圆数学教案

时间:2024-05-19 11:16:44 数学教案 我要投稿

圆数学教案

  作为一名默默奉献的教育工作者,往往需要进行教案编写工作,编写教案助于积累教学经验,不断提高教学质量。教案应该怎么写呢?下面是小编收集整理的圆数学教案,欢迎大家分享。

圆数学教案

圆数学教案1

  教学目标

  1、通过折纸活动,探索并发现圆是轴对称图形,理解同一个圆里半径和直径的关系

  2、进一步理解轴对称图形的特征,体会圆的对称性。

  3、在折纸找圆心验证圆是轴对称图形等活动,发展空间观念。

  教材分析

  重点

  理解同一个圆的半径都相等,同一个圆里半径和直径的关系,并体会圆的对称性。

  难点

  在折纸的过程中体会圆的特征

  教具

  教学圆规

  电化教具

  课件

  一、 创设情境:

  亮亮借助光盘画了一个圆,剪出了一个圆纸片,这个圆的圆心在哪里呢?他很快找出来了。你有办法找出来吗?

  二、探索活动:

  1、引导学生开展折纸活动,找到圆心。

  (1)自己动手找到圆心。

  (2)汇报交流找圆心的过程,并说出这样做的想法。

  2、通过折纸你发现了什么?理解圆的对称性。

  (1)欣赏美丽的轴对称图形。

  (2)再折纸,体会圆的轴对称性,画出圆的对称轴。

  (3)圆有无数条对称轴。对称轴是直径所在的直线。

  3、通过折纸你还发现了什么?理解同一个圆里直径和半径的关系。

  (1)边折纸边观察思考同一个圆里的`半径有什么特点?

  (2)边折纸边观察思考,同一圆里的直径与半径有什么关系?

  (3)引导学生用字母表示一个圆的直径与半径的关系。

  三、课堂练习。

  1、让学生独立完成试一试做完后交流汇报。

  2、完成练一练进一步巩固圆的半径与直径的关系。

  3、完成填一填

  让学生独立观察思考并试着填一填,有困难的向老师或同桌请教。

  汇报交流,说答题根据。

  4、完成书后第3题。

  四、课堂小结。

  引导学生小结本节内容。

  学生利用经验很容易找到圆心,如果让学生说一说为什么对折再对折就可以找到圆心学生很难说清楚。教学中通过折纸观察思考,找到答案。交流汇报,从中进一步理解圆的轴对称,一个圆的半径都相等。

  欣赏美丽的对称图形引导学生对以学过的轴对称图形进行整理,进一步理解轴对称图形的特征,在对比中发现这些轴对称图形的不同特点,从而突出圆具有很好的轴对称性。

  多次折纸的过程中探索,发现,验证。操作中体会交流,体会圆的特征,发展空间观念。

  个别学生做试一试的题目会有困难,注意个别指导。

  板书设计

  圆的认识(二)

  我们的发现

  同一个圆里所有的半径都相等

  同一个圆里d=2r或r=1/2d

  圆有无数条对称轴,对称轴是直径所在的直线

  学生利用经验很容易找到圆心,如果让学生说一说为什么对折再对折就可以找到圆心学生很难说清楚。教学中通过折纸观察思考,找到答案。交流汇报,从中进一步理解圆的轴对称,一个圆的半径都相等。

圆数学教案2

  教学目标

  (1)掌握圆的标准方程,能根据圆心坐标和半径熟练地写出圆的标准方程,也能根据圆的标准方程熟练地写出圆的圆心坐标和半径.

  (2)掌握圆的一般方程,了解圆的一般方程的结构特征,熟练掌握圆的标准方程和一般方程之间的互化.

  (3)了解参数方程的概念,理解圆的参数方程,能够进行圆的普通方程与参数方程之间的互化,能应用圆的参数方程解决有关的简单问题.

  (4)掌握直线和圆的位置关系,会求圆的切线.

  (5)进一步理解曲线方程的概念、熟悉求曲线方程的方法.

  教学建议

  教材分析

  (1)知识结构

  (2)重点、难点分析

  ①本节内容教学的重点是圆的标准方程、一般方程、参数方程的推导,根据条件求圆的方程,用圆的方程解决相关问题.

  ②本节的难点是圆的一般方程的结构特征,以及圆方程的求解和应用.

  教法建议

  (1)圆是最简单的曲线.这节教材安排在学习了曲线方程概念和求曲线方程之后,学习三大圆锥曲线之前,旨在熟悉曲线和方程的理论,为后继学习做好准备.同时,有关圆的问题,特别是直线与圆的位置关系问题,也是解析几何中的基本问题,这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法.因此教学中应加强练习,使学生确实掌握这一单元的知识和方法.

  (2)在解决有关圆的问题的过程中多次用到配方法、待定系数法等思想方法,教学中应多总结.

  (3)解决有关圆的问题,要经常用到一元二次方程的理论、平面几何知识和前边学过的解析几何的基本知识,教师在教学中要注意多复习、多运用,培养学生运算能力和简化运算过程的意识.

  (4)有关圆的内容非常丰富,有很多有价值的问题.建议适当选择一些内容供学生研究.例如由过圆上一点的切线方程引申到切点弦方程就是一个很有价值的问题.类似的还有圆系方程等问题.

  篇二:圆的一般方程

  教学目标:

  (1)掌握圆的一般方程及其特点.

  (2)能将圆的一般方程转化为圆的'标准方程,从而求出圆心和半径.

  (3)能用待定系数法,由已知条件求出圆的一般方程.

  (4)通过本节课学习,进一步掌握配方法和待定系数法.

  教学重点:

  (1)用配方法,把圆的一般方程转化成标准方程,求出圆心和半径.

  (2)用待定系数法求圆的方程.

  教学难点:圆的一般方程特点的研究.

  教学用具:计算机.

  教学方法:启发引导法,讨论法.

  教学过程:

  【引入】

  前边已经学过了圆的标准方程

  把它展开得

  任何圆的方程都可以通过展开化成形如

  ①的方程

  【问题1】

  形如①的方程的曲线是否都是圆?

