六年级数学教案《比的化简》

时间:2024-11-02 14:45:14 啟宏 数学教案 我要投稿
  • 相关推荐

六年级数学教案《比的化简》(通用6篇)

  作为一位兢兢业业的人民教师,有必要进行细致的教案准备工作,教案有助于顺利而有效地开展教学活动。那么什么样的教案才是好的呢?以下是小编帮大家整理的六年级数学教案《比的化简》,仅供参考,希望能够帮助到大家。

六年级数学教案《比的化简》(通用6篇)

  六年级数学教案《比的化简》 篇1

  学材分析

  已经学了比、除法、分数之间的关系,再来学会化简比的方法。

  学情分析

  根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简比。重点理解比的基本性质。难点正确应用比的基本性质化简比。

  学习目标

  1、理解比的基本性质。

  2、正确应用比的基本性质化简比。

  3、培养学生的抽象概括能力,渗透转化的数学思想。

  导学策略

  引导学生发现比的基本性质。

  教学过程:

  一、复习引入

  (一)复习商不变的性质

  1.谁能直接说出6025的商?

  2.你是怎么想的?

  3.根据是什么?

  (二)复习分数的基本性质

  根据是什么?内容是什么?

  (三)求比值

  二、讲授新课

  我们以前学过商不变的性质和分数的基本性质,联想这两个性质,想一想:在比中又有什么样的规律?

  (一)比的基本性质

  1、出示8∶4和2∶1这两个比。

  2、教师提问

  这两个比有什么共同点吗?

  这两个比有什么不同点吗?你是怎么想的?

  (1)教师板书:比的前项和后项同时

  乘以或者同时除以相同的数(0除外),比值不变.

  板书课题:比的基本性质

  (2)教师强调:同时相同0除外几个关键词

  (二)化简比

  1.练习引入

  学校有8个篮球,12个排球,篮球和排球个数的比是多少?

  (1)篮球和排球的个数比是8∶12

  (2)篮球和排球的个数比是2∶3

  讨论:篮球和排球的个数比是写成8∶12好,还是写成2∶3好?

  2.最简单的整数比

  最简单的整数比就是比的前项和后项是互质数,如2∶3就是最简单的整数比.

  3.化简比

  例1.把下面各比化成最简单的整数比.(1)14∶21=(147)∶(217)=2∶3讨论:化简整数比的方法是什么?

  (2)∶=(18)∶(18)=3∶4

  (3)1.25∶2=(1.25100)∶(2100)=125∶200=5∶8

  1.25∶2=(1.254)∶(24)=5∶8(更好)

  讨论:怎样把小数比化成最简单的'整数比?

  4.小结化简比的方法

  (1)都化成整数比

  (2)利用比的基本性质把比的前、后项同时除以它们的最大公约数,直到前、后项互质为止.

  (三)区别化简比和求比值

  1.练习

  化简比:化成最简单的整数比

  比值:求出商。

  25∶100

  4.2∶1.4

  例如:25∶100化简比的结果是,读作1比4,求比值的结果是,读作四分之

  三、巩固练习

  (一)化简比

  (二)选择

  (三)思考题

  六一班男生人数是女生的1.2倍,男、女生人数的比是(),男生和全班人数的比是(),女生和全班人数的比是().四、课堂小结通过今天的学习,你学到了哪些新知识?什么是比的基本性质?怎样化简比?

  四、课堂作业:《伴你成长》

  学生活动;

  口答。

  约分:

  通分:

  3∶28∶47∶2127∶95∶2516∶424∶52∶1

  (比值都相等)

  (前项和后项都不同)

  我们可以说8∶4和2∶1相等吗?

  (1)根据比与除法的关系(商不变的性质)

  8∶4=84=(84)(44)=21=2∶1

  (2)根据比与分数的关系(分数基本性质)

  8∶4=2∶1

  3.学生尝试概括比的基本性质(演示比的基本性质)

  讨论:分数比怎么化简?为什么要乘上18?乘上9可以吗?

  2.讨论:化简比和求比值的区别是什么?

  区别:化简比的结果还是一个比,是一个最简单的整数比;求比值的结果是一个数.

