初中数学圆教案

时间:2024-07-05 10:29:02 数学教案 我要投稿

初中数学圆教案

  作为一名教职工,通常会被要求编写教案,教案是教学活动的依据,有着重要的地位。快来参考教案是怎么写的吧!下面是小编帮大家整理的初中数学圆教案,仅供参考,欢迎大家阅读。

初中数学圆教案

初中数学圆教案1

  一、课题

  27.3过三点的圆

  二、教学目标

  1.经历过一点、两点和不在同一直线上的三点作圆的过程.

  2..知道过不在同一条直线上的三个点画圆的方法

  3.了解三角形的外接圆和外心.

  三、教学重点和难点

  重点:经历过一点、两点和不在同一直线上的三点作圆的过程.

  难点:知道过不在同一条直线上的三个点画圆的方法.

  四、教学手段

  现代课堂教学手段

  五、教学方法

  学生自己探索

  六、教学过程设计

  (一)、新授

  1.过已知一个点a画圆,并考虑这样的圆有多少个?

  2.过已知两个点a、b画圆,并考虑这样的圆有多少个?

  3.过已知三个点a、b、c画圆,并考虑这样的圆有多少个?

  让学生以小组为单位,进行探索、思考、交流后,小组选派代表向全班学生展示本小组的.探索成果,在展示后,接受其他学生的质疑.

  得出结论:过一点可以画无数个圆;过两点也可以画无数个圆;这些圆的圆心都在连结这两点的线段的垂直平分线上;经过不在同一直线上的三个点可以画一个圆,并且这样的圆只有一个.

  不在同一直线上的三个点确定一个圆.

  给出三角形外接圆的概念:经过三角形三个顶点可以作一个圆,这个圆叫作三角形的外接圆,外接圆的圆心叫做三角形的外心.

  例:画已知三角形的外接圆.

  让学生探索课本第15页习题1.

  一起探究

  八年级(一)班的学生为老区的小朋友捐款500元,准备为他们购买甲、乙两种图书共12套.已知甲种图书每套45元,乙种图书每套40元.这些钱最多能买甲种图书多少套?

  分析:带领学生完成课本第13页的表格,并完成2、3问题,使学生清楚通过列表可以更好的分析题目,对于情景较为复杂的问题情景可采用这种分析方法解题.另外通过此题,使学生认识到:在应不等式解决实际问题时,当求出不等式的解集后,还要根据问题的实际意义确定问题的解.

  (二)、小结

  七、练习设计

  p15习题2、3

  八、教学后记

  后备练习:

  1.已知一个三角形的三边长分别是,则这个三角形的外接圆面积等于.

  2.如图,有a,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()

  a.在ac,bc两边高线的交点处

  b.在ac,bc两边中线的交点处

  c.在ac,bc两边垂直平分线的交点处

  d.在a,b两内角平分线的交点处

初中数学圆教案2

  教学目标:

  (1)理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;

  (2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;

  (3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法.

  教学重点:

  圆周角的概念和圆周角定理

  教学难点:

  圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想.

  教学活动设计:

  (在教师指导下完成)

  (一)圆周角的概念

  1、复习提问:

  (1)什么是圆心角?

  答:顶点在圆心的角叫圆心角.

  (2)圆心角的度数定理是什么?

  答:圆心角的度数等于它所对弧的度数.(如右图)

  2、引题圆周角:

  如果顶点不在圆心而在圆上,则得到如左图的新的角∠ACB,它就是圆周角.(如右图)(演示图形,提出圆周角的定义)

  定义:顶点在圆周上,并且两边都和圆相交的角叫做圆周角

  3、概念辨析:

  教材P93中1题:判断下列各图形中的是不是圆周角,并说明理由.

  学生归纳:一个角是圆周角的条件:①顶点在圆上;②两边都和圆相交.

  (二)圆周角的定理

  1、提出圆周角的度数问题

  问题:圆周角的度数与什么有关系?

  经过电脑演示图形,让学生观察图形、分析圆周角与圆心角,猜想它们有无关系.引导学生在建立关系时注意弧所对的圆周角的三种情况:圆心在圆周角的一边上、圆心在圆周角内部、圆心在圆周角外部.

  (在教师引导下完成)

  (1)当圆心在圆周角的一边上时,圆周角与相应的圆心角的关系:(演示图形)观察得知圆心在圆周角上时,圆周角是圆心角的一半.

  提出必须用严格的数学方法去证明.

  证明: (圆心在圆周角上)

  (2)其它情况,圆周角与相应圆心角的关系:

  当圆心在圆周角外部时(或在圆周角内部时)引导学生作辅助线将问题转化成圆心在圆周角一边上的情况,从而运用前面的结论,得出这时圆周角仍然等于相应的圆心角的结论.

  证明:作出过C的直径(略)

  圆周角定理: 一条弧所对的

  周角等于它所对圆心角的一半.

  说明:这个定理的证明我们分成三种情况.这体现了数学中的分类方法;在证明中,后两种都化成了第一种情况,这体现数学中的化归思想.(对A层学生渗透完全归纳法)

  (三)定理的应用

  1 、例题:如图?? OA、OB、OC都是圆O的半径,∠AOB=2∠BOC.

  求证:∠ACB=2∠BAC

  让学生自主分析、解得,教师规范推理过程.

  说明:①推理要严密;②符号“”应用要严格,教师要讲清.

  2、巩固练习:

  (1)如图,已知圆心角∠AOB=100°,求圆周角∠ACB、∠ADB的度数?

  (2)一条弦分圆为1:4两部分,求这弦所对的圆周角的度数?

  说明:一条弧所对的圆周角有无数多个,却这条弧所对的圆周角的度数只有一个,但一条弦所对的圆周角的度数只有两个.

  (四)总结

  知识:(1)圆周角定义及其两个特征;(2)圆周角定理的内容.

  思想方法:一种方法和一种思想:

  在证明中,运用了数学中的分类方法和“化归”思想.分类时应作到不重不漏;化归思想是将复杂的问题转化成一系列的简单问题或已证问题.

  (五)作业教材P100中习题A组6,7,8

  第二、三课时圆周角(二、三)

  教学目标:

  (1)掌握圆周角定理的三个推论,并会熟练运用这些知识进行有关的计算和证明;

  (2)进一步培养学生观察、分析及解决问题的能力及逻辑推理能力;

  (3)培养添加辅助线的能力和思维的广阔性.

  教学重点:圆周角定理的三个推论的应用.

  教学难点:三个推论的灵活应用以及辅助线的添加.

  教学活动设计:

  (一)创设学习情境

  问题1 :画一个圆,以B、C为弧的端点能画多少个圆周角?它们有什么关系?

  问题2 :在⊙O中,若=,能否得到∠C=∠G呢?根据什么?反过来,若土∠C=∠G,是否得到=呢?

  (二)分析、研究、交流、归纳

  让学生分析、研究,并充分交流.

  注意:①问题解决,只要构造圆心角进行过渡即可;②若=,则∠C=∠G;但反之不成立.

  老师组织学生归纳:

  推论1 :同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等.

  重视:同弧说明是“同一个圆”;等弧说明是“在同圆或等圆中”.

  问题:“同弧”能否改成“同弦”呢?同弦所对的圆周角一定相等吗?(学生通过交流获得知识)

  问题3 :(1)一个特殊的圆弧——半圆,它所对的.圆周角是什么样的角?

