初一数学教案
作为一名默默奉献的教育工作者,时常需要用到教案,编写教案助于积累教学经验,不断提高教学质量。那么你有了解过教案吗?以下是小编为大家整理的初一数学教案,欢迎大家分享。
初一数学教案1
教学内容分析
教育不只是一种简单的“告诉”。学生拥有自己的独立思考水平和认知系统。当他们遇到一个新的待解决的问题情境时,他们会自觉而主动地从自己已有的知识架构和认知经验中摸索、收集、调动处理问题的方法和策略。三角形边的关系这一内容是新教材新增加的内容,并安排在第二学段。通过这一内容的学习,使学生在已经建立三角形概念的基础上,进一步深化理解三角形的组成特征,加深学生对三角形的认识,同时,也为以后学习三角形与四边形及其他多边形的联系与区别打下基础。
根据新课标的精神,要改变学生学习的方式,让学生经历“数学化”、“做数学”等过程,并注重与生活实际紧密联系,学有价值的数学。根据这一教学内容在教材中所处的地位与作用,以及新课标的要求,我认为设计这节课的理念是:活动参与、自主建构,联系生活、应用数学。
教学目标
知识目标
知道和理解“三角形任意两边的和大于第三边”,能用它解释一些生活现象,解决一些简单的生活问题。
能力目标
通过动手操作、小组验证,体验探索三角形边的关系的过程,培养猜测意识和自主探索、合作交流的能力。
情感目标
经历探究、发现、验证“三角形任意两边的和大于第三边”的过程,体验合作学习和数学学习的快乐。
教学重点
三角形三边关系的实验与探究
教学难点
三角形三边关系的探究过程。
教学关键
使学生理解三角形边的关系
教学准备
课件、三根小棒、三边关系试验报告单每组四根小棒
教学方法
自主探究小组讨论
课程类型
学科课程
教学过程
活动的组织与实施(含教师活动和学生活动)
设计意图
时间分配
一、复习旧知,导入新课
我手上拿的是什么?(三角板)它是什么图形呢?(三角形)谁来说说什么是三角形?怎样理解这个“围”字(端点首尾相连)。同学们还知道三角形的哪些知识?关于三角形的.知识还有很多,我们继续往下看。
复习旧的知识,使新旧知识之间有很好的连接
2分钟
二、动手操作,发现问题
师:老师这里有三根小棒,分别长3、5、10厘米,这3根小棒能围成一个什么图形?
生:三角形。
师:谁愿意上来围一围?围的时候要注意小棒首尾相连。
师:这三根小棒为什么围不成三角形呢?三角形的三条边之间到底有什么关系呢?今天,我们就一起来研究三角形的三边关系(板书课题)
三、猜想验证,发现规律
师:我们发现这三根小棒不能围成三角形,怎样做才能围成三角形呢?
生:换一根小棒
师:怎样换?同学们说的都是你们的猜想(课件演示猜想1)
1、学法指导师:你们的这些猜想是否正确,三角形的三条边到底有什么关系?我们可以通过做实验来验证一下,现在老师给同学们准备了一些材料:3厘米、5厘米、8厘米、10厘米小棒各一根一起试着围一围三角形。同学们亲自动手摆一摆,拼一拼,看看有什么结果。先看要求(大屏幕)操作要求:(1)、2人一组合作完成四种拼法(2)、围三角形时要注意首尾相连。(3)、完成后,填写好活动记录表准备交流
2、动手操作,寻找规律(师巡视,并指导)
3、交流汇报,探究规律。
师:哪个小组愿意来汇报。小组上台展示,
3厘米、8厘米、10厘米能
3厘米、5厘米、10厘米不能3厘米、5厘米、8厘米不能5厘米、8厘米、10厘米能师:其它组有不同意见吗?
师:仔细观察四种结果,有的围不成,而有的却能围成。这是为什么呢?先看不能围成三角形的每组小棒的长度之间有什么关系?说说你能发现些什么?同桌讨论一下。能围成三角形的这几组小棒长度之间又有什么联系?
三根小棒要围成三角形,必须满足什么条件?
通过刚才的实验和分析,你发现三角形三条边长度之间有什么关系吗?先看不能围成三角形的这组情况,谁愿意说说3、5、10这三根小棒为什么不能围成三角形?
生:
师:其他同学赞同吗?谁再来说一说。
师:我明白了,3厘米的边是不能和5厘米、10厘米的边围成三角形的,因为这两条边之和小于第三条边。(板书3+4〈 8)你很会观察。
(课件演示)师:再说3、5、8这三根,同学们有些争议,到底它们能不能围成三角形呢?不能,为什么?有谁愿意谈谈?
生:3+5=8重合了不能
师:是这样吗?(课件演示)请看大屏幕。
师:真的是这样,通过演示现在明白这个同学的意思了吗?谁愿意再来说一说。
师:通过以上的动手操作和探究分析,我们发现了当两边之和小于、等于第三条边时,这3条边是围不成三角形的。
师:那么怎样才能围成三角形呢?
生:两条边加起来要大于第三边就行了。
师(板书):两边之和大于第三边
师:我们来看看能围成三角形的这两组是不是这样的呢,3+8>10、8+5>10看起来是这样的。
3)师:回头看不能围成的情况,也有3+8>4、4+8>3、3+8>5、5+8>3(两边之和大于第三边)的情况,怎么就不能围成三角形呢?
