
(黑板上出示)求下面每组数的最大公约数,如能简便,请用简便方法计算;如不行,就用短除法来求。
11和12 8和15 12和18 21和7
学生们认真地观察这些数字,进行着思考和计算。一会儿,有的学生喜形于色,有的学生紧锁眉头,此时的教室里鸦雀无声,每个学生都在积极地思索(进入了状态),5分钟过去了,一个学生轻轻问:“段老师,讲讲吧?”我歉然一笑,说:“老师现在不会告诉你的。”接着又向大家说:“现在分小组讨论,交流各自的意见。”
一句话击起了“千层浪”,学生们展开了热烈的讨论,有些学生认为4个题都可简便,有些学生认为有三个可简便,有些学生还认为简便的方法不只一种。这时,我出示了一张表:
根据工作表,小组长带领组员思考要探究的问题,大胆地提出自己的猜想,并尝试着进行实践证明……在一番自主活动之后,师与生、生与生之间充分展示自己的思考方法和探究过程——
生:我认为第一组“11和12”可以简便计算,它们相差是1,最大公约数就是1。
生:(对刚才那个学生反问)我认为你的想法是错误的,11和12互质,所以它们的最大公约数是1。
生:(支持第一个学生)我举了好几个例子,比如7和8相差1,最大公约数就是1。
生:我认为只要是两个互质数,它们的公约数就只有1,因此,最大公约数也是1,例如:第一组中的“11和12”,第二组中的.“8和15”;而其中11和12的最大公约数是1,也正好相差是1,这是一个巧合,也是正确的,但它不能代表所有互质数的求法,只能代表相邻的两个数的求法,又因为相邻的两个数一定互质,我们为何不把它归为一类:两个互质数,最大公约数就是1。
同学们听后纷纷投去赞许的目光。
师:同学们,道理只有越辩越明,经过刚才的讨论,我们得出一个结论:如果两个数是互质数,它们的最大公约数就是1。(投影出示)
生:我们组认为第三组“12和18”求最大公约数也可用简便方法,可以用公约数6去除,再看所得的商还有没有其他公有质因数,结果没有了公有质因数,因此,12和18的最大公约数是6。
生:(反对刚才那个同学所说的)我们在用短除法求最大公约数时,只能用质因数去除,怎么能用公约数去除呢?
生:是啊!只能用公有质因数去除,6是一个合数,不能用6去除。(一片议论声。)
师(引导):大家想一想最大公约数是求什么?
生:是求两个数公有的约数中最大的一个。
师:既然这个最大公约数既是18的约数,又是12的约数,因此,就可以用18和12的公约数去除,大家之所以习惯用公有质因数去除,是因为短除法当时从分解质因数演变过来的,但从最大公约数的意义考虑,是可以用它们的公约数去除的。
学生听得非常认真,并且有恍然大悟的神情。
生:我发现第四组“21和7”也有简便方法,它们的最大公约数是7,7的约数有7,21的约数也有7,所以,它们的最大公约数是较小数7。
生:我对刚才那位同学进行补充,因为21是7的倍数,所以,21的约数必定有7,7又是它本身的约数,因此,它们的最大公约数是7。
师:同学们刚才说得非常好,这就是第二个规律(投影出示):如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
经过刚才的发言,举手的人渐渐少了,可有一位同学仍坚持不懈地高高举着手,我便请他发言。
生:我认为除了老师您黑板上的例子可以简便,还有一种可以简便处理的方法,那就是:两个相邻的奇数一定互质,它们的最大公约数也是1,虽然它包含在互质数这一类中,但仍比较特殊。
他的回答着实让我和同学们吃了一惊,当时,我也对他的答案是否正确把握不准。于是便领着学生们进行验证,发现果然是正确的,同学们都露出了佩服的神情。
接下来,同学们又认真地看书中例题,并且积极地做了相关的练习题。
课后反思
上面这个案例,是我在教学中的一个片段,它体现了我思想上的一些创新和转变。
1.由指令性活动向自主性探索转化。
在前段时间教学时,总是对学生不放心,结果只会束缚学生的手脚,阻碍学生思维的发展,因为真正能培养学生创新精神和实践能力的实践活动必须是学生自主的活动。这一节课中,学生自己在进行观察、假设、探究等高层次的思维活动之后,得出的结论是我始料不及的。
2.由问答式教学向学生独立思考基础上的合作学习转变。
在教学中,学生一直处于发现问题、解决问题的状态之中,用自己的思维方式进行探究,形成独特见解,此时的合作有了基础。当有了不同意见时,才会产生创新的思想火花;当意见相同时,就会充分展示自己的思想和表现欲,那小组合作怎会流于形式呢?可能这会“浪费”些时间,但这让我们的学生获得了多少知识和能力啊!