  (2)如果一条弧所对的圆周角是90°,那么这条弧所对的圆心角是什么样的角?

  学生通过以上两个问题的解决,在教师引导下得推论2:

  推论2 :半圆(或直径)所对的圆周角是直角;90 °的圆周角所对的弦直径.

  指出:这个推论是圆中一个很重要的性质,为在圆中确定直角、成垂直关系创造了条件,要熟练掌握.

  启发学生根据推论2推出推论3:

  推论3 :如果三角形一边上的中线等于这边的一半,那么这个三角是直角三角形.

  指出:推论3是下面定理的逆定理:在直角三角形中,斜边上的中线等于斜边的一半.

  (三)应用、反思

  例1、如图,AD是△ABC的高,AE是△ABC的外接圆直径.

  求证:AB·AC=AE·AD.

  对A层同学,让学生自主地分析问题、解决问题,进行生生交流,师生交流;其他层次的学生在教师引导下完成.

  交流:①分析解题思路;②作辅助线的方法;③解题推理过程(要规范).

  解(略)

  教师引导学生思考:(1)此题还有其它证法吗?(2)比较以上证法的优缺点.

  指出:在解圆的有关问题时,常常需要添加辅助线,构成直径上的圆周角,以便利用直径上的圆周角是直角的性质.

  变式练习1:如图,△ABC内接于⊙O,∠1=∠2.

  求证:AB·AC=AE·AD.

  变式练习2:如图,已知△ABC内接于⊙O,弦AE平分

  ∠BAC交BC于D.

  求证:AB·AC=AE·AD.

  指出:这组题目比较典型,圆和相似三角形有密切联系,证明圆中某些线段成比例,常常需要找出或通过辅助线构造出相似三角形.

  例2:如图,已知在⊙O中,直径AB为10厘米,弦AC为6厘米,∠ACB的平分线交⊙O于D;

  求BC,AD和BD的长.

  解:(略)

  说明:充分利用直径所对的圆周角为直角,解直角三角形.

  练习:教材P96中1、2

  (四)小结(指导学生共同小结)

  知识:本节课主要学习了圆周角定理的三个推论.这三个推论各具特色,作用各异,在今后的学习中应用十分广泛,应熟练掌握.

  能力:在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角或构成相似三角形,这种基本技能技巧一定要掌握.

  (五)作业

  教材P100.习题A组9、10、12、13、14题;另外A层同学做P102B组3,4题.

  探究活动

  我们已经学习了“圆周角的度数等于它所对的弧的度数的一半”,但当角的顶点在圆外(如图①称圆外角)或在圆内(如图②称圆内角),它的度数又和什么有关呢?请探究.

  提示:(1)连结BC,可得∠E=(的度数—的度数)

  (2)延长AE、CE分别交圆于B、D,则∠B=的度数,

  ∠C=的度数,

  ∴∠AEC=∠B+∠C=(的度数+的度数).

初中数学圆教案3

  公开课教案

  授课时间: 20xx.11.17早上第二节 授课班级:初三、1班 授课教师:

  教学内容: 7.7 直线和圆的位置关系

  教学目标:

  知识与技能目标:1、理解直线和圆相交、相切、相离的概念。

  2. 初步掌握直线和圆的位置关系的性质和判定及其灵活的应用。

  过程与方法目标:1.通过直线和圆的位置关系的探究,向学生渗透分类、数形结合的思

  想,培养学生观察、分析、概括、知识迁移的`能力;

  2. 通过例题教学,培养学生灵活运用知识的解决能力。

  情感与态度目标:让学生从运动的观点来观察直线和圆相交、相切、相离的关系、关注知识的生成,发展与变化的过程,主动探索,勇于发现。从而领悟世界上的一切物体都是运动变化着的,并且在一定的条件下可以转化的辩证唯物主义观点。

  [1][2][3][4][5][6][7][8][9][10] ... 下一页 >>

初中数学圆教案4

  教学内容

  24。2圆的切线(1)

  教学目标 使学生掌握切线的识别方法,并能初步运用它解决有关问题

  通过切线识别方法的学习,培养学生观察、分析、归纳问题的能力

  教学重点 切线的识别方法

  教学难点 方法的理解及实际运用

  教具准备 投影仪,胶片

  教学过程 教师活动 学生活动

  (一)复习 情境导入

  1、复习、回顾直线与圆的三 种位置关系。

  2、请学生判断直线和圆的位置关系。

  学生判断的过程,提问:你是怎样判断出图中的直线和圆相切的?根据学生的回答,继续提出 问题:如何界定直线与圆是否只有一个公共点?教师指出,根据切线的定义可以识别一条直线是不是圆的切线,但有时使用定义识别很不方便,为此我们还要学习识别切 线的其它方法。(板书课题) 抢答

  学生总结判别方法

  (二)

  实践与探索1:圆的切线的判断方法 1、由上面 的复习,我们可以把上节课所学的切线的定义作为识别切线的方法1——定义法:与圆只有一个公共点的直线是圆的切线。

  2、当然,我们还可以由上节课所学的用圆心到直线的距离 与半径 之间的关系来判断直线与圆是否相切,即:当 时,直线与圆的位置关系是相切。以此作为识别切线的方法2——数量关系法:圆心到直线的距离等于半径的直线是圆的切线 。

  3、实验:作⊙O的半径OA,过A作l⊥OA可以发现:

  (1)直线 经过半径 的外端点 ;

  (2)直线 垂直于半径 。这样我们就得到了从位 置上来判断直线是圆的切线的方法3——位置关系法:经过半径的外端且垂直于这条半径的直线是圆的切线。 理解并识记圆的切线的几种方法,并比较应用。

  通过实验探究圆的切线的位置判别方法,深入理解它的两个要义。

  三、课堂练习

  思考:现在,任意给定一个圆,你能不能作出圆的切线?应该如何作?

  请学生回顾作图过程,切线 是如何作出来的?它满足哪些条件? 引导学生总结出:①经过半径外端;②垂直于这条半径。

  请学生继续思考:这两个条件缺少一个行不行? (学生画出反例图)

  (图1) (图2) 图(3)

  图(1)中直线 经过半径外端,但不与半径垂直; 图(2)中直线 与半径垂直,但不经过半径外端。 从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线。

  最后引导学生分析,方法3实际上是从前一节所讲的“圆 心到直线的距离等于半径时直线和圆相切”这个结论直接得出来的,只是为了便于应用把它改写成“经过半径的外端且垂直于这条半径的直线是圆的切线”这种形式。 试验体会圆的位置判别方法。

  理解位置判别方法的两个要素。

  (四)应用与拓展 例1、如图,已知直线AB经过⊙O上的点A,并且AB=OA,OBA=45,直线AB是⊙O的切线吗?为什么?

  例2、如图,线段AB经过圆心O,交⊙O于点A、C,BAD=B=30,边BD交圆于点D。BD是⊙ O的切线吗?为什么?