生:有一种不符合就不行了
师:看来只是其中的两条边之和大于第3条边是不完整的
生1:加“任何”、“任意”
生2:其他两边之和都大于第三条边。
生3:无论哪两条边之和都要大于第三边。
4、归纳小结
师:看来只是其中的两条边之和大于第3条边是不完整的,
师:这句话概括说就是:任意两边之和大于第三边(板书:任意)师:是这样吗?再挑选一组能围成三角形的三条边,来验证:生:3+4>5、3+5>4、4+5>3,师:这个例子证明了你的想法是对的,这两个三角形的三边关系都是:任意两边之和大于第三边(齐读)
四、运用结论,加深理解
师:我们已经知道三角形的三边关系,下面让我们来判断几道题目
1、快速判断。
3cm、5cm、() 4cm
7cm、4cm、() 2cm
6cm、3cm、() 1cm
2cm、3cm、() 3cm
师:为什么围不成?你是怎么判断的?
2、出示P82例3图
这是小明上学的路线图,同学们仔细看一看,他可以怎样走?
3、这几条路中,哪条最近?这是为什么呢?
老师在生活中还看到了这么一种现象:(课件演示)公园里有一条这样的路,路的两旁是草坪,为什么很多人都往草坪中间走?师:今天你有什么收获?
其实数学就在我们身边,只要你平时多观察、多动脑,你一定能成为数学的好朋友。
开发学生的动手能力和观察能力,在实践中发现问题并尝试找出问题的原因反复试验,加深同学的理解,猜想验证,发现其内在规律增强小组合作意识以及动手操作能力锻炼同学发言及表达能力
通过小组讨论,发现问题,尝试找出原因,激发学生自主学习的精神在教学过程中不断引导,自主发现问题,加深对知识的理解和巩固运用练习,巩固学习的知识,加深印象
3分钟5分钟7分钟3分钟5分钟10分钟5分钟
板书设计
三角形边的关系两边之和大于第三边
教学反思
本节课巩固应用部分的三个环节,是从学生的学习认知规律出发,遵循从易到难的原则,分巩固性练习、应用性练习、拓展性练习三个层次。并与学生身边的生活例子相结合,既能体现数学教学生活化的新理念,又能有效地激发学生的学习兴趣,拓展学生的思维,提高学生的数学学习能力。
以上教学设计,以学生的学习心理为基础,通过简单的动手操作,创设有效的“数学问题情境”,激发学生强烈的探究欲望。通过引导学生大胆的猜想,积极的验证和合理的归纳,使学生学到新知识的同时,经历数学知识的形成过程,这样的教学将会有效地激活了学生的数学思维,使学生在知识、能力,以及情感态度等方面都将得到较好的发展。又通过摆图形,寻找数据间的关系;又通过数据的整理和分析,确定图形的存在性和图形具有的性质,使数形紧密结合,渗透了数形结合的思想方法;同时对不同类型三角形都具有的共性归纳总结,渗透了数学的归纳思想。教学中始终以这一核心的思想为教学灵魂,时时渗透,处处体现。
初一数学教案2
一、教学目标
1、通过七巧板的制作,拼摆等活动,进一步丰富对平行,垂直及角等有关内容的认识,积累数学活动经验。
2、能用适当的图形和语言表示自己的思考结果。
二、教学重点和难点
本堂内容的重点是七巧板的制作和拼摆,难点是拼图所要表现的几何图形,对已学过的平行,垂直及角等有关内容的有机联系和语言表达。
三、教学手段
引导活动讨论
引导:意在教师讲解七巧板的历史,七巧板制作的方法。
活动:人人参与制作七巧板,拼摆七巧板的图案。
讨论:对自己所拼摆的图形与同伴交流,与全班同学交流(利用多媒体工具)与老师进行交流。
四、教学方法
启发式教学
五、教学过程
1创设情景,引入新课
先用多媒体显示各种已拼摆好的动物,交通工具,植物等等然后介绍它是由怎样的一副拼板拼摆而成的(不一定要七巧板)。紧接着就介绍七巧板的历史,制作方法,让学生制作一副七巧板,并涂上不同的颜色。
2合作交流,探索新知
利用所做的七巧板拼出两个不同的图案,并与同伴交流,与全班同学交流,与老师交流。
(1)你的拼图用了什么形状的板?你想表现什么?
(2)在你的拼出的图案中,指出三组互相平行或垂直的线段,并将它们间的关系表示出来。
(3)在你拼出的图案中,找出一个锐角、一个直角、一个钝角,并将它们表示出来,它们分别是多少度。
通过学生的展示,教师作适时的'评价,树立榜样,培养学生之间的竞争意识。
3范例教学
介绍老师制作的3副游戏板,并用多媒体显示十几种的拼摆图案,通过生动有趣的图案,激发学生的创造欲望,提出你还有材料吗?有信心凭自己的智慧制作一副游戏板吗?意在充分发挥学生的创造能力、想象能力、合作交流能力(可由附近的同学四人小组制作完成)。
4反馈练习
由四人小组制作的游戏板,拼摆二个不同图案,利用多媒体,展示给全体同学,用语言表示拼图所表现的内容,与所学的知识的联系,呈现平行,垂直及角的有关知识。
5归纳小结
通过制作七巧板及游戏板进一步学会了画平行线段、垂线段、找线段中点的方法,通过拼摆丰富了对平行、垂直及角等有关内容的认识,积累数学活动的经验,提高了空间观念和观察、分析、概括表达的能力。
六、练习设计
利用20cm20cm的硬纸板做一副游戏板,利用它拼出5个自己喜欢的图案,并把它画下来,布置教室的环境。
七、板书设计
4.7有趣的七巧板
(一)知识回顾(三)例题解析(五)课堂小结
(二)观察发现(四)课堂练习练习设计
初一数学教案3
教学建议
一、重点、难点分析
本节教学的重点是掌握三元一次方程组的解法,教学难点是解法的灵活运用.能够熟练的解三元一次方程组是进一步学习一次方程组的应用,以及一次不等式组的解法的基础.
