高一数学教案

时间:2024-10-31 07:44:47 数学教案 我要投稿

高一数学教案

  作为一名老师,就有可能用到教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么什么样的教案才是好的呢?下面是小编整理的高一数学教案,仅供参考,希望能够帮助到大家。

高一数学教案

高一数学教案1

  学习目标:

  (1)理解函数的概念

  (2)会用集合与对应语言来刻画函数,

  (3)了解构成函数的要素。

  重点:

  函数概念的理解

  难点

  函数符号y=f(x)的理解

  知识梳理:

  自学课本P29—P31,填充以下空格。

  1、设集合A是一个非空的实数集,对于A内 ,按照确定的对应法则f,都有 与它对应,则这种对应关系叫做集合A上的一个函数,记作 。

  2、对函数 ,其中x叫做 ,x的取值范围(数集A)叫做这个函数的 ,所有函数值的集合 叫做这个函数的 ,函数y=f(x) 也经常写为 。

  3、因为函数的值域被 完全确定,所以确定一个函数只需要

  。

  4、依函数定义,要检验两个给定的变量之间是否存在函数关系,只要检验:

  ① ;② 。

  5、设a, b是两个实数,且a

  (1)满足不等式 的实数x的集合叫做闭区间,记作 。

  (2)满足不等式a

  (3)满足不等式 或 的实数x的集合叫做半开半闭区间,分别表示为 ;

  分别满足x≥a,x>a,x≤a,x

  其中实数a, b表示区间的'两端点。

  完成课本P33,练习A 1、2;练习B 1、2、3。

  例题解析

  题型一:函数的概念

  例1:下图中可表示函数y=f(x)的图像的只可能是( )

  练习:设M={x| },N={y| },给出下列四个图像,其中能表示从集合M到集合N的函数关系的有____个。

  题型二:相同函数的判断问题

  例2:已知下列四组函数:① 与y=1 ② 与y=x ③ 与

  ④ 与 其中表示同一函数的是( )

  A. ② ③ B. ② ④ C. ① ④ D. ④

  练习:已知下列四组函数,表示同一函数的是( )

  A. 和 B. 和

  C. 和 D. 和

  题型三:函数的定义域和值域问题

  例3:求函数f(x)= 的定义域

  练习:课本P33练习A组 4.

  例4:求函数 , ,在0,1,2处的函数值和值域。

  当堂检测

  1、下列各组函数中,表示同一个函数的是( A )

  A、 B、

  C、 D、

  2、已知函数 满足f(1)=f(2)=0,则f(-1)的值是( C )

  A、5 B、-5 C、6 D、-6

  3、给出下列四个命题:

  ① 函数就是两个数集之间的对应关系;

  ② 若函数的定义域只含有一个元素,则值域也只含有一个元素;

  ③ 因为 的函数值不随 的变化而变化,所以 不是函数;

  ④ 定义域和对应关系确定后,函数的值域也就确定了.

  其中正确的有( B )

  A. 1 个 B. 2 个 C. 3个 D. 4 个

  4、下列函数完全相同的是 ( D )

  A. , B. ,

  C. , D. ,

  5、在下列四个图形中,不能表示函数的图象的是 ( B )

  6、设 ,则 等于 ( D )

  A. B. C. 1 D.0

  7、已知函数 ,求 的值.( )

高一数学教案2

  教学目的:

  (1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;

  (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;

  (3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

  教学重点:

  集合的交集与并集、补集的概念;

  教学难点:

  集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;

  知识点

  1、并集

  一般地,由所有属于集合A或属于集合B的.元素所组成的集合,称为集合A与B的并集(Union)

  记作:A∪B读作:“A并B”

  即:A∪B={x|x∈A,或x∈B}

  Venn图表示:

  第4 / 7页

  A与B的所有元素来表示。 A与B的交集。

  2、交集

  一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。

  记作:A∩B读作:“A交B”

  即:A∩B={x|∈A,且x∈B}

  交集的Venn图表示

  说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。

  拓展:求下列各图中集合A与B的并集与交集

  A

  说明:当两个集合没有公共元素时,两个集合的交集是空集,不能说两个集合没有交集

  3、补集

  全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe),通常记作U。

  补集:对于全集U的一个子集A,由全集U中所有不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集(complementary set),简称为集合A的补集,

  记作:CUA

  即:CUA={x|x∈U且x∈A}

  第5 / 7页

  补集的Venn图表示

  说明:补集的概念必须要有全集的限制

  4、求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分

  交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。

  5、集合基本运算的一些结论:

  A∩B?A,A∩B?B,A∩A=A,A∩?=?,A∩B=B∩A

  A?A∪B,B?A∪B,A∪A=A,A∪?=A,A∪B=B∪A

  (CUA)∪A=U,(CUA)∩A=?