  师生共同讨论分析:

  如果①表示圆,那么它一定是某个圆的标准方程展开整理得到的.我们把它再写成原来的形式不就可以看出来了吗?运用配方法,得

  ②

  显然②是不是圆方程与 是什么样的数密切相关,具体如下:

  (1)当 时,②表示以 为圆心、以 为半径的圆;

  (2)当 时,②表示一个点 ;

  (3)当 时,②不表示任何曲线.

  总结:任意形如①的方程可能表示一个圆,也可能表示一个点,还有可能什么也不表示.

  圆的一般方程的定义:

  当 时,①表示以 为圆心、以 为半径的圆,

  此时①称作圆的一般方程.

  即称形如 的方程为圆的一般方程.

  【问题2】圆的一般方程的特点,与圆的标准方程的异同.

  (1) 和 的系数相同,都不为0.

  (2)没有形如 的二次项.

  圆的一般方程与一般的二元二次方程

  ③

  相比较,上述(1)、(2)两个条件仅是③表示圆的必要条件,而不是充分条件或充要条件.

  圆的一般方程与圆的标准方程各有千秋:

  (1)圆的标准方程带有明显的几何的影子,圆心和半径一目了然.

  (2)圆的一般方程表现出明显的代数的形式与结构,更适合方程理论的运用.

  【实例分析】

  例1:下列方程各表示什么图形.

  (1) ;

  (2) ;

  ((3) .

  学生演算并回答

  (1)表示点(0,0);

  (2)配方得 ,表示以 为圆心,3为半径的圆;

  (3)配方得 ,当 、 同时为0时,表示原点(0,0);当 、 不同时为0时,表示以 为圆心, 为半径的圆.

  例2:求过三点 , , 的圆的方程,并求出圆心坐标和半径.

  分析:由于学习了圆的标准方程和圆的一般方程,那么本题既可以用标准方程求解,也可以用一般方程求解.

  解:设圆的方程为

  因为 、 、 三点在圆上,则有

  解得: , ,

  所求圆的方程为

  可化为

  圆心为 ,半径为5.

  请同学们再用标准方程求解,比较两种解法的区别.

圆数学教案3

  教学目标:

  1、通过教学使学生学会根据圆的周长求圆的直径、半径。

  2、培养学生逻辑推理能力。

  3、初步掌握变换和转化的方法。

  教学重点:求圆的直径和半径。

  教学难点:灵活运用公式求圆的直径和半径。

  教学过程:

  一、复习。

  1、口答。458

  2、求出下面各圆的周长。

  C=r3.14223.144=6.28(厘米)=83.14=25.12(厘米)

  二、新课。

  1、提出研究的问题。

  (1)你知道表示什么吗?

  (2)下面公式的每个字母各表示什么?这两个公式又表示什么?

  C=r

  (3)根据上两个公式,你能知道:

  直径=周长圆周率半径=周长(圆周率2)

  2、学习练习十四第2题。

  (1)小红量得一个古代建筑中的大红圆柱的周长是3.768米,这个圆柱的直径是多少米?(得数保留一位小数)

  已知:c=3.77m求:d=?

  解:设直径是x米。

  3.773.143.14x=3.77

  1.2(米)x=3.773.14

  x1.2

  (2)做一做。用一根1.2米长的铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)

  已知:c=1.2米R=c(2)求:r=?

  解:设半径为x米。

  3.142x=1.21.223.14

  6.28x=1.2=0.191

  x=0.1910.19(米)

  x0.19

  三、巩固练习。

  1、饭店的大厅挂着一只大钟,这座钟的分针的尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?

  2、求下面半圆的周长,选择正确的算式。

  ⑴3.148

  ⑵3.1482

  ⑶3.1482+8

  3、一只挂钟分针长20cm,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?

  (1)想:钟面一圈是60分钟,走了30分,就是走了整个钟面的.,也就是走了整个圆的。而钟面一圈的周长是多少?20xx.14=125.6(厘米)

  (2)想:钟面一圈是60分钟,走了45分,就是走了整个钟面的,也就是走了整个圆的。则:钟面一圈的周长是多少?20xx.14=125.6(厘米)

  45分钟走了多少厘米?125.6=94.2(厘米)

  4、P66第10题思考题。下图的周长是多少厘米?你是怎样计算的?

  四、作业。P65-66第3、6、7、9题

  教学追记:

  圆的周长计算公式并不复杂,但这个公式如何得来,公式中的固定值是如何来的,都是值得学生研究的问题。因次,教学中,我着力于培养学生的探究意识和探究能力,让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程来理解并掌握圆的周长计算方法。因为是自己操作的所得,再加上我在课中介绍了一些相关资料及讲述了一个有趣的小故事,所以学生对的含义就理解得特别透彻,也学得有兴趣。

圆数学教案4

  一、课题

  27.3 过三点的圆

  二、教学目标

  1.经历过一点、两点和不在同一直线上的三点作圆的过程.

  2.. 知道过不在同一条直线上的三个点画圆的方法

  3.了解三角形的外接圆和外心.

  三、教学重点和难点

  重点:经历过一点、两点和不在同一直线上的三点作圆的过程.

  难点:知道过不在同一条直线上的三个点画圆的方法.

  四、教学手段

  现代课堂教学手段

  五、教学方法

  学生自己探索

  六、教学过程设计

  (一)、新授

  1.过已知一个点A画圆,并考虑这样的圆有多少个?

  2.过已知两个点A、B画圆,并考虑这样的圆有多少个?

  3.过已知三个点A、B、C画圆,并考虑这样的圆有多少个?

  让学生以小组为单位,进行探索、思考、交流后,小组选派代表向全班学生展示本小组的探索成果,在展示后,接受其他学生的质疑.

  得出结论:过一点可以画无数个圆;过两点也可以画无数个圆;这些圆的圆心都在连结这两点的线段的垂直平分线上;经过不在同一直线上的三个点可以画一个圆,并且这样的圆只有一个.

  不在同一直线上的三个点确定一个圆.

  给出三角形外接圆的概念:经过三角形三个顶点可以作一个圆,这个圆叫作三角形的外接圆,外接圆的圆心叫做三角形的外心.