  6∶10∶0.3∶0.4

  12∶21∶20.25∶1

  1.1千米∶20千米=()

  (1)1∶20(2)1000∶20(3)5∶1

  2.做同一种零件,甲2小时做7个,乙3小时做10个,甲、乙二人的工效比是()

  (1)20∶21(2)21∶20(3)7∶10

  教学反思:

  化简比中小数与小数的比学生掌握的不够。

  六年级数学教案《比的化简》 篇2

  教学目标:

  1、在实验中,体会化简比的必要性,进一步体会比的意义。

  2、能运用商不变性质或分数的基本性质化简比,配置墨水。

  3、学会化简比的书写方法,正确化简成最简整数比。

  教学重点:

  会运用商不变的性质或分数的基本性质化简比。

  教学难点:

  根据比的基本性质解决生活中的实际问题。

  教学过程:

  (一)新课引入——体验比的化简的必要性。

  1、引入:昨天王老师带大家做了一个实验,用40ml墨,360毫升水和2小杯墨、18小杯水配制成了两杯墨水,并让同学们猜测这两杯墨水哪杯颜色深一些。你们猜测的结果是什么?

  2、猜测验证。(两杯墨水颜色相同)

  3、比值相等。(为什么这两个比数字不同,调配出的墨水颜色还一样呢?)

  4、多种配置方法。

  5、墨与水的关系都是1:9。

  6、总结比的化简的必要性,引出课题。

  【设计意图:通过猜测、验证,引导学生发现两杯墨水比值相同以及引出多种配置方法,让学生感悟化简比的重要性。】

  (二)小组合作交流——总结化简比的方法。

  1、小组交流展示。

  学生拿出学研案,交流第二部分的内容。

  要求:

  (1)说出你的配制方法,

  (2)讲清理由。

  2、讲前猜测。(三个比哪个配制出来的墨水颜色深?)

  3、整数与整数比提问:

  (1)学生说单位:(墨和水的关系就是4:7)

  (2)你是怎么知道4:7的?

  (3)还有不同的配置方法吗?

  (4)哪一个更容易看出墨与水的关系?

  4、小数与小数比提问:

  (1)说一说你是怎么得到7:8的?

  5、分数与分数的比提问:

  (1)2/5比1/4是怎么变成xx的?

  (2)还有其他方法吗?

  6、小组汇报结束。

  7、欣赏学生预习单的.方法。

  8、揭示最简整数比。

  【设计意图:通过小组合作、上台展示等形式,探讨整数与整数比、小数与小数比、分数与分数比的化简方法,充分发挥学生主体性,让学生成为课堂的主人。】

  (三)规范应用——比的化简方法的示范以及应用。

  1、规范看书。(同学们翻开书第70页,认真看书)

  强调:分数是比的另外一种形式。

  2、化简比习题。(先做两个再做两个)

  重点:16:4(投影挑错误)

  3、小视频总结。

  (四)拓展举例。

  学生举出其它类型的比并说说怎样去化简。

  (五)总结。

  通过这一节课的学习,同学们一定有了自己的收获,老师相信在以后的学习生活中如果遇到比的化简的问题,你一定能够去解决它。

  教学反思

  优点:

  1、教学过程比较流畅。

  2、小组汇报过程中的引导到位。

  不足:

  1、讲前猜测(三个比哪个配制出来的墨水颜色深?),这个环节忘记了,后来再提出来显得过程混乱。

  2、学生的书写规范强调不够,导致后来做题过程中学生出错多。

  3、学生对于比的认识理解不够透彻,导致课堂气氛不够。

  4、课堂上小组讨论和做题过程中,关注的学生人数够多。

  六年级数学教案《比的化简》 篇3

  一、教学内容分析

  本节课是在学生认识了比,理解了比并能用比的知识解释一些简单的生活问题的基础上进行的,又为学生后面学习比的应用打下基础。

  二、学生分析

  学生对商不变的性质以及分数的基本性质已经熟练的掌握,知识的迁移学生应该很好理解。

  三、学习目标(以学生为主语)

  1、在实际情境中,体会化简比的必要性,进一步体会比的意义。

  2、会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。

  3、通过教学培养学生的抽象概括能力,渗透转化的数学思想,并使学生认识事物之间都是存在内在联系的。

  教学重难点:掌握化简比的方法,会把一个比化成最简单的整数比。

  四、教学活动(此环节可以是课堂实录)

  1.导入

  问题:淘气和笑笑各自调制了一杯蜂密水,请问哪杯水更甜?