  分析:欲证BD是⊙O的切线,由于BD过圆上点D,若连结OD,则BD过半径OD的外端,因此只需证明BD⊥OD,因OA=OD,BAD=B,易证BD⊥OD。

  教师板演,给出解答过程及格式。

  课堂练习:课本练习1-4 先选择方法,弄清位置判别方法与数量判别方法的本质区别。

  注意圆的切线的特征与识别的区别。

  (四)小结与作业 识 别一条直线是圆的切线,有 三种方法:

  (1)根据切线定义判定,即与圆只有一个公共点的直线是圆的切线;

  (2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆的切线;

  (3)根据直线的`位置关系来判定,即经过半径的外端且垂直于这条半径的直线是圆的 切线,

  说明一条直线是圆的切线,常常需要作辅助线,如果 已知直线过圆上某 一点,则作出过 这一点的半径,证明直线垂直于半径即可(如例2)。

  各抒己见,谈收获。

  (五)板书设计

  识别一条直线是圆的切线,有三种方法: 例:

  (1 )根据切线定义判定,即与圆只有一个公共点的直线是圆的切线;

  (2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆 的切线;

  (3)根据直线的位置关系来判定,即经过半径的外端且垂直于这条半径的直线是圆的 切线,

  说明一条直线是圆的切线,常常需要作辅助线,如果已知直线过圆上某一点,则作出过 这一点的半径,证明 直线垂直于半径

  (六)教学后记

  教学内容 24。2圆的切线(2) 课型 新授课 课时 执教

  教学目标 通过探究,使学生发现、掌握切线长定理,并初步长定理,并初步学会应用切线长定理解决问题,同时通过从三角形纸片中剪出最大圆的实验的过程中发现三角形内切圆的画法,能用内心的性质解决问题。

  教学重点 切线长定理及其应用,三角形的内切圆的画法和内心的性质。

  教学难点 三角形的内心及其半径的确定。

  教具准备 投影仪,胶片

  教学过程 教师 活动 学生活动

  (一)复习导入:

  请同学们回顾一下,如何判断一条直线是圆的切线?圆的切线具有什么性质?(经过半径外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径。)

  你能说明以下这个问题?

  如右图所示,PA是 的平分线,AB是⊙O的切线,切点E,那么AC是⊙O的切线吗?为什么?

  回顾旧知,看谁说的全。

  利用旧知,分析解决该问题。

  (二)

  实践与探索 问题1、从圆外一点可以作圆的几条切线?请同学们画一画。

  2、请问:这一点 与切点的 两条线段的长度相等吗?为什么?

  3、切线长的定义是什么?

  通过以 上几个问题的解决,使同学们得出以下的结论:

  从圆外一点可以引圆的两条切线,切线长相等。这一点与圆心的连线

  平分两条切线的夹角。 在解决以上问题时,鼓励同学们用不同的观点、不同的知识来解决问题,它既可以用书上阐述的对称的观点解决,也可以用以前学习的其他知识来解决问题。

  (三)拓展与应用 例:右图,PA、PB是,切点分别是A、B,直线EF也是⊙O的切线,切点为P,交PA、PB为E、F点,已知 , ,(1)求 的周长;(2)求 的度数。

  解:(1)连结PA、PB、EF是⊙O的切线

  所以 , ,

  所以 的周长 (2)因为PA、PB、EF是⊙O的切线

  所以 , ,,

  所以

  所以

  画图分析探究,教学中应注重基本图形的教学,引导学生发现基本图形,应用基本图形解决问题。

  (四)小结与作业 谈一下本节课的 收获 ? 各抒己见,看谁 说得最好

  (五)板书设计

  切线(2)

  切线长相等 例:

  切线长性质

  点与圆心连 线平分两切线夹角

  (六)教学后记

初中数学圆教案5

尊敬的各位评委,亲爱的各位同行:

  大家好!

今天我的说课内容是人教版九年级上册第二十四章第二节第二课时的直线与圆的位置关系。下面我将以教什么、怎么样教、为什么这样教为思路从教材分析、学情分析、教学目标、学法教法、教学过程和板书设计六个方面对本课进行说明。

  一、教材分析

  教材的地位和作用。

  圆在平面几何中占有重要地位,它被安排在初中数学第二十四章,属于一个提高阶段。而直线和圆的位置关系又是本章的一个中心内容。从知识体系上看:它有着承上启下的作用,既是对点与圆的位置关系的延续与提高,又是后面学习切线的性质和判定、圆和圆的位置关系及高中继续学习几何知识的基础。从数学思想方法层面上看:它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比等数学思想方法,有助于提高学生的数学思维品质。

  二、学情分析

  在此之前学生已经学习了点和圆的位置关系,对圆有了一定的感性和理性认识,但在某种程度上特别是平面几何问题上,学生还是依靠事物的具体直观形象。加之九年级学生好奇心强,活泼好动,注意力易分散,认知水平大都停留在表面现象,对亲身体验的事物容易激发求知的渴望,因此要想方设法,引导学生深入思考、主动探究、主动获取新知识。

  三、教学目标:

  根据学生已有的认知基础及本课的教材的地位、作用,结合数学课程标准我将确定如下的教学目标:

  (1)掌握直线和圆的三种位置关系性质及判定。

  (2)通过观察、实验、合作交流等数学活动使学生了解探索问题的一般方法;

  (3)通过直线和圆的位置关系的探究,向学生渗透分类讨论、数形结合、类比的数学思想 ,陪养学生观察、分析和概括的能力;

  (4)体会事物间的相互渗透,感受数学思维的严谨性,并在合作学习中体验成功的喜悦。

  教学的重难点:

  重点:直线和圆的三种位置关系的性质与判定。

  难点:用数量法刻画直线与圆的三种位置关系。

  突破难点的策略:引导学生动手动脑、操作实践,类比点和圆的位置关系的判定方法,配合几何画板直观演示来加深学生对知识的理解。

  四、学法教法

  教无定法,教学有法,贵在得法。根据新课改理念及学生特点,本节课主要采用“启发式”问题教学法,根据维果斯基的“最近发展区理论”,站在学生思维的最近发展区上启发诱导,用环环相扣的问题将探究活动层层深入;整堂课紧紧围绕“情景问题――学生体验――合作交流”的学习模式展开,并充分发挥几何画板、多媒体课件直观、形象的功能辅助教学,激励学生积极参与、观察、发现其知识的内在联系,使每个学生都能积极思维。

  五、教学过程

  (1)创设情境,引出课题(3分钟)

  从学生的生活经验和已有知识出发,创设情境。通过多媒体课件展示《海上日出》的朗诵视频,让学生观察并抽象出其中的几何图形(直线和圆),营造探索问题的氛围,从而引出课题(直线和圆的位置关系)。同时让学生体会到数学知识无处不在,应用数学无处不有,符合“数学教学应从生活经验出发”的新课标要求。

  (2)动手操作探求新知(20分钟)

  a、学生动手实验――探究位置关系得出概念

  美国学者说过:听过的会忘记,看过的会记得,做过的能学会。可见实验法在教学中有着何等重要的作用。从这一思想出发,我设计了一个动手操作的环节:让学生在纸上画一条直线,把课前准备好的圆卡片,在纸上移动,再现日出的整个过程,并归纳其公共点的个数变化情况。