  例:画已知三角形的外接圆.

  让学生探索课本第15页习题1.

  一起探究

  八年级(一)班的学生为老区的小朋友捐款500元,准备为他们购买甲、乙 两种图书共12套.已知甲种图书每套45元,乙种图书每套40元.这些钱最多能买甲种图书多少套?

  分析:带领学生完成课本第13页的表格,并完成2、3 问题,使学生清楚通过列表可以更好的分析题目,对于情景较为复杂的`问题情景可采用这种分析方法解题.另外通过此题,使学生认识到:在应不等式解决实际问题时,当求出不等式的解集后,还要根据问题的实际意义确定问题的解.

  (二)、小结

  七、练习设计

  P15习题2、3

  八、教学后记

  后备练习:

  1. 已知一个三角形的三边长分别是 ,则这个三角形的外接圆面积等于 .

  2. 如图,有A, ,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()

  A.在AC,BC两边高线的交点处

  B.在AC,BC两边中线的交点处

  C.在AC,BC两边垂直平分线的交点处

  D.在A,B两内角平分线的交点处

圆数学教案5

  教学目标:

  知识目标:使学生在观察、操作、画图等活动中感受并发现圆的有关特征

  能力目标:在活动积累认识图形的学习经验,增强空间观念,发展数学思考。

  情感目标:提高数学学习的兴趣和学好数学的自信心。

  教学重点、难点:

  在观察、操作、画图等活动中感受并发现圆的有关特征

  教学过程:

  我们曾一起探寻过美丽的图形王国里很多图形的奥秘,如长方形、正方形、三角形、平行四边形、梯形和圆形(黑板上贴出),你能找出其中与众不同的图形吗?

  (学生的答案是丰富多彩的,只要合理就行,教师引导学生说出--圆,从而引导出圆是由曲线围成的平面图形)那老师要问一问了,你打算怎样研究圆,从哪些方面入手呢?

  (小组同学互相说一说)生汇报,教师适当板书

  那这一些呢?它们的圆又藏在哪里?(生答,教师引导学生用手指一指)仔细看!(

  据你对圆的一些了解,你能简单介绍一下圆吗?(生介绍)

  对于圆,同学们一定不会感到陌生吧?(是)在生活中,我们经常看到许多圆形的物体,瞧,这些物体上都有圆,你能把它们找出来并指一指吗?除了刚才这一些,能说说你在哪里还看到过圆形吗?

  (生:钟面上有圆、轮胎上有圆、钮扣是圆的.....)

  同学们,你们还想不想自己动手来研究研究圆的有关知识?(想!)好吧,就用我们手头的工具,先自己画一个圆。开始!(请一部分学生上黑板画,画好先不下去,介绍一下画法)

  【二】画圆部分

  刚才我们用自己的`聪明想到了很多画圆的方法,画圆的感觉怎么样?(歪歪扭扭的,不大好画......)

  你知道为什么会这样吗?

  在交流中再次强调:以前学过的长方形、正方形、三角形、平行四边形和梯形都是由线段围成的,而圆是由曲线围成的图形。

  (1)把圆规的两脚分开,定好两脚间的距离。

  (2)把有针尖的一只脚固定在一点上。

  (3)把装有铅笔尖的一只脚旋转一周,就画出一个圆。]

  [集体交流时,引导学生总结出画圆的注意点:针尖必须固定在一点不可移动;两脚间的距离必须保持不变;要旋转一周。(定点、定长、旋转)]

圆数学教案6

  第一单元圆的周长和面积

  一.本单元的基础知识

  本单元是在学习了常见的几种简单的几何图形如三角形、长方形、正方形、平行四边形、梯形以及圆和球形的初步认识的基础上进行教学的。

  二.本单元的教学内容

  P2~22.本单元教材内容包括圆的认识、圆的周长、圆的面积,扇形和扇形统计图,对称图形。

  三.本单元的教学目标

  1.认识圆,掌握圆的特征,知道是轴对称图形,会用工具画圆。

  2.理解直径与半径的相互关系,理解圆周率的意义,掌握圆周率的'近似值。3.理解和掌握求圆的周长与面积。

  四.本单元重难点和关键

  1.教学重点:求圆的周长与面积。

  2.教学难点:对圆周率“π”的真正理解;圆面积计算公式的推导以及画具有定半径或直径的圆。

  3.教学关键:能真正理解圆周率的意义;在理解的基础上熟记一些主要的计算公式。

  五.本单元的教学课时

  13课时

圆数学教案7

  设计背景

  在一次户外活动时,我班的夏利肯小朋友在吹泡泡玩,其他的小朋友看到泡泡都又抓又叫,非常兴奋。看着孩子们对泡泡如此感兴趣,我设计了本次活动,让幼儿在生活中自己去观察、去发现,除了泡泡是圆圆的,还有那些东西从直观上看是圆圆的,通过观察让幼儿对圆形的物体感兴趣,并且能够大胆、清楚地说出来,提高幼儿的语言表达能力。

  活动目标

  1、认知目标:让幼儿观察身边哪些物体从直观上看是圆圆的。

  2、能力目标:引导幼儿能说出一句完整的话:“xxx是圆圆的。”并能从不同图形中找出圆形。

  3、引发幼儿学习图形的兴趣。

  4、引导幼儿积极与材料互动,体验数学活动的乐趣。

  5、发展幼儿逻辑思维能力。

  重点难点

  活动重点:认知目标让幼儿观察身边哪些物体从直观上看是圆圆的。

  活动难点:能力目标引导幼儿能说出一句完整的话:“xxx是圆圆的。”并能从不同图形中找出圆形。

  活动准备

  电动泡泡枪

  多媒体课件

  小鱼吹泡泡的粘贴材料

  活动过程

  (一)开始部分:玩一玩,师幼互动一起和泡泡做游戏

  1、教师出示泡泡枪:师幼共同玩泡泡。

  2、师:“仔细看一看泡泡是什么样的'?你还发现了泡泡什么秘密?”