  过程:互相讨论,发表看法,如何比较。(学生发言老师板书)

  小结:比较的结果一样甜,分数可以约分比也可以化简。

  2.新授

  ①引入 “最简单整数比”的概念。

  最简单的整数比就是比的前项、后项是互质数,像6∶5就是最简单的整数比。

  ②你还能举一些最简单的整数比的例子吗?如果我们能把比都化成最简单的整数比,就容易计算了!

  ③出示问题尝试并讨论:

  12:8 0.7:0.8 2/5:1/4

  1.能不能把整数比化简成最简单的整数比?如何化?

  2.能不能把分数比化简成最简单的整数比?如何化?

  3.能不能把小数比化简成最简单的整数比?如何化?

  ④交流

  1.化简整数比的方法是什么?(先化成分数,再约分成最简分数,最后把最简分数转化成比的形式。)(或利用商不变的性质)

  2.怎样把分数比化成最简单的整数比?(先转化成除法,再用最简分数表示结果,最后把最简分数转化成比的形式)

  3.如何把小数比化简成最简单的整数比?(先化成整数比,再化简成最简单的整数比)

  ⑤介绍比的基本性质

  3.练习

  1、P51页化简下面各比。(独立完成,集体评讲)

  2、练习:做书上练一练的`第1、2题。

  五、教师反思

  比与除法、分数之间有如此密切的联系,利用除法中商不变的性质或分数的基本性质来化简比,这样的教学对学生掌握知识来说比较顺利,但在教学过程中要注重细节的指导,还要相信学生能根据以前的知识找到适合的化简方法,充分给予学生更大的空间。

  六年级数学教案《比的化简》 篇4

  【教学目标

  1、使学生学会合理运用平方差公式和完全平方公式来进行整式化简,提高综合运算能力。

  2、应用整式乘法、平方差公式、完全平方公式来解决一些实际应用问题中的整式化简,体会用数学。

  3、通过探究活动、探索学习,进一步熟悉乘法公式的运用,并了解数学运算技巧。

  【教学重点、难点

  重点是综合运用平方差公式和完全平方公式进行整式的化简。

  难点是运用乘法公式解决实际问题和利用公式进行探究活动。

  【教学过程

  一、合作学习,导入课题。

  1、合作学习

  如图,点M是AB的中点,点P在MB上分别以AP,

  PB为边,作正方形APCD和正方形PBEF,设AB=4a,

  MP=b,正方形APCD与正方形PBEF的面积之差为S。

  (1) 用a,b的代数表示S。

  (2) (2)当a=4、b=1/2时,S的值是多少?当a=S,b=1/4时呢?

  2、指导学习

  (1)S=(2a+b)2-(2a-b)2

  当S的式子出来后提问:上述问题(2)你是怎样计算?怎样计算比较简捷?

  通过讨论交流明确应先用乘法公式化简,再代入计算比较简便,同时在化简过程中明确化简应遵循:先乘方、再除方,最后算加减的顺序,能运用乘法公式的则运用公式。

  三、应用所知,体验成功

  例1、化简

  ①(2x-1)(2x+1)-(4x+3)(x-6)

  ②(2a+3b)2-4a(a+3b+1)

  ③(a-3b)(a-3b+2)-a(a+6b+2) (自己补充题)

  2、练一练:

  课本P121 1;2

  三、实际问题,应用数学

  例2、甲、乙两家超市3月份的销售额均为a万元,在4月和5月这两个月中,甲超市的'销售额平均每月增长x%,而乙超市的销售额平均每月减少x%。

  (1)5月份甲超市的销售额比乙超市多多少?

  (2)如果a=150,x=2,那么5月份甲超市的销售额比乙超市多多少万元?