  然后提出问题:你能由此归纳出直线和圆有几种不同的位置关系吗?你是怎样区分这几种位置关系的?如何用语言描述位置关系?教师层层设问,让学生思维自然发展,教学有序的进入实质部分。由于动手操作环节的'铺垫,学生很容易能够从公共点个数的变化情况对直线和圆的位置关系进行分类。通过学生演示归纳,师生共同得出有关概念。教师板书讲解内容并总结:可利用直线与圆的交点个数判断直线与圆的三种位置关系。特别强调相切中“只有一个交点”的含义。

  b、讲练结合――运用定义法、引出数量法

  在学习了直线和圆的位置关系后,学生自然就得到了直线和圆的位置关系的第一种判定方法:定义法,这种方法对学生而言比较直观简单,因此教材上没有相应的练习。于是我设计了一道练习题:在练习中让学生发现用定义法来判断直线和圆的位置关系的局限性,当公共点个数不好判断时又该怎么办呢?你能类比之前所学的点和圆的位置关系的判定方法加以说明吗?从而引出用数量关系刻画直线和圆的位置关系的学习。

  c、类比总结――探究第二种判定方法

  由点与圆的位置关系的性质与判定,类比迁移到直线与圆的位置关系,学生较容易想到画图、测量等实验方法,小组交流合作,教师适时指导,再利用几何画板重复演示得出结论:

  ①d>r,直线L和⊙O相离;

  ②d=r,直线L和⊙O相切;

  ③d<r,直线L和⊙O相交,也就是用圆心到直线的距离d与半径r的大小关系来判定直线和圆三种位置关系,并强调:既是性质也是判定。

  在动手操作,探索新知的过程中,让学生参与到定义的形成与给出过程中,在练习中发现定义法的局限性,从而引出对数量法的学习,让学生类比点和圆的位置关系的判定,验证直线和圆的位置关系,更加直接而自然,有效的突破教学难点,也让学生感受到所学知识间的相互联系。

  (3)巩固练习,提高能力(10分钟)

  为得到及时的反馈情况,我设计了如下的练习,而这个时段的学生因疲劳,注意力易分散,我抓住学生的好胜心理,首先设计了一道填空题:看谁抢得快

  1、已知圆的直径为13cm,设直线和圆心的距离为d:

  1)若d=4、5cm ,则直线和圆,直线和圆有____个公共点;

  2)若d=6、5cm ,则直线和圆______,直线和圆有____个公共点;

  3)若d= 8 cm ,则直线和圆______,直线和圆有____个公共点。

  这道题同时运用了数量法和定义法的判定,解题关键是要引导学生找出d与r并进行比较,从中体现数学中的转化思想。

  2 、Rt△ABC中,∠C=90°,AC=3cm,BC= 4cm,判断以点C为圆心,下列r为半径的⊙ C与AB的位置关系:

  (1)r =2cm;

  (2)r =2、4cm;

  (3)r =3cm 。 (P101习题24、2第2题)

  3 、在Rt△ABC中,∠C=90°,AC=3cm,BC= 4cm,以C为圆心,r为半径的圆

  (1)当圆C与线段AB相交时,r;

  (2)当圆C与线段AB相切时,r;

  (3)当圆C与线段AB相离时,r;

  解题关键是要引导学生找出这两个问题的不同与联系,再进行求解。通过这两个题可以培养学生解决变式问题的能力。教师引导学生完成,加强个别指导。

  (4)课堂小结构建体系(5分钟)

  本节课你有哪些收获?你还有哪些疑惑?

  (通过提问方式进行小结,交流收获与不足,让学生养成学习,总结―再学习的良好学习习惯。教师再总结:这节课我们学习了三种位置关系、两种判定方法、三种思想,有利于帮助学生理清知识脉络,巩固学习效果。3、2、3)

  (5)作业布置课后延伸(2分钟)

  必做题:

  1、阅读教材100-101

  2、P112练习2

  选做题:如图,已知∠AOB=β(β为锐角),M为OB上一点,且OM=5cm,以M为圆心、以2.5为半径作圆

  (1)⊙M与直线OA的位置关系由大小决定;

  (2)若⊙M与直线OA相切,则β=;

  (3)若⊙M与直线OA相交,则β的取值范围是。

初中数学圆教案6

  【学习目标】

  1.了解圆周角的概念.

  2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.

  3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径.

  4.熟练掌握圆周角的定理及其推理的灵活运用.

  设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题

  【学习过程】

  一、温故知新:

  (学生活动)同学们口答下面两个问题.

  1.什么叫圆心角?

  2.圆心角、弦、弧之间有什么内在联系呢?

  二、自主学习:

  自学教材p90---p93,思考下列问题:

  1、什么叫圆周角?圆周角的两个特征: 。

  2、在下面空里作一个圆,在同一弧上作一些圆心角及圆周角。通过圆周角的概念和度量的方法回答下面的问题.

  (1)一个弧上所对的圆周角的个数有多少个?

  (2).同弧所对的圆周角的度数是否发生变化?

  (3).同弧上的圆周角与圆心角有什么关系?

  3、默写圆周角定理及推论并证明。

  4、能去掉同圆或等圆吗?若把同弧或等弧改成同弦或等弦性质成立吗?

  5、教材92页思考?在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?

  三、典型例题:

  例1、(教材93页例2)如图, ⊙o的直径ab为10cm,弦ac为6cm,acb的`平分线交⊙o于d,求bc、ad、bd的长。

  例2、如图,ab是⊙o的直径,bd是⊙o的弦,延长bd到c,使ac=ab,bd与cd的大小有什么关系?为什么?

  四、巩固练习:

  1、(教材p93练习1)

  解:

  2、(教材p93练习2)

  3、(教材p93练习3)

  证明:

  4、(教材p95习题24.1第9题)

  五、 总结反思:

  【达标检测】

  1.如图1,a、b、c三点在⊙o上,aoc=100,则abc等于( ).

  a.140 b.110 c.120 d.130

  2.如图2,1、2、3、4的大小关系是( )

  a.3 b.32

  c.2 d.2

  3.如图3,(中考题)ab是⊙o的直径,bc,cd,da是⊙o的弦,且bc=cd=da,则bcd等于( )

  a.100 b.110 c.120 d.130

  4.半径为2a的⊙o中,弦ab的长为2 a,则弦ab所对的圆周角的度数是________.

  5.如图4,a、b是⊙o的直径,c、d、e都是圆上的点,则2=_______.

  6.(中考题)如图5,于,若,则

  7.如图,弦ab把圆周分成1:2的两部分,已知⊙o半径为1,求弦长ab.

  【拓展创新】

  1.如图,已知ab=ac,apc=60

  (1)求证:△abc是等边三角形.

  (2)若bc=4cm,求⊙o的面积.

  2、教材p95习题24.1第12、13题。

  【布置作业】教材p95习题24.1第10、11题。

初中数学圆教案7

  一、内容和内容解析

  (一)内容

  概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集、

  (二)内容解析

  现实生活中存在大量的相等关系,也存在大量的不等关系、本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望、再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念、前面学过方程、方程的解、解方程的概念、通过类比教学、不等式、不等式的解、解不等式几个概念不难理解、但是对于初学者而言,不等式的解集的理解就有一定的难度、因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助、

  基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上、

  二、目标和目标解析

  (一)教学目标

  1、理解不等式的概念

  2、理解不等式的解与解集的意义,理解它们的区别与联系

  3、了解解不等式的概念

  4、用数轴来表示简单不等式的解集

  (二)目标解析

  1、达成目标1的标志是:能正确区别不等式、等式以及代数式、

  2、达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合、

  3、达成目标3的标志是:理解解不等式是求不等式解集的一个过程、

  4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具、操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右、

  三、教学问题诊断分析

  本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度、因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集、

  四、教学支持条件分析

  利用多媒体直观演示课前引入问题,激发学生的学习兴趣、

  五、教学过程设计

  (一)动画演示情景激趣

  多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?