  经验提升:泡泡是圆圆的,有大有小真好玩,轻轻一吹泡泡就会飞起来,落下的泡泡不见了。

  (二)基本部分

  1、说一说:让幼儿说一说除了泡泡是圆圆的,还看到过哪些东西是圆圆的。

  2、认一认

  师:“小朋友们真棒,发现了这么多的东西都是圆圆的,老师也给小朋友们准备了一些图片,现在请小朋友仔细看一看,图片上还有哪些东西是圆圆的?”

  (1)出示图片,让孩子辨认图片上那些东西看上去是圆圆。

  (2)能说出一句完整的话“xxx是圆圆的”。

  (三)结束部分

  操作活动:帮助小鱼找泡泡。小鱼的泡泡不见了,让幼儿在各种图形中帮助小鱼找泡泡。(在音乐声中粘贴泡泡)

  (四)活动延伸:到大厅外面去找一找还有什么东西从直观上看是圆圆的。

  教学反思

  通过本次教学活动

  1、运用了幼儿感兴趣的泡泡机,增加了师幼之间的互动,引起了幼儿兴趣。

  2、活动难度适合本班幼儿年龄特点。

  3、充分利用周围的环境让幼儿去观察、去发现。

  4、在幼儿口语表达能力方面再稍加一点难度。

圆数学教案8

  学习内容:

  《圆的认识》(六年级上册第57、58页内容。)

  学习目标:

  1、知道圆各部分的名称。

  2、掌握圆的特征,理解半径与直径的关系。

  3、学会用圆规画圆。

  学习重点:学会用圆规画圆,掌握圆的特征。

  学习难点:能熟练地画出规定大小的圆。

  学习准备:圆形纸片、圆规、米尺、铅笔、彩笔。

  课前

  搜集信息:生活中哪里见到圆?

  动手操作:剪好一个圆片。

  课中

  自主学习:

  1、填空:

  圆中心的一点叫做(),用字母( )表示。

  连接( )和( )任意一点的()叫做半径。

  通过( )并且( )的( )叫做直径。

  2、用红彩笔描出圆中的半径,用蓝彩笔描出圆中的.直径。

  合作探究:

  探究一:完成学习卡

  探究二:

  用圆规画圆时,圆规两脚叉开的距离等于( )的长度。

  ( )决定圆的位置,()决定圆的大小。

  达标训练:

  (一)基础题(必做)

  1、判断。

  在同一个圆内只可以画100条半径。 () 直径是半径的2倍。()两端都在圆上的线段中,直径最长。 ()任意两条半径都可以组成一条直径。 ()

  2、填表。

  (二)拓展题(选做)

  用圆规和尺子画一自己喜欢的组合图形。

  综合评价:自我评价、小组评价、教师评价。

  课后

  课外作业:课本练习十三

  知识延伸:用圆规和尺子画一个自己喜欢的图形。

圆数学教案9

  设计教学目的:

  1、掌握圆各部分名称以及圆的特征;会用圆规画圆。

  2、借助动手操作活动,培养学生运用所学知识解决实际问题的能力。

  3、渗透知识来源于实践、学习的目的在于应用的思想。

  教学重、难点:

  掌握圆各部分的名称及圆的特征。圆的画法的掌握。

  教具准备:

  多媒体课件、圆规、直尺等学具准备:各种不同的圆形实物、剪刀、彩笔、直尺、圆规、圆形、纸片等

  教学主要过程:

  一、结合实际、谈话引入新课。

  谈话引入:今天非常高兴能和六(五)班同学一起来学习、研究一个数学问题。

  我们以前已经初步认识了圆,你能找出生活中哪些物品的形状是圆的吗?(生举例师强调——指物品的表面)师:看来大家平时非常留心观察。课前请同学们画两个大小不同的圆,并把它们剪下来,你们准备好了吗?师:把它们举起来,大家互相看一看。

  回想自己画圆、剪圆的过程,你能说说圆是什么样子的吗?(师一手拿一个圆)(圆是没有棱角的,边是弯的;圆的边是一条曲线。)师:同学们观察得真仔细。

  圆的边是弯曲的,跟以前学的长方形、正方形的边是不同的。今天我们就来研究这种平面上的曲线图形。

  (板书课题)

  二、引导探究新知

  1、导:圆里究竟藏有什么秘密呢?下面我们来做一个小实验。把你的圆对折,再对折,多折几次,把折痕画出来,看看你有什么发现,并把你的发现在小组里汇报。

  最后看看谁的收获多。(1分钟)

  2、学生动手操作,讨论交流。

  几分钟后分别从圆心、半径、直径各方面纷纷展示汇报。(5分钟)师:你们组观察得真仔细!大家的发现可真不少,现在我们就把刚才的发现整理一下。

  3、展示探究结果

  。结合多媒体课件辅助,完整认识圆的特征(8分钟)谁来告诉老师,你有哪些新发现?那是什么原因呢?你怎样发现的?结合学生交流、汇报探究结果,及时引导梳理。

  主要从圆的圆心、半径、直径、等方面来认识。这里特别要注意通过板书帮助学生进行新知的有目的的整理。

  预设板书:

  圆的认识——平面曲线图形圆心(o)圆中心一点确定圆的位置半径(r):线段连接圆心到圆上任意一点确定圆的大小长度都相等〈在同一个圆里〉直径(d)线段通过圆心两端都在圆上长度都相等〈在同一个圆里〉半径和直径的关系d=2r r=d/24、学习画圆(5分钟)你是如何画圆的?课件展示如何画圆。然后学生动手练习,并强调画圆时应该注意些什么。——揭示圆大小位置的确定学校要修建一个直径是20米的花坛,你能帮学校画出这个圆吗?生演示操作

  三、应用拓展

  1、基本练习

  〈1〉投影出示找出下列圆的半径直径

  〈2〉半径直径的相关计算

  〈3〉概念的判断和识别

  2、应用练习。

  )〈1〉车轮为什么做成圆形的,车轴应安装在哪?如果车轮制成方形的、三角形的,我们坐上去会是什么感觉呢?结合课件演示

  〈2〉你能用今天学习的圆的知识去解释一些生活现象吗(举行篝火晚会时,人们总是不知不觉会围成一个圆形,为什么?平静的湖面扔一小石子,会有什么变化?为什么?月饼为一般都做成圆形的,为什么?)看来生活中的.很多现象,都蕴含着丰富的道理,需要我们不断地探索,来认识它,解释它、运用它。