  解答过程略

  四、探索延伸,拓展提高

  已知a+b=3 ab=1/2 求:

  (1)a2+b2 (2)a4+b4 (3)a2+ab+b2 (4)b/a+a/b

  六、归纳小结,充实结构

  今天学到了什么?有何体会?试讲出来与大家交流。

  七、布置作业:作业本,一课一练。

  六年级数学教案《比的化简》 篇5

  教学要求:

  1.使学生进一步认识比的意义和基本性质,掌握求比值和化简比的方法,弄清两者的区别,能根据比和除法的关系求已知比值的比里的未知项。

  2.使学生进一步认识按比例分配问题的结构特征,加深理解并掌握按比例分配问题的解题思路和方法,提高分析推理和解答应用题的能力。

  教学过程:

  一、揭示课题

  这节课,复习比的知识和比的应用。(板书课题)通过复习,要进一步理解和掌握比的知识,能应用比的意义正确解答按比例分配问题。

  二、复习比的知识

  1.复习比的意义。

  (1) 提问:什么叫做比?(板书:比:两个数相除又叫两个数的比。)

  (2) 做“练一练”第1题。

  让学生做在课本上,然后口答,并要求说明每个比表示的意义。

  (3) 你能举一个比的例子吗?(板书出一个比)怎样表示出它是两个数相除的关系?商怎样表示?(把比写成和除式、分数相等的式子)谁来说出这个比各部分的名称?(板书,前项 后项 比值)提问:什么是比的比值?(板书:比值 :比的前项除以后项所得的商)那么怎样求一个比的比值?(板书:前项÷后项=比值)

  (4)做“练一练”第2题。

  指名两人板演,其余学生做在练习本上。集体订正。追问:我们求比值的`方法是怎样的?(板书:一般方法前项除以后项)这里的比值都是什么数?还可以是怎样的数?(板书:结果是一个数)

  2.复习比的基本性质。

  (1) 请大家根据上面的式子,在课本上用字母表示比、除法和分数的关系。指名学生口答填写出的等式。让学生说明为什么b≠O。提问;谁能说说这个字母式子表示的意思?比、除法和分数又有什么不同?

  (2) 提问:谁来说说除法、分数有什么类似的性质?根据比和除法、分数的联系,比有怎样的基本性质?(板书:比的基本性质)谁来举例说明一个比的前项、后项都乘或除以同一个不等于O的数,大小不变。(学生口答,老师板书)让学生填写课本上的例子,然后口答。提问:比的基本性质有什么应用?(板书:化简比)

  (3) 做“练一练”第3题。

  指名两人板演,其余学生做在练习本上。集体订正。追问:我们是按怎样的方法化简比的?【板书:比的前项、后项都乘或除以相同的数(零除外)】化简的结果是一个什么?(板书:是一个比)向学生说明要化成最简整数比。

  3.比较求比值和化简比。

  (1)引导比较。

  现在请同学们把刚才求比值和现在的化简比来比较一下,它们各自的依据和方法有什么区别,结果有什么区别?(根据学生的回答,把前面的板书按书上的对比表补充完整,并强调两者在解答的根据、方法和表示的结果上的不同点。)

  (2)做练习二十一第3题.

  让学生填在课本上,然后口答。

  三、复习按比例分配

  1.说明:应用比的知识,可以计算按比例分配问题。

  2.做“练一练”第4题的第(1)题。

  (1)让学生说一说这里已知什么条件,求什么问题。

  提问:这是什么应用题?(板书:按比例分配问题)按比例分配问题有什么特点?