1.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,这样的方程组就是三元一次方程组.
2.三元一次方程组的解法仍是用代入法或加减法消元,即通过消元将三元一次方程组转化为二元一次方程组,再转化为一元一次方程.
3.如何消元,首先要认真观察方程组中各方程系数的特点,然后选择最好的解法.
4.有些特殊方程组,可用特殊的消元方法,有时一下子可消去两个未知数,直接求出一个未知数值来.
5.解一次方程组的消元“转化”基本思想,可以推广到“四元”、“五元”等多元方程组,这是今后要学习的内容.
二、知识结构
三、教法建议
1.解三元一次方程组时,由于方程较多,学生容易出错.因此,应提醒学生注意,在消去一个未知数得出比原方程组少一个未知数的'二元一次方程组的过程中,原方程组的每一个方程一般都至少要用到一次.
2.消元时,先要考虑好消去哪一个未知数.开始练习时,可以先把要消去的未知数写出来(如教科书在分析中所写的那样),然后再进行消元.
在例2中,如果先确定消去,那么这三个方程两两分组的方法有3种;①与②,①与③,②与③.我们可以从中任选2种消去.这里特别要注意选定2种后,必须消去同一个未知数.如果违背了这一点,所得的两个新方程虽然各含两个未知数,但由它们组成的方程组仍然含有三个未知数,这在实际上没有消元.
教学设计示例
一、素质教育目标
(一)知识教学点
1.知道什么是三元一次方程.
2.会解某个方程只有两元的简单的三元一次方程组.
3.掌握解三元一次方程组过程中化三元为二元或一元的思路.
(二)能力训练点
1.培养学生分析能力,能根据题目的特点,确定消元方法、消元对象.
2.培养学生的计算能力、训练解题技巧.
(三)德育渗透点
渗透“消元”的思想,设法把未知数转化为已知.
(四)美育渗透点
通过本节课的学习,渗透方程恒等变形的数学美,以及方程组解的奇异美.
二、学法引导
1.教学方法:观察法、讨论法、练习法.
2.学生学法:三元一次方程组比二元一次方程组要复杂些,有些题的解法技巧性较强,因此在解题前必须认真观察方程组中各个方程的系数特点,选择好先消去的“元”,这是决定解题过程繁简的关键.一般来说应先消去系数最简单的未知数.
三、重点?难点?疑点及解决办法
(一)重点
使学生会解简单的三元一次方程组,经过本课教学进一步熟悉解方程组时“消元”的基本思想和灵活运用代入法、加减法等重要方法.
(二)难点
针对方程组的特点,选择最好的解法.
(三)疑点
如何进行消元.
(四)解决办法
加强理解二元及三元一次方程组的解题思想是“消元”,故在求解中为便于计算应选择系数较简单的未知数将它消去.
四、课时安排
一课时.
五、教具学具准备
投影仪、自制胶片.
六、师生互动活动设计
1.教师先复习解二元一次方程组的解题思想及办法,让学生充分理解方程组的消元思想及方法.
2.教师由引例引出三元一次方程组,由学生思考、讨论后解决如何消三元变二元,教师讲解、小结.
3.由学生尝试,解决例题.
4.学生练习,教师小结、讲评.
七、教学步骤
(一)明确目标
本节课将学习如何求三元一次方程组的解.
(二)整体感知
通过复习二元一次方程组的解题思想,从而类推出三元一次方程组的解题思想及解题方法,让学生牢牢抓住利用消元的思想化三元为二元,再化二元为一元的办法来求解.
(三)教学过程
1.复习导入、探索新知
(1)解二元一次方程组的基本方法有哪几种?
(2)解二元一次方程组的基本思想是什么?
甲、乙、丙三数的和是26,甲数比乙数大1,甲数的两倍与丙数的和比乙数大18,求这三个数.
题目中有几个未知数?含有几个相等关系?你能根据题意列出几个方程?
学生活动:回答问题、设未知数、列方程.
这个问题必须三个条件都满足,因此,我们把三个方程合在一起,写成下面的形式:
这个方程组有三个未知数,每个方程的未知数的次数都是1,并且一共有三个方程,像这样的方程组,就是我们要学的三元一次方程组.
怎样解这个三元一次方程组呢?你能不能设法消云一个或两个未知数,把它化成二元一次方程组或一元一次方程?
学生活动:思考、讨论后说出消元方案.
教师对学生的回答给予肯定或否定,纠正后说出消元方案:依照代入法,由较简单的方程②,可得④,进一步将④分别代入①和③中,就可消去,得到只含、的'二元一次方程组.