  〈3〉同学们学到现在,已经很累了,我们来轻松一下吧。老师给大家猜一个迷语。

  有一个人在一片青草地上钉了一根木桩,用一根绳子拴了一只羊在那里。(利用电脑配上画面)先请同学们猜测一个字。

  (很多学生都说可以猜“样”)再学生猜两个字的水果名,学生在启发下猜出草莓(草没的谐音)师:羊吃草的情况与今天学的知识有关吗?我们来看一看羊吃草的最大范围有多大好吗?(用电脑演示羊拉紧绳子旋转一周的情况,让学生直观的看到原来羊能吃到的草的最大范围是一个圆,拴羊的绳子与这个圆有什么关系吗?(是这个圆的半径)钉在那儿的木桩是这个圆的什么呢?(是这个圆的圆心)如果要让这个羊吃草的范围更大一点可以怎么办?(把绳子放长一点,也就是把半径扩大)如果要让羊到另外一个地方去吃草,可怎么办?(可以把木桩移动一个地方,也就是移动圆心的位置),这说明圆的半径与圆心与圆有什么关系呢?(圆的半径决定了圆的大小,而圆的圆心可以决定圆的位置。)

  四、总结全课(3分钟)

  1、质疑(篮球是圆形吗?表示圆心、半径和直径的字母可以随意改变吗?)

  2、这节课你都学会了什么?不管怎么说,老师觉得同学们的学习表现是不错的,所以我提议:我们一起伸出手划上一个圆满的句号。

  (句号是圆形的)延伸:

  1、用圆作画

  2、谈谈我眼中的圆。

圆数学教案10

  教材简析:

  圆是小学数学空间与图形领域里最后教学的一个平面图形,也是教学的惟一一个曲线图形。学生对平面上常见的直线图形的认识经验将有助于学生对曲线图形的认识,这也是学生对平面图形认知结构的一次重要拓展。通过圆的教学,本单元在教学圆的基础知识的同时,还通过化曲为直、等积变形这些方法与手段,进一步发展转化的策略和推理能力。全单元的教学内容分成四部分编排,本节课教学第9397页圆的形状特点以及圆心、半径和直径的认识。教学中采用由表及里、逐步深入,来体验圆的特征。例1通过说圆、画圆、感

  受圆与以前学过的平面图形的不同之处。教材里没有直接指出圆是曲线图形,把机会留给学生体验和交流。这样,学生在直观认识圆的基础上深入了一步。例2通过用圆规画、用尺量来教学圆心、半径、直径,使学生能更准确地把握圆心、半径、直径的概念。例3安排学生通过画、量、折等活动,深入体验圆的特征。练习十七在安排练习基础知识的同时,让学生进一步体会圆,开展数学思考,发展空间观念。

  特别说明:由于本届五年级学生还没有使用苏教版国标本教材,因此,在实际教学中有关轴对称及平移,旋转的内容无法涉及。

  教学目标:

  1.知识与技能目标:使学生认识圆,知道圆各部分的名称;掌握圆的.特征,理解直径和半径的相互关系。初步学会用圆规画圆。

  2.过程与方法目标:通过分组学习,动手操作,主动探索等活动,初步培养学生的合作意识和创新意识,以及抽象、概括等能力,进一步发展学生的空间观念。

  3.情感与价值观目标:通过学习,提高学生对数学的好奇心与求知欲,初步认识数学与人类生活的密切联系,体验数学活动的意义和作用。

  教学重点:认识圆及其特征,让学生初步学会用圆规画圆。

  教学难点:画圆,用圆的知识来解释和解决有关实际问题。

  课前准备:纸圆、剪刀、线绳、尺、圆规、多媒体课件

  教学过程

  一、创设情境,初步感知圆

  1.课前交流:略

  2.导入新课:

  (1)(指着物体上的圆)这种形状叫

  (2)生活中你在哪儿见过圆?

  二、自主合作,初步认识圆

  1.画圆。

  (1)学生借助物体画圆。

  (2)用圆规试着画一个圆,然后组织学生交流用圆规画圆的方法:定长、定点、旋转一周。

  (3)用圆规规范地画圆、剪圆,让学生再次感受圆是由曲线围成的。

  (4)比较得出:圆是由曲线围成的平面图形。

  2.认识圆的特征

  (1)认识圆心、半径、直径

  ①观察剪下来的纸圆,组织学生在交流中认识圆心,并知道常用字母0表示。

  ②通过让学生折圆,使学生进一步感受圆心的特征。

  ③通过让学生画一画、比一比纸圆上的折痕,交流有什么发现,从而认识圆的半径和直径的概念。

  (2)认识圆的特征

  ①组织学生通过小组合作学习,自主探索圆的有关特征。

  ②完成填表题和判断画圆,让学生知道圆的大小和半径或直径有关。

  ③教师小结有关内容。

  三、联系实际,初步应用圆。

  1.广场花坛喷水装置的设计,如果你是设计人员,喷头放在哪里?喷水距离应满足什么条件?为什么?巩固圆心的作用。

  2.车轮为什么要设计成圆的?车轴为什么要装在圆心?

  3.这是一个球场,要在中间画这样一个圆要用哪些工具?怎么画?