  (2)让学生说一说这道题要怎样想。

  提问:求公鸡只数和母鸡只数实际上是求什么?指名一人板演,其余学生做在练习本上。集体订正。

  (3)提问:你认为解答按比例分配问题的关键是什么?按怎样的方法来解答?求一个数的几分之几是多少)

  3.做“练一练”第4题的第(2)题。

  让学生说一说要怎样想。指名一人板演,其余学生做在练习本上。集体订正。

  四、综合练习

  1.做练习二十一第1、2题。

  让学生做在课本上,然后指名口答,重点要求学生说明第2题怎样想的。

  2.求未知数x。

  1.3 :x=6 =0.5

  学生分两组,每组一题做在练习本上。指名口答,老师板书,结合让学生说明怎样想的。

  3.做练习二十一第7题。

  指名一人板演,其余学生做在练习本上。集体订正,结合让学生说说是怎样想的,强调说明长加宽的和是周长的一半。

  五、课堂小结

  指名学生归纳说明本节课复习的内容及自己的收获。

  六、课堂作业

  练习二十一第4—6题。

  六年级数学教案《比的化简》 篇6

  一、教学目标:

  会把具体的数代入含有字母的式子求它的值。

  教学重点:把具体数代入含有字母的式子求值。

  教学难点:会用规范的格式书写求值过程,能化简的化简后再求值。

  教学准备:

  二、制定依据:

  1.内容分析学生已经初步学会了化简,代入求值要求学生把原先用简便方法表示的字母式,省略的乘号写出来。

  2.学生实际格式书写要做一定的辅导,有些学生再代入求值时,把原先的数字写在后面,其实应该让学生明白这根本没有必要。

  教学过程时间教学环节教师活动学生活动设计意图复习与导入探究阶段巩固阶段课堂小结:

  作业:

  1、求值你会用一个式子表示下面的算法流程吗?课件演示。当我们输入的数分别时3、0、50、6.5…时,输出的数是多少?从表中抽一个表示x的数,求18x+32的值先让学生独立计算,反馈后教师强调并示范书写格式:解:当x=36时,18x+32 =18×36+32 =648+32 =680学生模仿规范的书写格式计算当x取其它值时,18x+32的值。反馈时,注意书写格式。小结书写格式注意点:

  (1)写“解”;

  (2)写明式子中字母的'值;

  (3)用递等式的形式代入计算式子的值。

  2、试一试:

  当a=3,b=12时,求9a-2b的值。

  观察,这一题与第一题有何区别?(有两个字母),思考一下,怎样书写?学生独立计算,反馈,板书:解:当a=3,b=12时,9a-2b =9×3-2×12 =27-24 =3当x=17时,求4x+6x的值。

  学生独立计算,反馈。注意:在求值的时候,能化简的先化简,再代入数字进行计算。

  再次小结求含有字母式子的值的书写步骤,一般情况下,第一步写“解”,第二步写出字母等于几,第三步抄写题目,第四步能化简的要化简,第五步代入数值,第六步计算结果。小结:在求值的时候,能够先把算式化简的先化简,然后代入数字进行计算。

  2、求值:

  当b=5时,求9b+3b-6b的值。

  当m=5,n=3时,求8m-m+n2的值。

  拓展在第一个10x+32流程图中,如果输出的数是98,那么输入的数是多少?这节课你有什么收获?学生讨论交流求值的格式,学生第一次接触,这里通过教师示范、学生模仿、反馈评价、小结格式等步骤,帮助学生掌握规范的书写格式小组合作解答学生小组讨论。

  汇总反馈小组合作尝试解决后面两题。

  汇报交流输入数从具体的数到抽象的字母,水到渠成的引出含有字母的式子。再让学生举例字母x表示的数,让学生在举例中感知字母x可以表示任何一个数,并为后面求值提供了来自学生自己的素材例题1提供的是含有一个字母的不需化简的式子,通过例题2提供求含有多个字母的和需化简的式子的值。

  拓展,供思考反思重建:

  板书:

  化简与求值(2)当x=3时,10x+32的值例2当x=17时,求4x+6x的值解:当x=3时,10x+32=9×3-2×12=27-24=3。

【六年级数学教案《比的化简》】相关文章:

《比的化简》教学设计及反思11-28

六年级数学《比的化简》教学设计(精选14篇)11-14

《比的基本性质和化简比》教学设计10-19

北师大版六年级数学上册《比的化简》教案11-18

数学教案中班 人教版六年级数学教案07-20

六年级下册的数学教案07-17

六年级数学教案05-22

六年级数学教案01-30

六年级数学教案【荐】02-19

六年级数学教案【精】02-15