解:由②,得④
把④代入①,得⑤
把④代入③,得⑥
⑤与⑥组成方程组
解这个方程组得
把代入④,得
∴
∴
注意:a.得二元一次方程组后,解二元一次方程的过程在练习本上完成.
b.得,后,求,要代入前面最简单的方程④.
c.检验.
这道题也可以用加减法解,②中不含,那么可以考虑将①与③结合消去,与②组成二元一次方程组.
学生活动:在练习本上用加减法解方程组.
【教法说明】通过一题多解,不仅能开阔学生的思维,培养学生的兴趣,而且,可以巩固解方程组时通过“消元”把未知转化为已知的基本思想.
2.学生尝试解决例题
例1?解方程组
学生活动:独立分析、思考,尝试解题,有的学生可能用代入法解,有的学生可能用加减法解,选一个用加减法解的学生板演,然后,让用代入法的学生比较哪种方法简单.
解:②×3+③,得?④
①与④组成方程组
解这个方程组,得
把,代入②,得
∴
∴
归纳:这个方程组的特点是方程①不含,而②、③中的系数绝对值成整数倍关系,显然用加减法从②、③中消去后,再与①组成只含、的二元一次方程组的解法最为合理.而用代入法由①得到的式子含有分母,代入②、③较繁.
【教法说明】有了前例的基础,让学生独立尝试解题,可以培养他们分析问题、解决问题的能力;在解题后归纳题目的特点为,点明消元方法和消元对象,更有助于学生探索方法、掌握技巧.
3.尝试反馈,巩固知识
初一数学教案4
教学目标
1、知识与技能
会用代数式表示简单的问题中的数量关系,能用合并同类项,去括号等法则验证所探索的规律。
2、过程与方法
经历探索数量关系,运用符号表示规律,通过运算验证规律的过程,培养学生观察、分析、推理的能力。
3、情感态度与价值观
培养学生不怕困难、勇于探索的学习态度,合作交流的意识和能力,感受符号运算的作用。
老师:请同学们观察并找出规律
学生独立完成
老师:请同学们拿出你们的'学具按要求亲自动手摆一摆,算一算。
学生:老师,摆几个三角形呀?
老师:先摆一个,再摆两个、三个、四个。关注学生与他人进行合作与交流的意识。
鼓励每个同学尽可能独立思考,并与同伴进行交流,教师关注学生在探索数量关系活动中的参与态度、思维水平和抽象能力:分析:
三角形个数12345
火柴棍根数357911
教师演示,学生观察
老师:每增加一个三角形,火柴棍根数增加多少?
学生:2根
老师:火柴棍根数是一组怎样的数?
生:连续奇数。
师:奇数可用整式2n+1(或2n-1)表示。
师:从多角度思考,也可以分析表格中火柴棍根数与三角形个数之间的关系生:怎样找?
师:如3=2×1+1,5=2×2+1
生:哦,明白了
师:从而得排n个三角形需要火柴棍根数为什么?
生:2n+1
师:请同学们亲自拼一拼,想一想,在探索规律的过程中从多个角度进行考虑,并与同伴进行交流。
生:好
关注学生在活动中的参与态度,能否积极地从事数量关系的探索过程,不要以教师的演示代替学生的实际活动。
提出问题后,学生分四人小组进行讨论,并派代表在班组交流。
师:当n≤100时,n本笔记本所需钱数为多少?
生:2.3n元,师:当n>100时,n本笔记本需要多少元?
生:2.2n元。
生:观察这两个整式,当n=100时,需花钱230元,而当n=101时,只需花钱2.2×101=222.2(元),出现多买比少买反而付钱少的情况,所以如果需要100本笔记本,应该购买101本能省钱。
师:请同学们继续探索,至少需要多少本时,可以按上面方式购买。
组织学生按四人小组,进行探究,鼓励每个学生尽可能独立思考,并与同伴进行交流。
师:请同学们再找几个方框试试,看自己的规律是否还成立
生:好
教学时,也可以先开放,让学生发现月历中数与数之间的关系,再讨论浅色方框中数字和与该方框正中间的关系课本。让学生独立完成之后,再小组讨论,让学生自己整理这节课的内容。
初一数学教案5
教学目标
(一)教学知识点
1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.
(二)能力训练要求
1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.
2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.
3.通过学生共同观察和讨论,培养大家的合作交流意识.
(三)情感与价值观要求
1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.
2.具有初步的创新精神和实践能力.
教学重点
1.体会方程与函数之间的联系.
2.理解何时方程有两个不等的实根,两个相等的实数和没有实根.
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.
教学难点
1.探索方程与函数之间的联系的过程.
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.
教学方法
讨论探索法.
教具准备
投影片二张
第一张:(记作§2.8.1A)
第二张:(记作§2.8.1B)
教学过程
Ⅰ.创设问题情境,引入新课
[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的`函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解.
现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题。
通过学生的讨论,使学生更清楚以下事实:
(1)分解因式与整式的乘法是一种互逆关系;
(2)分解因式的结果要以积的形式表示;
(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式的次数;
(4)必须分解到每个多项式不能再分解为止。
活动5:应用新知
例题学习:
P166例1、例2(略)
在教师的引导下,学生应用提公因式法共同完成例题。
让学生进一步理解提公因式法进行因式分解。
活动6:课堂练习
1.P167练习;
2.看谁连得准
x2-y2 (x+1)2
9-25 x 2 y(x -y)
x 2+2x+1 (3-5 x)(3+5 x)
xy-y2 (x+y)(x-y)
3.下列哪些变形是因式分解,为什么?