  设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣、

  (二)立足实际引出新知

  问题一辆匀速行驶的汽车在11︰20距离a地50km,要在12︰00之前驶过a地,车速应满足什么条件?

  小组讨论,合作交流,然后小组反馈交流结果、最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)

  1、从时间方面虑:2、从行程方面:<>50

  3、从速度方面考虑:x>50÷

  设计意图:培养学生合作、交流的意识习惯,使他们积极参与问题的讨论,并敢于发表自己的见解、老师对问题解决方法的梳理与补充,发散学生思维,培养学生分析问题、解决问题的能力、

  (三)紧扣问题概念辨析

  1、不等式

  设问1:什么是不等式?

  设问2:能否举例说明?由学生自学,老师可作适当补充、比如:是不等式、

  2、不等式的解

  设问1:什么是不等式的解?

  设问2:不等式的解是唯一的吗?

  由学生自学再讨论、

  老师点拨:由x>50÷得x>75

  说明x任意取一个大于75的数都是不等式3、不等式的解集

  设问1:什么是不等式的'解集?<,>50的解、<,>50,x>50÷都

  设问2:不等式的解集与不等式的解有什么区别与联系?

  由学生自学后再小组合作交流、

  老师点拨:不等式的解是不等式解集中的一个元素,而不等式的解集是不等式所有解组成的一个集合、

  4、解不等式

  设问1:什么是解不等式?

  由学生回答、

  老师强调:解不等式是一个过程、

  设计意图:培养学生的自学能力,进一步培养学生合作交流的意识、遵循学生的认知规律,有意识、有计划、有条理地设计一些问题,可以让学生始终处于积极的思维状态,不知不觉中接受了新知识、老师再适当点拨,加深理解、

  (四)数形结合,深化认识

  问题1:由上可知,x>75既是不等式的解集、那么在数轴上如何表示x>75呢?

  问题2:如果在数轴上表示x≤ 75,又如何表示呢?

  由老师讲解,注意规范性,准确性、

  老师适当补充:“≥”与“≤”的意义,并强调用“≥”或“≤”连接的式子也是不等式、比如x≤ 75就是不等式、

  设计意图:通过数轴的直观让学生对不等式的解集进一步加深理解,渗透数形结合思想、

  (五)归纳小结,反思提高

  教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题

  1、什么是不等式?

  <的解集,也是不等式>50

  2、什么是不等式的解?

  3、什么是不等式的解集,它与不等式的解有什么区别与联系?

  4、用数轴表示不等式的解集要注意哪些方面?

  设计意图:归纳本节课的主要内容,交流心得,不断积累学习经验、

  (六)布置作业,课外反馈

  教科书第119页第1题,第120页第2,3题、

  设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整、

  六、目标检测设计

  1、填空

  下列式子中属于不等式的有___________________________

  ①x +7>

  ②②x≥ y + 2 = 0④ 5x + 7

  设计意图:让学生正确区分不等式、等式与代数式,进一步巩固不等式的概念、

  2、用不等式表示

  ① a与5的和小于7

  ② a的与b的3倍的和是非负数

  ③正方形的边长为xcm,它的周长不超过160cm,求x满足的条件

  设计意图:培养学生审题能力,既要正确抓住题目中的关键词,如“大于(小于)、非负数(正数或负数)、不超过(不低于)”等等,正确选择不等号,又要注意实际问题中的数量的实际意义、

初中数学圆教案8

  教学目标:

  1.使学生理解直线和圆的相交、相切、相离的概念。

  2.掌握直线与圆的位置关系的性质与判定并能够灵活运用来解决实际问题。

  3.培养学生把实际问题转化为数学问题的能力及分类和化归的能力。

  重点难点:

  1.重点:直线与圆的三种位置关系的概念。

  2.难点:运用直线与圆的位置关系的性质及判定解决相关的问题。

  教学过程:

  一.复习引入

  1.提问:复习点和圆的三种位置关系。

  (目的:让学生将点和圆的位置关系与直线和圆的位置关系进行类比,以便更好的掌握直线和圆的位置关系)

  2.由日出升起过程当中的三个特殊位置引入直线与圆的位置关系问题。

  (目的:让学生感知直线和圆的位置关系,并培养学生把实际问题抽象成数学模型的能力)

  二.定义、性质和判定

  1.结合关于日出的三幅图形,通过学生讨论,给出直线与圆的三种位置关系的定义。

  (1)线和圆有两个公共点时,叫做直线和圆相交。这时直线叫做圆的割线。

  (2)直线和圆有唯一的公点时,叫做直线和圆相切。这时直线叫做圆的切线。唯一的公共点叫做切点。

  (3)直线和圆没有公共点时,叫做直线和圆相离。

  2.直线和圆三种位置关系的性质和判定:

  如果⊙O半径为r,圆心O到直线l的距离为d,那么:

  (1)线l与⊙O相交 d<r

  (2)直线l与⊙O相切d=r

  (3)直线l与⊙O相离d>r

  三.例题分析:

  例(1)在Rt△ABC中,AC=3cm,BC=4cm,以C为圆心,r为半径。

  ①当r= 时,圆与AB相切。

  ②当r=2cm时,圆与AB有怎样的位置关系,为什么?

  ③当r=3cm时,圆与AB又是怎样的位置关系,为什么?

  ④思考:当r满足什么条件时圆与斜边AB有一个交点?

  四.小结(学生完成)

  五、随堂练习:

  (1)直线和圆有种位置关系,是用直线和圆的`个数来定义的;这也是判断直线和圆的位置关系的重要方法。

  (2)已知⊙O的直径为13cm,直线L与圆心O的距离为d。

  ①当d=5cm时,直线L与圆的位置关系是;

  ②当d=13cm时,直线L与圆的位置关系是;

  ③当d=6。5cm时,直线L与圆的位置关系是;

  (目的:直线和圆的位置关系的判定的应用)

  (3)⊙O的半径r=3cm,点O到直线L的距离为d,若直线L 与⊙O至少有一个公共点,则d应满足的条件是()

  (A)d=3 (B)d≤3 (C)d<3 d="">3

  (目的:直线和圆的位置关系的性质的应用)

  (4)⊙O半径=3cm。点P在直线L上,若OP=5 cm,则直线L与⊙O的位置关系是()

  (A)相离(B)相切(C)相交(D)相切或相交

  (目的:点和圆,直线和圆的位置关系的结合,提高学生的综合、开放性思维)

  想一想:

  在平面直角坐标系中有一点A(-3,-4),以点A为圆心,r长为半径时,

  思考:随着r的变化,⊙A与坐标轴交点的变化情况。(有五种情况)

  六、作业:P100—2、3

初中数学圆教案9

  教学目标:

  1、使学生学会较熟炼地运用切线的判定方法和切线的性质证明问题。

  2、掌握运用切线的性质和切线的判定的有关问题中辅助线引法的基本规律。

  教学重点:

  使学生准确、熟炼、灵活地运用切线的判定方法及其性质。教学难点:学生对题目不能准确地进行论证。证题中常会出现不知如何入手,不知往哪个方向证的情形。

  教学过程:

  一、新课引入:

  我们已经系统地学习了切线的判定方法和切线的性质,现在我们来利用这些知识证明有关几何问题。

  二、新课讲解:

  实际上在几何证明题中,我们更多地将切线的判定定理和性质定理应用在具体的问题中,而一道几何题的分析过程,是证题中的最关键步骤。p.109例3如图7-58,已知:ab是⊙o的直径,bc是⊙o的切线,切点为b,oc平行于弦ad.求证:dc是⊙o的切线。

  分析:欲证cd是⊙o的切线,d是⊙o的弦ad的一个端点当然在⊙o上,属于公共点已给定,而证直线是圆的切线的情形。所以辅助线应该是连结oc.只要证od⊥cd即可。亦就是证∠odc=90°,所以只要证∠odc=∠obc即可,观察图形,两个角分别位于△odc和△obc中,如果两个三角形相似或全等都可以产生对应角相等的结果。而图形中已存在明显的条件od=ob,oc=oc,只要证∠3=∠4,便可造成两个三角形全等。

  ∠3如何等于∠4呢?题中还有一个已知条件ad∥oc,平行的.位置关系,可以造成角的相等关系,从而导致∠3=∠4.命题得证。证明:连结od.教师向学生解释书上的证题格式属于推出法和因为所以法的联用,以后证题中同学可以借鉴。p.110例4如图7-59,在以o为圆心的两个同心圆中,大圆的弦ab和cd相等,且ab与小圆相切于点e求证:cd与小圆相切。

  分析:欲证cd与小⊙o相切,但读题后发现直线cd与小⊙o并未已知公共点。这个时候我们必须从圆心o向cd作垂线,设垂足为f.此时f点在直线cd上,如果我们能证得of等于小⊙o的半径,则说明点f必在小⊙o上,即可根据切线的判定定理认定cd与小⊙o相切。题目中已告诉我们ab切小⊙o于e,连结oe,便得到小⊙o的一条半径,再根据大⊙o中弦相等则弦心距也相等,则可得到of=oe.证明:连结oe,过o作of⊥cd,重足为f.

  请同学们注意本题中证一条直线是圆的切线时,这种证明途径是由直线与圆的公共点来给定所决定的。

  练习

  p.111,1.已知:oc平分∠aob,d是oc上任意一点,⊙d与oa相切于点e.求证:ob与⊙d相切。分析:审题后发现欲证的ob与⊙d相切,属于ob与⊙d无公共点的情况。这时应从圆心d向⊙b作垂线,垂足为f,然后证垂线段df等于⊙b的一条半径,而题目中已给oa与⊙d切于点e,只要连结de.再根据角平分线的性质,问题便得到解决。证明:连结de,作df⊥ob,重足为f.p.111中2.已知如图7-61,△abc为等腰三角形,o是底边bc的中点,⊙o与腰ab相切于点d.求证:ac与⊙o相切。

  分析:欲证ac与⊙o相切,同第1题一样,同属于直线与圆的公共点未给定情况。辅助线的方法同第1题,证法类同。只不过要针对本题特点还要连结oa.从等腰三角形的”三线合一”的性质出发,证得oa平分∠bac,然后再根据角平分线的性质,使问题得到证明。证明:连结od、oa,作oe⊥ac,垂足为e.同学们想一想,在证明oe=od时,还可以怎样证?

  (答案)可通过“角、角、边”证rt△odb≌rt△oec.

  三、新课讲解

  为培养学生阅读教材的习惯让学生阅读109页到110页。从中总结出本课的主要内容:

  1.在证题中熟练应用切线的判定方法和切线的性质。

  2.在证明一条直线是圆的切线时,只能遇到两种情形之一,针对不同的情形,选择恰当的证明途径,务必使同学们真正掌握。

  (1)公共点已给定。做法是“连结”半径,让半径“垂直”于直线。

  (2)公共点未给定。做法是从圆心向直线“作垂线”,证“垂线段等于半径”。

  四、布置作业

  教材p.116中8、9.2.教材p.117

初中数学圆教案10

  一、教学任务分析

  1、教学目标定位

  根据《数学课程标准》和素质教育的要求,结合学生的认知规律及心理特征而确定,即:七年级的学生对身边有趣事物充满好奇心,对一些有规律的问题有探求的欲望,有很强的表现欲,同时又具备了一定的归纳、总结表达的能力。因此,确定如下教学目标:

  (1).知识技能目标

  让学生掌握多边形的内角和的公式并熟练应用。

  (2).过程和方法目标

  让学生经历知识的形成过程,认识数学特征,获得数学经验,进一步发展学生的说理意识和简单推理,合情推理能力。

  (3).情感目标

  激励学生的学习热情,调动他们的学习积极性,使他们有自信心,激发学生乐于合作交流意识和独立思考的习惯。

  2、教学重、难点定位

  教学重点是多边形的内角和的得出和应用。

  教学难点是探索和归纳多边形内角和的过程。

  二、教学内容分析

  1、教材的地位与作用

  本课选自人教版数学七年级下册第七章第三节《多边形的内角和》的第一课时。本节课作为第七章第三节,起着承上启下的作用。在内容上,从三角形的内角和到多边形的内角和,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。

  2、联系及应用

  本节课是以三角形的知识为基础,仿照三角形建立多边形的有关概念。因此

  多边形的边、内角、内角和等等都可以同三角形类比。通过这节课的学习,可以培养学生探索与归纳能力,体会把复杂化为简单,化未知为已知,从特殊到一般和转化等重要的思想方法。而多边形在工程技术和实用图案等方面有许多的实际应用,下一节平面镶嵌就要用到,让学生接触一些多边形的实例,可以加深对它的概念以及性质的理解。

  三、教学诊断分析

  学生对三角形的知识都已经掌握。让学生由三角形的内角和等于180°,是一个定值,猜想四边形的内角和也是一个定值,这是学生很容易理解的地方。由几个特殊的四边形的内角和出发,譬如长方形、正方形的内角和都等于360°,可知如果四边形的内角和是一个定值,这个定值是360°。要得到四边形的内角和等于360°这个结论最直接的方法就是用量角器来度量。让学生动手探索实践,在探索过程中发现问题"度量会有误差"。发现问题后接着引导学生联想对角线的作用,四边形的一条对角线,把它分成了两个三角形,应用三角形的内角和等于180°,就得到四边形的内角和等于360°。让学生从特殊四边形的内角和联想一般四边形的内角和,并在思想上引导,学习将新问题化归为已有结论的思想方法,这里学生都容易理解。课堂教学设计中,在探究五边形,六边形和七边形的内角和时,让学生动手实践,设置探究活动二,为了让学生拓宽思路,从不同的角度去思考这个问题,这个活动对学生的动手能力要求进一步提高了,学生对这个问题的理解稍微有些难度,但学生可根据自己本身的特点来加以补充和完善。在教学设计中,要求根据小组选择的方法探索多边形的内角和。首先,小组内各个成员对所选择的方法要了解,能够把掌握的知识运用到实践中;再者,小组内各个成员需要分工协作,才能够顺利的把任务完成;最后,学生还需要把自己的思维从感性认识提升到理性认识的高度,这样就培养了学生合情推理的意识。

  四、教法特点及预期效果分析

  本节课借鉴了美国教育家杜威的"在做中学"的.理论和叶圣陶先生所倡导的"解放学生的手,解放学生的大脑,解放学生的时间"的思想,我确定如下教法和学法:

  1、教学方法的设计

  我采用了探究式教学方法,整个探究学习的过程充满了师生之间,学生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