3.课本不能被当作惟一不可改变的标准。
课本在学生学习时起到了至关重要的作用,但学生可在此基础上进行探索和创新。例如在这节课上,学生们总结出来的规律可能被分别归入书中几类,但他们所发现的细微的结构特征是书上所没有的,它是那样有新意,我们有什么理由可以“一刀切”呢?
学生的学习方式的转变关键在于教师,一方面要求教师不断更新教学观念,树立先进的教学理念;另一方面要求教师能将先进的教学理念转化为教学行为,特别是要改变长期形成的、习惯了的旧的教学方式。只有让学生充分从事探究学习活动,发挥他们的自主性、主动性、选择性和创造性,才能真正地使他们成为学习的主人!
小学数学教案 篇5
设计说明
教材的意图不仅仅是要求学生掌握本节课的基本知识和基本技能,更重要的是要教给学生探索知识的方法和策略,鼓励学生在教师的引导下自主探索和研究数学知识,这样做的意义就在于将学生的独立思考、展开想象、自主探索、交流讨论、分析判断等探索活动贯穿于课堂教学的全过程,使学生不断获得和积累数学活动经验,培养学生的学习兴趣和学习能力。
1、突出动手操作的学习方式。
通过把正方体盒子剪开得到展开图的活动,引导学生直观认识正方体的展开图。通过学生沿着不同的棱来剪,得到不同的展开图,让学生充分感知正方体不同的展开图,体会到从不同的角度去思考和探究问题,会有不同的结果。
2、渗透转化思想,发展空间观念。
引导学生先通过想象折叠的过程和折叠后的'图形来帮助学生建立表象,再通过动手“折一折”的活动来验证猜想。让学生在反复展开和折叠的过程中体验立体图形与平面图形相互转化的过程,建立展开图中的面与长方体和正方体中的面的对应关系,渗透转化和对应的数学思想,发展空间观念,培养学生多角度探究问题的能力和空间思维能力。
课前准备
教师准备PPT课件,长方体和正方体模型
学生准备长方体和正方体盒子
教学过程
激趣引入,明确目标
师交待学习目标:
1、通过动手剪一剪、折一折,体验正方体展开与折叠之间的对应关系,加深对长方体、正方体的认识。
2、会根据长方体、正方体的特点或动手操作等方法判断某一图形折叠后能否围成长方体或正方体。
设计意图:师交代学习目标的作用,让学生明确这节课要做什么,学会什么。
合作交流,探究新知
活动一展开
提出活动要求:把一个正方体盒子沿着棱剪开,得到一个展开图。
1、教师做示范并指导学生操作。
第一:必须沿着棱剪;第二:正方体的每个面至少有一条棱与其他面相连。
2、学生动手剪,教师指导有困难的学生,并把剪得好的正方体展开图展示在黑板上。
3、小组交流剪出的不同形状的展开图。
4、全班交流:观察黑板上的这些不同形状的展开图,你发现了什么?
5、教师小结:同一个正方体,剪法不同得到的展开图也不同,共有11种不同的展开图。(课件出示正方体的11种展开图)
设计意图:让学生经历展开的过程,有利于培养学生的空间观念,同时也让学生感悟到同一个正方体展开的结果是多样的。
活动二折叠
提出活动要求:同桌合作,把同桌的展开图重新折叠成正方体。
1、同桌各自交换展开图,动手折一折。
2、找规律。(课件出示正方体的11种展开图)
师:观察这11种展开图,找一找有什么规律。
预设
生1:有6种中间是4个正方形的,两侧分别有1个正方形,形状不同。
生2:有3种中间是3个正方形的,两侧分别有2个和1个正方形。
生3:有1种中间是2个正方形的,两侧分别有2个正方形。
生4:有1种两行各有3个正方形的。
小学数学教案 篇6
教学目的:
1、拓宽学生学习的渠道,让学生通过到图书馆查资料,初步了解分数产生的条件、背景和发展史。
2、让学生在玩学具的过程中理解单位"1",感受什么是分数,归纳出分数的意义,培养学生实际操作和抽象概括能力。
3、让学生在轻松和谐的氛围中学习数学,体验学习数学的成功和愉悦,培养学生对数学的情感。
教学重点:
单位和分数的意义的教学。
教学难点:
突破一个整体的教学。
教具、学具:
苹果、一分米、方块、小棒、小旗、小刀、水彩笔。
教学过程:
一、介绍分数的产生
师:课前,老师让大家回去查阅资料,谁能结合你的资料来说说分数是怎样产生的事?(学生举手)
师:(指手里拿着一本书的女生)你来说说。
(女生拿着自己查的资料走到讲台前,把自己的资料放在实物投影下)
生说:我是从《中国少年儿童百科全书》上查到的。分数起源于分。在原始社会,人们集体劳动要平均分配果实和猎物,逐渐有了分数的概念。以后在土地计算、土木建筑、水利工程等测量过程中,当所用的长度单位不能量尽所量线段时,便产生了分数。
师:您查的挺好的。通过她查的资料我们可以知道分数起源于分。
师:(看到有学生举手,指其中一男生)你来说说。
男生:(拿着资料来到讲台上的实物投影前,指着资料书)我是从《新编小学生数学词典》上查到的。人类在生产劳动的长期实践活动中产生了分数,起初是使用具体的分数,如二分之一用"一半"来表示,四分之一是用"一半的一半"来表示,经过了相当长的一段时间后,才出现了诸如二分之一、三分之二等分数。
师:嗯,好,请回。通过他查的资料,我们可以知道最初的分数表现形式和现在的表现形式一样吗?(学生齐说不一样)1/2是用"一半"来表示1/4是用"一半的一半"来表示,那么,照此推算1/8就是(学生齐说一半的一半的一半。)
师:看来同学们是真理解了,那谁还有别的资料吗?