(1)(a+3)(a -3)= a 2-9
(2)a 2-4=( a +2)( a -2)
(3)a 2-b2+1=( a +b)( a -b)+1
(4)2πR+2πr=2π(R+r)
学生自主完成练习。
通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。
活动7:课堂小结
从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?
学生发言。
通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解。
活动8:课后作业
课本P170习题的第1、4大题。
学生自主完成
通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。
板书设计(需要一直留在黑板上主板书)
15.4.1提公因式法例题
1.因式分解的定义
2.提公因式法
初一数学教案6
教学目标
1、知识与技能
能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”、
2、过程与方法
经历探索一次函数的应用问题,发展抽象思维、
3、情感、态度与价值观
培养变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值、
重、难点与关键
1、重点:一次函数的应用、
2、难点:一次函数的应用、
3、关键:从数形结合分析思路入手,提升应用思维、
教学方法
采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的`应用、
教学过程
一、范例点击,应用所学
【例5】小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象、
y=
【例6】A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡、从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运总运费最少?
解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨、B城运往C、D乡的肥料量分别为(240-x)吨与(60+x)吨、y与x的关系式为:y=20x+25(200-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤200)
由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元、
拓展:若A城有肥料300吨,B城有肥料200吨,其他条件不变,又应怎样调运?
二、随堂练习,巩固深化
课本P119练习、
三、课堂总结,发展潜能
由学生自我评价本节课的表现、
四、布置作业,专题突破
课本P120习题14、2第9,10,11题。
初一数学教案7
学生活动:独立完成练习后,同桌、前后桌之间按不同解法的同学交换,看哪种方法最简单.
4.变式训练要,培养能力
补例:解方程组
学生活动:独立完成.
【教法说明】此方程组中方程①、③中、的系数完全相同,用③-①可直接得到,再把代入②可求,代入①可求.这道题直接化三元为一元,能使学生体会到解法技巧的重要性,觉得数学问题真是奥妙无穷!
(四)总结、扩展
1.解三元一次方程组的基本思想是什么?方法有哪些?
2.解题前要认真观察各方程的`系数特点,选择最好的解法,当方程组中某个方程只含二元时,一般的,这个方程中缺哪个元,就利用另两个方程用加减法消哪个元;如果这个二元方程系数较简单,也可以用代入法求解.
3.注意检验.
【教法说明】这样总结,既突出了本课重点,又突出了本节内容中例题、习题的特点?某个方程只含两元,使学生在以后解题时有很强的针对性.
八、布置作业
(一)必做题:P31 A组1.
(二)选做题:解方程组
(三)思考题:课本第32页“想一想”.
【教法说明】作业
(一)是为了巩固本节所学知识;作业
(二)有很强的技巧性,可培养学生兴趣;作业
(三)培养学生分析问题、解决问题的能力.
初一数学教案8
教学目标
1,掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;
2,了解分类的标准与分类结果的相关性,初步了解“集合”的含义;
3,体验分类是数学上的常用处理问题的方法。
教学难点正确理解分类的标准和按照一定的标准进行分类
知识重点正确理解有理数的概念
教学过程(师生活动)设计理念
探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).
问题1:观察黑板上的9个数,并给它们进行分类.
学生思考讨论和交流分类的情况.
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.
例如,
对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数(由于小数可化为分数,以后把小数和分数都称为分数)
通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数。
按照书本的说法,得出“整数”“分数”和“有理数”的概念。
看书了解有理数名称的由来.
“统称”是指“合起来总的名称”的意思.
试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与
学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会
练一练1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.
2,教科书第10页练习.
此练习中出现了集合的概念,可向学生作如下的说明.
把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.
思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
也可以教师说出一些数,让学生进行判断。
集合的概念不必深入展开。
创新探究问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。
有理数这个分类可视学生的程度确定是否有必要教学。
应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等
小结与作业
课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
本课作业1,必做题:教科书第18页习题1.2第1题
2,教师自行准备
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概
念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进
行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分
类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。
2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的.养成有很好的作用。
3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。
课题:1.2.2数轴
教学目标1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;
2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;
3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。
教学难点数轴的概念和用数轴上的点表示有理数
知识重点
教学过程(师生活动)设计理念
设置情境
引入课题教师通过实例、课件演示得到温度计读数.
问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?
(多媒体出示3幅图,三个温度分别为零上、零度和零下)
问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.
(小组讨论,交流合作,动手操作)创设问题情境,激发学生的学习热情,发现生活中的数学
点表示数的感性认识。
点表示数的理性认识。
合作交流
探究新知教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?
让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?
从而得出数轴的三要素:原点、正方向、单位长度体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。
从游戏中学数学做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第3个同学为原点,游戏还能进行吗?学生游戏体验,对数轴概念的理解
寻找规律
归纳结论问题3:
1,你能举出一些在现实生活中用直线表示数的实际例子吗?
2,如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?
3,哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?
4,每个数到原点的距离是多少?由此你会发现了什么规律?