  2、活动的开展

  利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。

  3、现代教育技术的应用

  我利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率。探究活动在本次教学设计中占了非常大的比例,探究活动一设置目的让学生动手实践,并把新知识与学过的三角形的相关知识联系起来;探究活动二设置目的让学生拓宽思路,为放开书本的束缚打下基础;培养学生动手操作的能力和合情推理的意识。通过师生共同活动,训练学生的发散性思维,培养学生的创新精神;使学生懂得数学内容普遍存在相互联系,相互转化的特点。练习活动的设计,目的一检查学生的掌握知识的情况,并促进学生积极思考;目的二凸现小组合作的特点,并促进学生情感交流。

  以上是我对《多边形的内角和》的教学设计说明。

初中数学圆教案11

  知识技能目标

  1、理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质;

  2、利用反比例函数的图象解决有关问题。

  过程性目标

  1、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质;

  2、探索反比例函数的图象的性质,体会用数形结合思想解数学问题。

  教学过程

  一、创设情境

  上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线。那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质。

  二、探究归纳

  1、画出函数的图象。

  分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x≠0。

  解

  1、列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:

  2、描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(—6,—1)、(—3,—2)、(—2,—3)等。

  3、连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支。这两个分支合起来,就是反比例函数的图象。

  上述图象,通常称为双曲线(hyperbola)。

  提问这两条曲线会与x轴、y轴相交吗?为什么?

  学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤)。

  学生讨论、交流以下问题,并将讨论、交流的结果回答问题。

  1、这个函数的图象在哪两个象限?和函数的图象有什么不同?

  2、反比例函数(k≠0)的图象在哪两个象限内?由什么确定?

  3、联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?

  反比例函数有下列性质:

  (1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

  (2)当k

  注

  1、双曲线的两个分支与x轴和y轴没有交点;

  2、双曲线的两个分支关于原点成中心对称。

  以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?

  在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少。

  在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小。

  三、实践应用

  例1若反比例函数的图象在第二、四象限,求m的值。

  分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+1

  解由题意,得解得。

  例2已知反比例函数(k≠0),当x>0时,y随x的增大而增大,求一次函数y=kx—k的图象经过的象限。

  分析由于反比例函数(k≠0),当x>0时,y随x的增大而增大,因此k0,所以直线与y轴的交点在x轴的上方。解因为反比例函数(k≠0),当x>0时,y随x的增大而增大,所以k

  例3已知反比例函数的图象过点(1,—2)。

  (1)求这个函数的解析式,并画出图象;

  (2)若点a(—5,m)在图象上,则点a关于两坐标轴和原点的对称点是否还在图象上?

  分析(1)反比例函数的图象过点(1,—2),即当x=1时,y=—2。由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;

  (2)由点a在反比例函数的图象上,易求出m的值,再验证点a关于两坐标轴和原点的对称点是否在图象上。

  解(1)设:反比例函数的解析式为:(k≠0)。

  而反比例函数的图象过点(1,—2),即当x=1时,y=—2。

  所以,k=—2。

  即反比例函数的解析式为:。

  (2)点a(—5,m)在反比例函数图象上,所以,点a的坐标为。

  点a关于x轴的对称点不在这个图象上;

  点a关于y轴的对称点不在这个图象上;

  点a关于原点的对称点在这个图象上;

  例4已知函数为反比例函数。

  (1)求m的值;

  (2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?

  (3)当—3≤x≤时,求此函数的最大值和最小值。

  解(1)由反比例函数的定义可知:解得,m=—2。

  (2)因为—2

  (3)因为在第个象限内,y随x的增大而增大,所以当x=时,y最大值=;

  当x=—3时,y最小值=。

  所以当—3≤x≤时,此函数的最大值为8,最小值为。

  例5一个长方体的'体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米。

  (1)写出用高表示长的函数关系式;

  (2)写出自变量x的取值范围;

  (3)画出函数的图象。

  解(1)因为100=5xy,所以。

  (2)x>0。

  (3)图象如下:

  说明由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支。

  四、交流反思

  本节课学习了画反比例函数的图象和探讨了反比例函数的性质。

  1、反比例函数的图象是双曲线(hyperbola)。

  2、反比例函数有如下性质:

  (1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

  (2)当k

  五、检测反馈

  1、在同一直角坐标系中画出下列函数的图象:

  (1);(2)。

  2、已知y是x的反比例函数,且当x=3时,y=8,求:

  (1)y和x的函数关系式;

  (2)当时,y的值;

  (3)当x取何值时,?

  3、若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值。

  4、已知反比例函数经过点a(2,—m)和b(n,2n),求:

  (1)m和n的值;

  (2)若图象上有两点p1(x1,y1)和p2(x2,y2),且x1

初中数学圆教案12

  教材与学情:

  解直角三角形的应用是在学生熟练掌握了直角三角形的解法的基础上进行教学,它是把一些实际问题转化为解直角三角形的数学问题,对分析问题能力要求较高,这会使学生学习感到困难,在教学中应引起足够的重视。

  信息论原理:

  将直角三角形中边角关系作为已有信息,通过复习(输入),使学生更牢固地掌握(贮存);再通过例题讲解,达到信息处理;通过总结归纳,使信息优化;通过变式练习,使信息强化并能灵活运用;通过布置作业,使信息得到反馈。

  教学目标:

  ⒈认知目标:

  ⑴懂得常见名词(如仰角、俯角)的意义

  ⑵能正确理解题意,将实际问题转化为数学

  ⑶能利用已有知识,通过直接解三角形或列方程的方法解决一些实际问题。

  ⒉能力目标:培养学生分析问题和解决问题的能力,培养学生思维能力的灵活性。

  ⒊情感目标:使学生能理论联系实际,培养学生的对立统一的观点。

  教学重点、难点:

  重点:利用解直角三角形来解决一些实际问题

  难点:正确理解题意,将实际问题转化为数学问题。

  信息优化策略:

  ⑴在学生对实际问题的探究中,神经兴奋,思维活动始终处于积极状态

  ⑵在归纳、变换中激发学生思维的灵活性、敏捷性和创造性。

  ⑶重视学法指导,以加速教学效绩信息的.顺利体现。

  教学媒体:

  投影仪、教具(一个锐角三角形,可变换图2-图7)

  高潮设计:

  1、例1、例2图形基本相同,但解法不同;这是为什么?学生的思维处于积极探求状态中,从而激发学生学习的积极性和主动性

  2、将一个锐角三角形纸片通过旋转、翻折等变换,使学生对问题本质有了更深的认识

  教学过程:

  一、复习引入,输入并贮存信息:

  1.提问:如图,在rt△abc中,∠c=90°。

  ⑴三边a、b、c有什么关系?

  ⑵两锐角∠a、∠b有怎样的关系?

  ⑶边与角之间有怎样的关系?