圆数学教案11

  一、教材分析

  本章将在上章学习了直线与方程的基础上,学习在平面直角坐标系中建立圆的代数方程,运用代数方法研究直线与圆,圆与圆的位置关系,了解空间直角坐标系,在这个过程中进一步体会数形结合的思想,形成用代数方法解决几何问题的能力。

  二、教学目标

  1、知识目标:使学生掌握并依据不同条件求得圆的方程。

  2、能力目标:(1)使学生初步熟悉的用途和用法。

  (2)体会数形结合思想,形成代数方法处理几何问题能力

  (3)培养学生观察、比较、分析、概括的思维能力。

  三、重点、难点、疑点及解决办法

  1、重点:

  推导过程和特点的明确。

  2、难点:

  圆的方程的应用。

  3、解决办法

  充分利用课本提供的2个例题,通过例题的解决使学生初步熟悉的'用途和用法。

  四、学法

  在课前必须先做好充分的预习,让学生带着疑问听课,以提高听课效率。采取学生共同探究问题的学习方法

  五、教法

  先让学生带着问题预习课文,对圆的方程有个初步的认识,在教学过程中,主要采用启发性原则,发挥学生的思维能力、空间想象能力。在教学中,还不时补充练习题,以巩固学生对新知识的理解,并紧紧与考试相结合。

  六、教学步骤

 一、导入新课

  首先让学生回顾上一章的直线的方程是怎么样求出的。

  二、讲授新课

  1、新知识学习

  在学生回顾确定直线的要素——两点(或者一点和斜率)确定一条直线的基础上,回顾确定圆的几何要素——圆心位置与半径大小,即圆是这样的一个点的集合

  在平面直角坐标系中,圆心可以用坐标表示出来,半径长是圆上任意一点与圆心的距离,根据两点间的距离公式,得到圆上任意一点的坐标满足的关系式。

  经过化简,得到

  2、知识巩固

  学生口答下面问题

  1、求下列各。

  ①圆心坐标为(-4,-3)半径长度为6;

  ②圆心坐标为(2,5)半径长度为3;

  2、求下列各圆的圆心坐标和半径。

  3、知识的延伸

  根据“曲线与方程”的意义可知,坐标满足方程的点在曲线上,坐标不满足方程的点不在曲线上,为了使学生体验曲线和方程的思想,加深对的理解,教科书配置了例1。

  例1要求首先根据坐标与半径大小写出,然后给一个点,判断该点与圆的关系,这里体现了坐标法的思想,根据圆的坐标及半径写方程——从几何到代数;根据坐标满足方程来看在不在圆上——从代数到几何。

 三、知识的运用

  例2给出不在同一直线上的三点,可以画出一个三角形,三角形有唯一的外接圆,因此可以求出他的标准方程。

  由于含有三个参数, ,因此必须具备三个独立条件才能确定一个圆。引导学生找出求三个参数的方法,让学生初步体验用“待定系数法”求曲线方程这一数学方法的使用过程

  四、小结

  一、知识概括

  1、 圆心为,半径长度为的为

  2、 判断给出一个点,这个点与圆什么关系。

  3、怎样建立一个坐标系,然后求出。

  二、思想方法

  (1)建立平面直角坐标系,将曲线用方程来表示,然后用方程来研究曲线的性质,这是解析几何研究平面图形的基本思路,本节课的学习对于研究其他圆锥曲线有示范作用。

  (2)曲线与方程之间对立与统一的关系正是“对立统一”的哲学观点在教学中的体现。

  五、布置作业(第127页2、3、4题)

  七、板书设计

圆数学教案12

  教学目标

  1、使学生学会圆环面积的计算方法,以及圆形与矩形混合图形的相关计算方法。

  2、学会利用已有的知识,运用数学思想方法,推导出圆环面积计算公式,有关于圆形与正方形应用的解答方法。

  3、培养学生观察、分析、推理和概括的能力,发展学生的空间概念。

  教学重难点

  1、教学重点

  会利用圆和其他已学的相关知识解决实际问题。

  2、教学难点

  圆与其他图形计算公式的混合使用。

  教学工具

  PPT卡片

  教学过程

  1、复习巩固上节知识,导入新课

  2、新知探究

  2、1圆环面积

  一、问题引入

  同学们知道光盘可以用来做什么吗?谁能来描述一下光盘的外观。

  回答(略)。

  今天我们就来做一做与光盘相关的数学问题。

  二、圆环面积求解

  例2、光盘的银色部分是一个圆环,内圆半径是50px,外圆半径是150px。圆环的面积是多少?

  步骤:

  师:求圆环面积需要先求什么?

  生:内圆和外圆的面积

  师:同学们可以自己做一做,分组交流一下自己的解法。

  师:给出计算过程与结果:

  三、知识应用

  做一做第2题:

  一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花坛,其他地方是草坪。草坪的占地面积是多少?

  师:这是一道典型的圆环面积应用题。通过直径得到半径,代入圆环面积公式,很简单。

  2、2圆与正方形

  一、问题引入

  师:同学们知道苏州的园林吧。大家有没有观察过园林建筑的窗户?它有很多很漂亮的设计,也有很多很常见的图形,比如五边形、六边形、八边形等等。其中外圆内方或者外方内圆是一种很常见的设计。

  师:不仅是在园林中,事实上在中国的建筑和其他的设计中都经常能见到“外圆内方”和“外方内圆”,比如这座沈阳的方圆大厦、商标等等。下面我们来认识一下这种圆形与正方形结合起来构成的图形。

  二、知识点

  例3:图中的.两个圆半径是1m,你能求出正方形和圆之间部分的面积吗?

  步骤:

  师:题目中都告诉了我们什么?

  生:左图圆的半径=正方形的边长的一半=1m;右图圆的面积=正方形对角线的一半=1m

  师:分别要求的是什么?

  生:一个求正方形比圆多的面积,一个求圆比正方形多的面积。

  师:应该怎么计算呢?

  归纳总结

  如果两个圆的半径都是r,结果又是怎样的呢?

  当r=1时,与前面的结果完全一致。

  四、知识应用

  70页做一做:

  下图是一面我国唐代外圆内方的铜镜。铜镜的直径是600px。外面的圆与内部的正方形之间的面积是多少?

  师:同学们用我们刚刚学过的知识来解答一下这道题目吧。

  解:铜镜的半径是300px

  5、3随堂练习

  若还有足够时间,课堂练习练习十五第5/6/7题。

  (可以邀请同学板书解题过程)

  6 小结

  1、今天我们共同研究了什么?