(小组讨论,交流归纳)
归纳出一般结论,教科书第12的归纳。这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。
巩固练习
教科书第12页练习
小结与作业
课堂小结请学生总结:
1,数轴的三个要素;
2,数轴的作以及数与点的转化方法。
本课作业1,必做题:教科书第18页习题1.2第2题
2,选做题:教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。
2,教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。
3,注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。
初一数学教案9
学习目标:
1、学会判断文字表述的表达是否正确,能判断一个事件属于什么事件;
2、可以判断一个游戏是否公平。
学习重点:
1、对不可能事件,必然事件和随机事件的概念的应用;
2、判断游戏公平与否。
学习难点:
1、对事件加以判断,并说明理由
2、对游戏策略和规律的分析以及游戏结果的预见性
学法指导:自主学习、小组讨论
学习过程:
1、下列说法正确吗?请说明理由。
(1)可能性很大的事情是必然发生的;
(2)可能性很小的事情是不可能发生的.;
(3)掷一个普通的正方体骰子,结果恰好是“3”是不可能发生的;
(4)小明的幸运数是“2”,所以他在掷正方体骰子时掷出“2”的机会比他掷出其他数字的机会大;
(5)爸爸买彩票又没中奖,我劝他要坚持,因为他从未中过奖,所以他现在中奖的机会比以前大了。
2、现有0、1、2、…、9十个数,在下列事件中,请说出哪些是确定事件,哪些是不确定事件?在确定事件中,哪些是必然事件,哪些是不可能事件?说说你的理由。
(1)、随机地从这十个数中选取两个数,它们的和为17;
(2)、随机地从这十个数中选取两个数,它们的和为123;
(2)、随机地从这十个数中选取两个数,它们的和为正整数;
(4)、随机地从这十个数中选取两个数,它们的差为-5。
3、对于第二题,你还能说出其他的可能事件、必然事件和不可能事件吗?
4、如果小明邀请你玩一个抛掷两枚硬币的游戏,游戏规则这样:
抛出两个正面——你赢1分;
抛出其他结果——小明赢1分;
谁先到10分,谁就得胜。
你会和小明玩这个游戏吗?这个游戏规则对你和小明公平吗?说说理由。如果你认为不公平,那么怎么修改游戏规则才对双方公平呢?
5、如果把“抢30”游戏改成“抢50”游戏,那么它是偏向于谁的游戏呢?说说你的理由。
作业:在一个不透明的口袋中装着大小、外形等一模一样的5个红球、3个蓝球和2个白球,它们已经在口袋中被搅匀了,请你判断下面哪些是不可能事件,哪些是必然事件,哪些是随机事件,并说明理由。
(1)从口袋中任意取出1个球,是一个白球;
(2)从口袋中一次任意取出5个球,全是蓝球;
(3)从口袋中一次任意取出5个球,只有蓝球和白球,没有红球;
(4)从口袋中一次任意取出6个球,恰好红、蓝、白三种颜色都齐了;
从口袋中一次任意取出9个球,恰好红、
初一数学教案10
教学目标知识与技能
从实际生活中感受有序数对的意义,并会确定平面内物体的位置
过程与方法通过有序数对确定位置,让学生感受二维空间观,发展符号感及抽象思维能力,让学生体会具体-抽象-具体的数学学习过程。
情感态度
与价值观培养学生的合作交流意识和探索精神,创造性思维意识。体验数学来源于生活及应用于生活的意识,更好的激发学习兴趣
重点有序数对的概念及平面内确定点的方法
难点对有序数对中的有序的理解,利用有序数对表示平面内的点
教学方法以通俗、活泼的素材引入本节课内容;本节采用情景建构教学法
一教学流程
(一)创设情境、导入新课
[引例1]小明买了一张8排6号的电影票,怎样才能既快又准地找到座位呢?
[引例2]规定竖为列,横为排,如果我的朋友在第3列,你能知道他(她)是谁吗?
如果说我的朋友在第3列,第2排,那么你知道他(她)是谁吗?
归纳8排6座、第3列,第2排共同点:用两个数表示位置。
约定:影院座位,排数在前,座数在后;教室座位列数在前,排数在后。则上述位置可简记为(8,6),(3,2)。
介绍:像(8,6)、(3,2)这种用括号括起来的一对数我们把它叫做数对。
追问:12排10座怎么表示?教室中(6,3)表示什么?(3,6)呢?它们意义相同吗?
可以发现,有顺序的两个数a与b组成的数对,如果约定了前面的数表示列数,后面的数表示排数,那么a与b组成的'数对就表示一个确定的位置。
引入课题有序数对
(二)合作交流、探究学习
由上述问题直接引出概念
有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记作(a,b)。
请思考:我们为什么要学习有序数对,有序数对都有哪些用途?
[探究1]请学生结合实际的教室座位若位置记法为(列数,排数)
(1)请问(5,4)和(4,5)表示的是哪个同学的座位?
(2)游戏:教师说出一组数对相应的学生立即站起来。
(3)思考:(3,4)和(4,3)指的是不是同一位置?