(学生举手)
师:(指一女生)好,你来。
女生:(拿着资料走到实物投影前展示)我是从资料书上查到的,我把它摘抄到我的笔记本上。分数在我们中国很早就有了,最初分数的表现形式跟现在不一样。后来,印度出现了和我国相似的分数表示法。再往后,阿拉伯人发明了分数线,分数的表示法就成为现在这样了。
师:很好,看来,同学们的资料查的不错。今天我们就不一一交流了,建议课后大家再把查到的资料互相交流一下。通过这几个同学查的资料,我们可以知道分数实际上是由人们的生产生活的需要而产生的。
二、探索分数的意义
1、小组探究,共同参与。
师:我们三年级时对分数已经有了初步的认识,你能说出几个具体的分数吗?
(学生举手)
甲生:3/4,1/2,1/20,88/100
师:嗯,说的还挺多。
乙生:1/10,1/100,1/50,1/60
师:你也知道很多分数。
丙生:2/4、2/8、5/10、20/100
师:同学们已经知道了很多的分数,那要是给大家几种材料,你们能动手分一分,并且用分数来表示吗?
(学生说能)好,拿出老师给大家准备的材料,小组讨论一下。
(学生活动,小组讨论五分钟左右。教师巡视,参与小组活动,了解情况。)
2、汇报交流,力求创新。
师:大家得到分数了吗?哪个小组来说你们是怎样得到的?
(学生举手)
师:(指甲组)你们来说说。
(一个学生代表甲组,拿着一个苹果走到实物投影前)
甲组:我先把这个苹果平均分成了两份,取其中的一份就是二分之一。
(教师板书:平均分分数1/2)
甲组:我又把这个苹果平均分成了四份,取其中的一份就是四分之一。
(教师板书:1/4)
甲组:我又把这个苹果平均分成了八份,取其中的一份就是八分之一。
(教师板书:1/8)
甲组:这样,依次类推,可以分成许多份,得到许多分数。
师:行不行啊,老师感觉他里面有句话说的非常好,谁来说说。
生说:依次类推。
师:那你明白依次类推是什么,意思吗?
生说:懂,就是一个一个往下类推。
师:也就是说还可以再接着分,看来这个小组已经想的很透彻了,谁还有别的材料需要展示的吗?
(学生举手)
师:(指乙组)你们来说说。
(一学生代表乙组,拿着一分米的`纸上来展示)
乙组:我们小组是把一分米平均分成了10份,其中的1份就是十分之→。如果把;2平均分成2份,其中的一份就是二分之一。如果把它平均分成5份F飞其中的一份就是五分之一c
(教师板书:1分米1/10)
师:他刚才说了很多分数。咱就按照这个同学刚才说的,把1分米平均分成10份,除了十分之一,我们还能得到别的分数吗
一生:把这1分米平均分成10份,取其中的→份,就是十分之一取其中的两份,就是十分之二,取其中的三份就是十分之三,这样,依次推下来,就可以得到十分之几。
师:也就是表示其中几份就是它的十分之几,你们同意吗?
(学生齐说:同意)
师:谁还有别的材料需要展示吗?
(学生举手)
师:(指丙组)你们来说说。
(两个学生代表丙组,拿着八个方块到前面来展示)
丙组:我们把八个方块平均分成两份,取其中的一份,就是二分之
(教师板书:八个 1/2 )
丙组:把八个方块平均分成四份,取其中的一份就是四分之一,两份就是四分之二,三份就是四分之三。
(教师板书:1/4、2/4、3/4)
(教师看到下面同学有很多急着举手的)
师:你们有问题吗?