  今天我们在已知圆和正方形的面积公式的前提下,探索了圆环和“外圆内方”“外方内圆”图形的面积计算方法。这不是要求同学们记住这些推导出来的公式,而是希望同学们能过明白推导的方法,以后遇到类似的问题可以自己运用学过的知识来解决问题。

  2、在日常生活中经常需要去求圆的面积,譬如说:蒙古包做成圆形的是因为可以最大化地利用居住面积,植物根茎的横截面是圆形的,也是因为可以最大化的吸收水分。我们还可以再举出其他的一些例子,如装菜的盘子、车轮为什么要做成圆形的?大家需要多看多想!

  7板书

  例2解答步骤

圆数学教案13

  一、三维目标

  1、知识与技能

  (1)理解圆与圆的位置的种类;

  (2)利用平面直角坐标系中两点间的距离公式求两圆的连心线长;

  (3)会用连心线长判断两圆的位置关系、

  2、过程与方法

  设两圆的连心线长为,则判别圆与圆的位置关系的依据有以下几点:

  (1)当时,圆与圆相离;

  (2)当时,圆与圆外切;

  (3)当时,圆与圆相交;

  (4)当时,圆与圆内切;

  (5)当时,圆与圆内含;

  3、情态与价值观

  让学生通过观察图形,理解并掌握圆与圆的位置关系,培养学生数形结合的思想、

  二、教学重点、难点:

  重点与难点:用坐标法判断圆与圆的位置关系、

  三、教学设想

  问题

  设计意图

  师生活动

  1、初中学过的平面几何中,圆与圆的位置关系有几类?

  结合学生已有知识以验,启发学生思考,激发学生学习兴趣、

  教师引导学生回忆、举例,并对学生活动进行评价;学生回顾知识点时,可互相交流、

  2、判断两圆的位置关系,你有什么好的方法吗?

  引导学生明确两圆的位置关系,并发现判断和解决两圆的位置

  教师引导学生阅读教科书中的相关内容,注意个别辅导,解答学生疑难,并引导学生自己总结解题的方法、

  问题

  设计意图

  师生活动

  关系的方法、

  学生观察图形并思考,发表自己的解题方法、

  3、例3

  你能根据题目,在同一个直角坐标系中画出两个方程所表示的圆吗?你从中发现了什么?

  培养学生“数形结合”的意识、

  教师应该关注并发现有多少学生利用“图形”求,对这些学生应该给予表扬、同时强调,解析几何是一门数与形结合的学科、

  4、根据你所画出的图形,可以直观判断两个圆的位置关系、如何把这些直观的事实转化为数学语言呢?

  进一步培养学生解决问题、分析问题的能力、

  利用判别式来探求两圆的位置关系、

  师:启发学生利用图形的特征,用代数的方法来解决几何问题、

  生:观察图形,并通过思考,指出两圆的交点,可以转化为两个圆的方程联立方程组后是否有实数根,进而利用判别式求解、

  5、从上面你所画出的图形,你能发现解决两个圆的位置的其它方法吗?

  进一步激发学生探求新知的精神,培养学生

  师:指导学生利用两个圆的圆心坐标、半径长、连心线长的关系来判别两个圆的位置、

  生:互相探讨、交流,寻找解决问题的方法,并能通过图形的直观性,利用平面直角坐标系的两点间距离公式寻求解题的途径、

  6、如何判断两个圆的位置关系呢?

  从具体到一般地总结判断两个圆的位置关系的一般方法、

  师:对于两个圆的.方程,我们应当如何判断它们的位置关系呢?

  引导学生讨论、交流,说出各自的想法,并进行分析、评价,补充完善判断两个圆的位置关系的方法、

  7、阅读例3的两种解法,解决第137页的练习题、

  巩固方法,并培养学生解决问题的能力、

  师:指导学生完成练习题、

  生:阅读教科书的例3,并完成第137页的练习题、

  问题

  设计意图

  师生活动

  8、若将两个圆的方程相减,你发现了什么?

  得出两个圆的相交弦所在直线的方程、

  师:引导并启发学生相交弦所在直线的方程的求法、

  生:通过判断、分析,得出相交弦所在直线的方程、

  9、两个圆的位置关系是否可以转化为一条直线与两个圆中的一个圆的关系的判定呢?

  进一步验证相交弦的方程、

  师:引导学生验证结论、

  生:互相讨论、交流,验证结论、

  10、课堂小结:

  教师提出下列问题让学生思考:

  (1)通过两个圆的位置关系的判断,你学到了什么?

  (2)判断两个圆的位置关系有几种方法?它们的特点是什么?

  (3)如何利用两个圆的相交弦来判断它们的位置关系?

  作业:习题4、2A组:4、7、

圆数学教案14

  教学目标:

  (1)巩固正多边形的有关概念、性质和定理;

  (2)通过证明和画图提高学生综合运用分析问题和解决问题的能力;

  (3)通过例题的研究,培养学生的探索精神和不断更新的创新意识及选优意识。

  教学重点:

  综合运用正多边形的有关概念和正多边形与圆关系的有关定理来解决问题,要理解通过对具体图形的证明所给出的一般的证明方法,还要注意与前面所学知识的联想和化归。

  教学难点:

  综合运用知识证题。

  教学活动设计

  (一)知识回顾

  1。什么叫做正多边形?

  2。什么是正多边形的中心、半径、边心距、中心角?