[讨论]利用有序数对,能够准确地表示一个位置,生活中利用有序数对表示位置的情况很常见,如人们常用经纬度来表示地球上的地点等。(展示课件)
(三)应用迁移、巩固提高
小明是朝阳实验学校刚入学的初一新生,他为了尽快熟悉学校,请高年级同学为他画了学校的平面示意图。如果用(2,4)表示图上校门的位置,那么花坛图书馆、体育馆、教学楼的位置分别可以表示成什么?(课件展示地图)
解:花坛(4,6),图书馆(5,0),体育馆(9,6),教学楼(10,3)
(四)回顾反思、拓展升华
知识点:有序数对
有顺序的两个数a与b组成的数对叫做有序数对,记作(a,b)。
注意点:(a,b)与(b,a)表示的是两个不同的位置。
主要方法:利用有序数对可以确定平面内点的位置,如根据数对画图形。反之,也可点的位置转化为有序数对,如经纬网的使用。有序数对与点的位置实现了简单的数形结合。
(五)[拓展应用]
小王初到某个公司,你有什么办法让他比较容易地找到图上的几处场所。
(六)布置作业
自由设计二选一
1、在方格纸上设计一个用有序数对描述的图形。
2、设计一个游戏,如解密游戏、迷宫游戏等。
教学反思
七年级学生的好奇心较重,学习主动性不够,主要是靠自己的兴趣而学习。因此,我从学生的特点出发,明确了以学生为中心,利用适合学生年龄特点的方式来引导教学的各个环节;本节课采用多媒体辅助教学,一方面能生动清楚的反映图形,增加课堂的容量,同时有利于突出重点,增强教学条理性,形象性,更好的提高课堂效率。
初一数学教案11
初一上册数学教案,欢迎各位老师和学生参考!
学习目标:1、理解有理数的绝对值和相反数的意义。
2、会求已知数的相反数和绝对值。
3、会用绝对值比较两个负数的大小。
4、经历将实际问题数学化的过程,感受数学与生活的联系。
学习重点:1.会用绝对值比较两个负数的大小。
2.会求已知数的相反数和绝对值。
学习难点:理解有理数的绝对值和相反数的意义。
学习过程:
一、创设情境
根据绝对值与相反数的意义填空:
1、
2、
-5的相反数是______,-10.5的相反数是______, 的相反数是______;
3、|0|=______,0的相反数是______。
二、探索感悟
1、议一议
(1)任意说出一个数,说出它的绝对值、它的相反数。
(2)一个数的绝对值与这个数本身或它的相反数有什么关系?
2、想一想
(1)2与3哪个大?这两个数的绝对值哪个大?
(2)-1与-4哪个大?这两个数的绝对值哪个大?
(3)任意写出两个负数,并说出这两个负数哪个大?他们的绝对值哪个大?
(4)两个有理数的大小与这两个数的绝对值的大小有什么关系?
三.例题精讲
例1. 求下列各数的绝对值:
+9,-16,-0.2,0.
求一个数的绝对值,首先要分清这个数是正数、负数还是0,然后才能正确地写出它的`绝对值。
议一议:(1)两个数比较大小,绝对值大的那个数一定大吗?
(2)数轴上的点的大小是如何排列的?
例2比较-10.12与-5.2的大小。
例3.求6、-6、14 、-14 的绝对值。
小节与思考:
这节课你有何收获?
四.练习
1. 填空:
⑴ 的符号是 ,绝对值是 ;
⑵10.5的符号是 ,绝对值是
⑶符号是+号,绝对值是 的数是
⑷符号是-号,绝对值是9的数是 ;
⑸符号是-号,绝对值是0.37的数是 .
2. 正式足球比赛时所用足球的质量有严格的规定,下表是6个足球的质量检测结果(用正数记超过规定质量的克数,用负数记不足规定质量的克数).
请指出哪个足球质量最好,为什么?
第1个第2个第3个第4个第5个第6个
-25-10+20+30+15-40
3.比较下面有理数的大小
(1)-0.7与-1.7 (2) (3) (4)-5与0
五、布置作业:
P25 习题2.3 5
家庭作业:《评价手册》 《补充习题》
六、学后记/教后记
这篇初一上册数学教案就为大家分享到这里了。希望对大家有所帮助!
初一数学教案12
一、 学情分析:
在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。由于学生已了解利用数轴表示加法运算过程,不太熟悉水位变化,故改为用数轴表示乘法运算过程。
二、 课前准备
把学生按组间同质、组内异质分为10个小组,以便组内合作学习、组间竞争学习,形成良好的学习气氛。
三、 教学目标
1、 知识与技能目标
掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、 能力与过程目标
经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、 情感与态度目标
通过学生自己探索出法则,让学生获得成功的喜悦。
四、 教学重点、难点
重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
五、 教学过程
1、 创设问题情景,激发学生的求知欲望,导入新课。
教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?
学生:26米。
教师:能写出算式吗?
学生:……
教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题(教师板书课题)
2、 小组探索、归纳法则
(1)教师出示以下问题,学生以组为单位探索。
以原点为起点,规定向东的方向为正方向,向西的方向为负方向。
a. 2 ×3
2看作向东运动2米,×3看作向原方向运动3次。
结果:向 运动 米
2 ×3=
b. -2 ×3
-2看作向西运动2米,×3看作向原方向运动3次。
结果:向 运动 米
-2 ×3=
c. 2 ×(-3)
2看作向东运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
2 ×(-3)=
d. (-2) ×(-3)
-2看作向西运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
(-2) ×(-3)=
e.被乘数是零或乘数是零,结果是人仍在原处。
(2)学生归纳法则
a.符号:在上述4个式子中,我们只看符号,有什么规律?