一女生:他把它平均分成4份,一份是两个方块,他为什么说是四分之一呢?展示的丙组男生回答:把这八个方块平均分成4份,其中的一份就是四分之一。
女生质疑:这其中的一份是两个方块,为什么说是1/4,我还不明白。
丙组男生:因为这两个方块组成一份。
师:你满意吗?
女生:不满意。师:不算很满意,那你们能再来解释解释吗?
丙组女生很急切的解释:因为它要分成4份的话,这两个方块,并不是论块,而是论份,这两个方块组成了一份,是四份中的一份,所以是四分之一。
师:你说的很有特点,看来这是一个难点。刚才同学们提的问题很有价值,我们要想得到一个分数,必须要把八个方块看成一个整体,这两个方块或者四个方块只是这个整体的一部分,我们就可以用分数来表示。
师:那谁还有别的材料需要展示。
(学生举手)
师:(指丁组)你们来说说
(一生代表了组,拿着10根小棒走到前面展示)
丁组:我这里有10根小棒,我把它平均分成10份,其中的这一份,就是十分之一,然后,再把它平均分成5份,其中的一份就是五分之一。再把它平均份成两分,其中的一份就是二分之一。
(教师板书:10根小棒1/10、1/5、1/2)
师:我想问你一个问题,我把10根小棒看成一个整体,平均分成两份,其中的一份是二分之一,那这一份是几根小棒?
生:是5根小棒。师:很好,请回,(指举手的同学)你想展示?
生:我这有6面红旗,我首先平均拿走一面红旗就是六分之一。拿掉两面红旗就是六分之二,依次类推,把六个红旗都拿完了,就是六分之六。
师:平均拿走一面红旗是什么意思?
生补充:我想换一种说法,就是把这六面红旗平均分成六份,拿走其中的一份就是六分之一。
师:你说的真好。我们要想得到几分之几时,必须要先把它平均分成几份。
(教师板书:6面小旗1/6)
3、抽象概括,构建新知。
师:我们刚才得到了很多的分数,(指黑板)以前我们研究过了分一个物体,(板书:一个物体)分一个计量单位。(板书:一个计量单位)今天我们主要研究了分多个物体组成的一个整体,(板书:一个整体)这些我们通常都可以把它们叫做单位"1"。(板书:单位"1")
师:除了这些你还能再举几个单位"1"的例子吗?
生:一个西瓜。
生:一个蛋糕。
生:一个苹果。
师:刚才同学都举的是一个物体的,还能举一些别的吗?
生:10个人。
生:10本书。
生:8个铅笔盒。
生:5瓶啤酒。
生:3块橡皮。
师:看来同学们已经理解了单位"1"。那你能结合刚才的这些例子用自己的话说说什么叫分数吗?小组先讨论讨论。
(小组讨论一分钟左右)
师:谁来说说。
甲生:'把一个物体平均分成几份,取其中的几份,就是几分之几。
乙生:把一个物体平均分成若干份,取其中的几份,就是几分之几。
师:刚才都是说分一个物体,还有没有别的啦?
丙生:把几个同样的物体平均分成若干份,取其中的几份,就是几分之几。
师:通过你们说的,教师知道你们已经明白了,那么到底数学家是怎样归纳的呢,请同学们看屏幕。
屏幕展示:把单位平均分成若干份,表示这样的一份或几份的数叫做分数。
找生读,学生质疑。
师:这就是我们这节课研究的分数的意义。
(板书课题:分数的意义)
师:那你能通过3/10,说说分数由哪几部分组成的吗?
生:分数线、分子、分母组成。
师:分母、分子各表示什么意思?
生:分母表示把一个物体平均分成几份,分子表示取了其中的几份。
师:这一物体也就是单位。
三、 巩固练习
1.用分数表示下面各图中的阴影部分。
2、填空;
(1)把一堆苹果平均分成5份,一份是这堆苹果的( )两份是这堆苹果的( )。
(2)把今天来上课的同学平均分成()组,一个组的人数是全()班人数的(),二个组的人数是全班人数的()。
3、糖块游戏。
拿走9块糖的1/3,拿走几块?为什么?再拿走剩下的1/3,拿走几块?为什么?再拿剩下糖的1/4,拿走几块?
四、总结(略)
【小学数学教案】相关文章:
小学数学教案09-16
【热】小学数学教案01-21
小学数学教案【推荐】01-25
【推荐】小学数学教案01-26
小学数学教案【精】01-20
小学数学教案【荐】01-19
小学数学教案【热门】01-27
【热门】小学数学教案01-23
小学数学教案【热】01-17
【精】小学数学教案01-24