  3。正多边形有哪些性质?(边、角、对称性、相似性、有两圆且同心)

  4。正n边形的每个中心角都等于。

  5。正多边形的有关的定理。

  (二)例题研究:

  例1、求证:各角相等的圆外切五边形是正五边形。

  已知:如图,在五边形ABCDE中,∠A=∠B=∠C=∠D=∠E,边AB、BC、CD、DE、EA与⊙O分别相切于A’、B’、C’、D’、E’。

  求证:五边形ABCDE是正五边形。

  分析:要证五边形ABCDE是正五边形,已知已具备了五个角相等,显然证五条边相等即可。

  教师引导学生分析,学生动手证明。

  证法1:连结OA、OB、OC,

  ∵五边形ABCDE外切于⊙O。

  ∴∠BAO=∠OAE,∠OCB=∠OCD,∠OBA=∠OBC,

  又∵∠BAE=∠ABC=∠BCD。

  ∴∠BAO=∠OCB。

  又∵OB=OB

  ∴△ABO≌△CBO,∴AB=BC,同理BC=CD=DE=EA。

  ∴五边形ABCDE是正五边形。

  证法2:作⊙O的半径OA’、OB’、OC’,则

  OA’⊥AB,OB’⊥BC、OC’⊥CD。

  ∠B=∠C∠1=∠2=。

  同理===,

  即切点A’、B’、C’、D’、E’是⊙O的5等分点。所以五边形ABCDE是正五边形。

  反思:判定正多边形除了用定义外,还常常用正多边形与圆的关系定理1来判定,证明关键是证出各切点为圆的等分点。由同样的方法还可以证明“各角相等的圆外切n边形是正边形”。

  此外,用正多边形与圆的关系定理1中“把圆n等分,依次连结各分点,所得的多边形是圆内接正多边形”还可以证明“各边相等的圆内接n边形是正n边形”,证明关键是证出各接点是圆的等分点。

  拓展1:已知:如图,五边形ABCDE内接于⊙O,AB=BC=CD=DE=EA。

  求证:五边形ABCDE是正五边形。(证明略)

  分小组进行证明竞赛,并归纳学生的证明方法。

  拓展2:已知:如图,同心圆⊙O分别为五边形ABCDE内切圆和外接圆,切点分别为F、G、H、M、N。

  求证:五边形ABCDE是正五边形。(证明略)

  学生独立完成证明过程,对B、C层学生教师给予及时指导,最后可以应用实物投影展示学生的证明成果,特别是对证明方法好,步骤推理严密的学生给予表扬。

  例2、已知:正六边形ABCDEF。

  求作:正六边形ABCDEF的外接圆和内切圆。

  作法:1过A、B、C三点作⊙O。⊙O就是所求作的正六边形的外接圆。

  2、以O为圆心,以O到AB的距离(OH)为半径作圆,所作的圆就是正六边形的内切圆。

  用同样的方法,我们可以作正n边形的外接圆与内切圆。

  练习:P161

  1、求证:各边相等的圆内接多边形是正多边形。

  2、(口答)下列命题是真命题吗?如果不是,举出一个反例。

  (1)各边相等的.圆外切多边形是正多边形;

  (2)各角相等的圆内接多边形是正多边形。

  3、已知:正方形ABCD。求作:正方形ABCD的外接圆与内切圆。

  (三)小结

  知识:复习了正多边形的定义、概念、性质和判定方法。

  能力与方法:重点复习了正多边形的判定。正多边形的外接圆与内切圆的画法。

  (四)作业

  教材P172习题4、5;另A层学生:P174B组3、4。

  探究活动

  折叠问题:(1)想一想:怎样把一个正三角形纸片折叠一个最大的正六边形。

  (提示:①对折;②再折使A、B、C分别与O点重合即可)

  (2)想一想:能否把一个边长为8正方形纸片折叠一个边长为4的正六边形。

  (提示:可以。主要应用把一个直角三等分的原理。参考图形如下:

  ①对折成小正方形ABCD;

  ②对折小正方形ABCD的中线;

  ③对折使点B在小正方形ABCD的中线上(即B’);

  ④则B、B’为正六边形的两个顶点,这样可得满足条件的正六边形。)

  探究问题:

  (安徽省20xx)某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,进行如下讨论:

  甲同学:这种多边形不一定是正多边形,如圆内接矩形;

  乙同学:我发现边数是6时,它也不一定是正多边形。如图一,△ABC是正三角形,形,==,可以证明六边形ADBECF的各内角相等,但它未必是正六边形;

  丙同学:我能证明,边数是5时,它是正多边形。我想,边数是7时,它可能也是正多边形。

  (1)请你说明乙同学构造的六边形各内角相等。

  (2)请你证明,各内角都相等的圆内接七边形ABCDEFG(如图二)是正七边形(不必写已知、求证)。

  (3)根据以上探索过程,提出你的猜想(不必证明)。

  (1)[说明]

  (2)[证明]

  (3)[猜想]

  解:(1)由图知∠AFC对。因为=,而∠DAF对的=+=+=。所以∠AFC=∠DAF。

  同理可证,其余各角都等于∠AFC。所以,图1中六边形各内角相。

  (2)因为∠A对,∠B对,又因为∠A=∠B,所以=。所以=。

  同理======。所以七边形ABCDEFG是正七边形。

  猜想:当边数是奇数时(或当边数是3,5,7,9,……时),各内角相等的圆内接多边形是正多边形。

圆数学教案15

  活动目标

  1、知道圆形和方形的基本特征,并能区分它们。

  2、能正确寻找周围生活中类似的圆形物和方形物。

  活动准备

  1、趣味练习:找相同的形状1-18,1-19

  2、各种圆形和方形的物品。

  活动过程

  一、出示自制的圆形蛋糕和方形蛋糕。

  1、小狗要过生日,朋友们送来了两个蛋糕。

  2、你们知道这是什么形状的蛋糕吗? (圆蛋糕、方蛋糕)

  它们有什么不同?

  二、出示玩具汽车

  1、引导幼儿观察,汽车上哪儿是圆的,哪儿是方的?

  2、讨论:汽车的'车轮为什么是圆的?

  三、寻找活动室中像车轮一样可以滚动的东西。

  (茶叶罐、饮料瓶等)

  四、请幼儿说说生活中还有哪些东西是圆的,哪些东西是方的。

  五、趣味练习: 寻找相同的形状

  活动延伸

  带幼儿到室外找一找、说一说圆的和方的物品。

【圆数学教案】相关文章:

关于圆的周长的数学教案10-10

关于圆的认识的小学数学教案10-10

有趣的圆小班数学教案02-19

圆、扇形、弓形的面积数学教案10-16

关于圆的和方的托班数学教案10-13

圆的认识数学教案(通用19篇)06-08

直线和圆的位置关系数学教案设计10-04

《正多边形和圆》数学教案设计09-11

冬至圆作文08-10

小班《圆》教案08-30