(+)×(+)= 同号得
(-)×(+)= 异号得
(+)×(-)= 异号得
(-)×(-)= 同号得
b.积的'绝对值等于 。
c.任何数与零相乘,积仍为 。
(3)师生共同用文字叙述有理数乘法法则。
3、 运用法则计算,巩固法则。
(1)教师按课本P75 例1板书,要求学生述说每一步理由。
(2)引导学生观察、分析例1中(3)(4)小题两因数的关系,得出两个有理数互为倒数,它们的积为 。
(3)学生做 P76 练习1(1)(3),教师评析。
(4)教师引导学生做P75 例2,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。多个因数相乘,积的符号由 决定,当负因数个数有 ,积为 ; 当负因数个数有 ,积为 ;只要有一个因数为零,积就为 。
4、 讨论对比,使学生知识系统化。
有理数乘法 | 有理数加法 | |
同号 | 得正 | 取相同的符号 |
把绝对值相乘 (-2)×(-3)=6 | 把绝对值相加 (-2)+(-3)=-5 | |
异号 | 得负 | 取绝对值大的加数的符号 |
把绝对值相乘 (-2)×3= -6 | (-2)+3=1 用较大的绝对值减小的绝对值 | |
任何数与零 | 得零 | 得任何数 |
5、 分层作业,巩固提高。
初一数学教案13
教学目标
1、理解并掌握等腰三角形的判定定理及推论
2、能利用其性质与判定证明线段或角的相等关系、
教学重点:
等腰三角形的判定定理及推论的运用
教学难点:
正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系、
教学过程:
一、复习等腰三角形的性质
二、新授:
1、提出问题,创设情境
出示投影片、某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC的长度就可知河流宽度、
学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”、
2、引入新课
1)由性质定理的题设和结论的'变化,引出研究的内容——在△ABC中,苦∠B=∠C,则AB= AC吗?作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?
2)引导学生根据图形,写出已知、求证、
3)小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称)、强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”、
4)引导学生说出引例中地质专家的测量方法的根据、
初一数学教案14
学习目标:
理解多项式乘法法则,会利用法则进行简单的多项式乘法运算。
学习重点:
多项式乘法法则及其应用。
学习难点:
理解运算法则及其探索过程。
一、课前训练:
(1)-3a2b+2b2+3a2b-14b2 = ,(2)- = ;
(3)3a2b2 ab3 = , (4) = ;
(5)- = ,(6) = 。
二、探索练习:
(1)如图1大长方形,其面积用四个小长方形面积
表示为: ;
(2)大长方形的长为 ,宽为 ,要
计算其面积就是 ,其中包含的
运算为 。
由上面的问题可发现:( )( )=
多项式乘以多项式法则:多项式与多项式相乘,先用一个多项式的 以另一个多项式的每一项,再把所得的积 。
三.运用法则规范解题。
四.巩固练习:
3.计算:① ,
4.计算:
五.提高拓展练习:
5.若 求m,n的值.
6.已知 的结果中不含 项和 项,求m,n的.值.
7.计算(a+b+c)(c+d+e),你有什么发现?
六.晚间训练:
(7) 2a2(-a)4 + 2a45a2 (8)
3、(1)观察:4×6=24
14×16=224
24×26=624
34×36=1224
你发现其中的规律吗?你能用代数式表示这一规律吗?
(2)利用(1)中的规律计算124×126。
4、如图,AB= ,P是线段AB上一点,分别以AP,BP为边作正方形。
(1)设AP= ,求两个正方形的面积之和S;
(2)当AP分别 时,比较S的大小。
初一数学教案15
教学目的:
(一)知识目标:
1.了解正数和负数是怎样产生的。
2.知道什么是正数和负数。
3.理解数0表示的量的意义。
(二)能力目标:
1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量化方法。
2.会用正、负数表示具有相反意义的量。
(三)情感态度与价值观:
通过师生合作,联系实际,激发学生学好数学的热情。 教学重点:知道什么是正数和负数,理解数0表示的量的意义。 教学难点:理解负数,数0表示的量的意义。
教学方法:师生互动
教学过程:
一、创设情境:
1.活动:请两名同学分别记录一周的每天的`最高气温,老师念,学生写: -5℃、3℃、2℃、-1℃、-6℃、7℃、4℃、
比一比,怎样记录又快又简便!
[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。
二、新课:
1.自然数的产生、分数的产生。
2.章头图。问题见教材。让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。
3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。根据需要有时在正数前面也加上“十”(正号)表示正数。 举例说明:
3、2、0.5、 等是正数(也可加上“十”)
-3、-2、-0.5、- 等是负数。
4、数0既不是正,也不是负数,0是正数和负数的分界。
0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。
5、让学生举例说明正、负数在实际中的应用。展示图片(又见教材p5图
1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地某银行的存折,说出你知道的信息。
三、巩固提高:练习:课本p5练习
课时小结:谈谈这节课的收获
课后作业:课本p7习题1.1的第1、2、4、5题。
四、能力提升:在一次数学测验中,某班的平均分为85分,把高于平均分的高出部分记为正数。
(1)美美得95分,应记为多少?
(2)多多被记作一12分,他实际得分是多少?
五、课后反思
【初一数学教案】相关文章:
关于数轴的初一数学教案10-03
初一数学教案正数与负数10-03
数学教案02-22
数学教案09-25
小学数学教案(经典)07-22
数学教案教学09-14
新课标数学教案(精选)07-24
初中数学教案05-18
圆数学教案05-19