  2.提问:解直角三角形应具备怎样的条件:

  注:直角三角形的边角关系及解直角三角形的条件由投影给出,便于学生贮存信息

  二、实例讲解,处理信息:

  例1.(投影)在水平线上一点c,测得同顶的仰角为30°,向山沿直线前进20为到d处,再测山顶a的仰角为60°,求山高ab。

  ⑴引导学生将实际问题转化为数学问题。

  ⑵分析:求ab可以解rt△abd和

  rt△abc,但两三角形中都不具备直接条件,但由于∠adb=2∠c,很容易发现ad=cd=20米,故可以解rt△abd,求得ab。

  ⑶解题过程,学生练习。

  ⑷思考:假如∠adb=45°,能否直接来解一个三角形呢?请看例2。

  例2.(投影)在水平线上一点c,测得山顶a的仰角为30°,向山沿直线前进20米到d处,再测山顶a的仰角为45°,求山高ab。

  分析:

  ⑴在rt△abc和rt△abd中,都没有两个已知元素,故不能直接解一个三角形来求出ab。

  ⑵考虑到ab是两直角三角形的直角边,而cd是两直角三角形的直角边,而cd均不是两个直角三角形的直角边,但cd=bc=bd,启以学生设ab=x,通过列方程来解,然后板书解题过程。

  解:设山高ab=x米

  在rt△adb中,∠b=90°∠adb=45°

  ∵bd=ab=x(米)

  在rt△abc中,tgc=ab/bc

  ∴bc=ab/tgc=√3(米)

  ∵cd=bc-bd

  ∴√3x-x=20解得x=(10√3+10)米

  答:山高ab是(10√3+10)米

  三、归纳总结,优化信息

  例2的图开完全一样,如图,均已知∠1、∠2及cd,例1中∠2=2∠1求ab,则需解rt△abd例2中∠2≠2∠1求ab,则利用cd=bc-bd,列方程来解。

  四、变式训练,强化信息

  (投影)练习1:如图,山上有铁塔cd为m米,从地上一点测得塔顶c的仰角为∝,塔底d的仰角为β,求山高bd。

  练习2:如图,海岸上有a、b两点相距120米,由a、b两点观测海上一保轮船c,得∠cab=60°∠cba=75°,求轮船c到海岸ab的距离。

  练习3:在塔pq的正西方向a点测得顶端p的

  仰角为30°,在塔的正南方向b点处,测得顶端p的仰角为45°且ab=60米,求塔高pq。

  教师待学生解题完毕后,进行讲评,并利用教具揭示各题实质:

  ⑴将基本图形4旋转90°,即得图5;将基本图形4中的rt△abd翻折180°,即可得图6;将基本图形4中rt△abd绕ab旋转90°,即可得图7的立体图形。

  ⑵引导学生归纳三个练习题的等量关系:

  练习1的等量关系是ab=ab;练习2的等量关系是ad+bd=ab;练习3的等量关系是aq2+bq2=ab2

  五、作业布置,反馈信息

  《几何》第三册p57第10题,p58第4题。

  板书设计:

  解直角三角形的应用

  例1已知:………例2已知:………小结:………

  求:………求:………

  解:………解:………

  练习1已知:………练习2已知:………练习3已知:………

  求:………求:………求:………

  解:………解:………解:………

初中数学圆教案13

  教学目标

  1.初步掌握用直接开平方法解一元二次方程,会用直接开平方法解形如的方程;

  2.初步掌握用配方法解一元二次方程,会用配方法解数字系数的一元二次方程;

  3.掌握一元二次方程的求根公式的推导,能够运用求根公式解一元二次方程;

  4.会用因式分解法解某些一元二次方程。

  5.通过对一元二次方程解法的教学,使学生进一步理解“降次”的数学方法,进一步获得对事物可以转化的认识。

  教学重点和难点

  重点:一元二次方程的四种解法。

  难点:选择恰当的方法解一元二次方程。

  教学建议:

  一、教材分析:

  1.知识结构:一元二次方程的解法

  2.重点、难点分析

  (1)熟练掌握开平方法解一元二次方程

  用开平方法解一元二次方程,一种是直接开平方法,另一种是配方法。

  如果一元二次方程的一边是未知数的平方或含有未知数的一次式的平方,另一边是一个非负数,或完全平方式,如方程,和方程就可以直接开平方法求解,在开平方时注意取正、负两个平方根。

  配方法解一元二次方程,就是利用完全平方公式,把一般形式的一元二次方程,转化为的`形式来求解。配方时要注意把二次项系数化为1和方程两边都加上一次项系数一半的平方这两个关键步骤。

  (2)熟记求根公式和公式中字母的意义在使用求根公式时要注意以下三点:

  1)把方程化为一般形式,并做到、之间没有公因数,且二次项系数为正整数,这样代入公式计算较为简便。

  2)把一元二次方程的各项系数、、代入公式时,注意它们的符号。

  3)当时,才能求出方程的两根。

  (3)抓住方程特点,选用因式分解法解一元二次方程

  如果一个一元二次方程的一边是零,另一边易于分解成两个一次因式时,就可以用因式分解法求解。这时只要使每个一次因式等于零,分别解两个一元一次方程,得到两个根就是一元二次方程的解。

  我们共学习了四种解一元二次方程的方法:直接开平方法;配方法;公式法和因式分解法。解方程时,要认真观察方程的特征,选用适当的方法求解。

  二、教法建议

  1.教学方法建议采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,学生获取知识必须通过学生自己一系列思维活动完成,启发诱导学生深入思考问题,有利于培养学生思维灵活、严谨、深刻等良好思维品质.

  2.注意培养应用意识.教学中应不失时机地使学生认识到数学源于实践并反作用于实践.

初中数学圆教案14

  一、教学目标

  1、了解二次根式的意义;

  2、掌握用简单的一元一次不等式解决二次根式中字母的取值问题;

  3、掌握二次根式的性质和,并能灵活应用;

  4、通过二次根式的计算培养学生的逻辑思维能力;

  5、通过二次根式性质和的介绍渗透对称性、规律性的数学美。

  二、教学重点和难点

  重点:

  (1)二次根的`意义;

  (2)二次根式中字母的取值范围。

  难点:确定二次根式中字母的取值范围。

  三、教学方法

  启发式、讲练结合。

  四、教学过程

  (一)复习提问

  1、什么叫平方根、算术平方根?

  2、说出下列各式的意义,并计算

  (二)引入新课

  新课:二次根式

  定义:式子叫做二次根式。

  对于请同学们讨论论应注意的问题,引导学生总结:

  (1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?呢?

  若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。

  (2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次

  根式指的是某种式子的“外在形态”。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答。

  例1当a为实数时,下列各式中哪些是二次根式?

  例2 x是怎样的实数时,式子在实数范围有意义?

  解:略。

  说明:这个问题实质上是在x是什么数时,x—3是非负数,式子有意义。

  例3当字母取何值时,下列各式为二次根式:

  分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。

  解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式。

  (2)—3x≥0,x≤0,即x≤0时,是二次根式。

  (3),且x≠0,∴x>0,当x>0时,是二次根式。

  (4),即,故x—2≥0且x—2≠0,∴x>2。当x>2时,是二次根式。

  例4下列各式是二次根式,求式子中的字母所满足的条件:

  分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义。即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。

  解:(1)由2a+3≥0,得。

  (2)由,得3a—1>0,解得。

  (3)由于x取任何实数时都有|x|≥0,因此|x|+0.1>0,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。

  (4)由—b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0。

【初中数学圆教案】相关文章:

初中数学 直线和圆的位置关系 教案12-30

圆数学教案05-19

关于圆的周长的数学教案10-10

初中数学圆与弧的公式精讲10-03

初中数学关于圆的知识点10-05

初中数学圆的知识点大全10-04

有趣的圆小班数学教案02-19

关于圆的认识的小学数学教案10-10

圆、扇形、弓形的面积数学教案10-16

初中数学常考的知识点:圆的的性质10-04