  若A∩B=A,则A?B,反之也成立

  若A∪B=B,则A?B,反之也成立

  若x∈(A∩B),则x∈A且x∈B

  若x∈(A∪B),则x∈A,或x∈B

  ¤例题精讲:

  例1设集合U?R,A?{x|?1?x?5},B?{x|3?x?9},求A?B,?U(A?B)。解:在数轴上表示出集合A、B。

  例2设A?{x?Z||x|?6},B?1,2,3?,C?3,4,5,6?,求:

  (1)A?(B?C);(2)A?A(B?C)。

  例3已知集合A?{x|?2?x?4},B?{x|x?m},且A?B?A,求实数m的取值范围。

  XX且x?N}例4已知全集U?{x|x?10,A?{2,4,5,8},B?{1,3,5,8},求

  CU(A?B),CU(A?B),(CUA)?(CUB),(CUA)?(CUB),并比较它们的关系。

高一数学教案3

  教学目标

  (1)正确理解充分条件、必要条件和充要条件的概念;

  (2)能正确判断是充分条件、必要条件还是充要条件;

  (3)培养学生的逻辑思维能力及归纳总结能力;

  (4)在充要条件的教学中,培养等价转化思想.

  教学建议

  (一)教材分析

  1.知识结构

  首先给出推断符号“”,并引出的意义,在此基础上讲述了充要条件的初步知识.

  2.重点难点分析

  本节的重点与难点是关于充要条件的判断.

  (1)充分但不必要条件、必要但不充分条件、充要条件、既不充分也不必要条件是重要的数学概念,主要用来区分命题的条件和结论之间的因果关系.

  (2)在判断条件和结论之间的因果关系中应该:

  ①首先分清条件是什么,结论是什么;

  ②然后尝试用条件推结论,再尝试用结论推条件.推理方法可以是直接证法、间接证法(即反证法),也可以举反例说明其不成立;

  ③最后再指出条件是结论的什么条件.

  (3)在讨论条件和条件的关系时,要注意:

  ①若,但,则是的充分但不必要条件;

  ②若,但,则是的必要但不充分条件;

  ③若,且,则是的充要条件;

  ④若,且,则是的充要条件;

  ⑤若,且,则是的既不充分也不必要条件.

  (4)若条件以集合的形式出现,结论以集合的形式出现,则借助集合知识,有助于充要条件的理解和判断.

  ①若,则是的充分条件;

  显然,要使元素,只需就够了.类似地还有:

  ②若,则是的必要条件;

  ③若,则是的充要条件;

  ④若,且,则是的既不必要也不充分条件.

  (5)要证明命题的条件是充要条件,就既要证明原命题成立,又要证明它的逆命题成立.证明原命题即证明条件的充分性,证明逆命题即证明条件的必要性.由于原命题逆否命题,逆命题否命题,当我们证明某一命题有困难时,可以证明该命题的逆否命题成立,从而得出原命题成立.

  (二)教法建议

  1.学习充分条件、必要条件和充要条件知识,要注意与前面有关逻辑初步知识内容相联系.充要条件中的,与四种命题中的,要求是一样的.它们可以是简单命题,也可以是不能判断真假的语句,也可以是含有逻辑联结词或“若则”形式的复合命题.

  2.由于这节课概念性、理论性较强,一般的教学使学生感到枯燥乏味,为此,激发学生的学习兴趣是关键.教学中始终要注意以学生为主,让学生在自我思考、相互交流中去结概念“下定义”,去体会概念的本质属性.

  3.由于“充要条件”与命题的真假、命题的条件与结论的相互关系紧密相关,为此,教学时可以从判断命题的真假入手,来分析命题的条件对于结论来说,是否充分,从而引入“充分条件”的概念,进而引入“必要条件”的概念.

  4.教材中对“充分条件”、“必要条件”的定义没有作过多的解释说明,为了让学生能理解定义的合理性,在教学过程中,教师可以从一些熟悉的命题的`条件与结论之间的关系来认识“充分条件”的概念,从互为逆否命题的等价性来引出“必要条件”的概念.

  教学设计示例

  充要条件

  教学目标

  (1)正确理解充分条件、必要条件和充要条件的概念;

  (2)能正确判断是充分条件、必要条件还是充要条件;

  (3)培养学生的逻辑思维能力及归纳总结能力;

  (4)在充要条件的教学中,培养等价转化思想.

  教学重点难点:

  关于充要条件的判断

  教学用具:

  幻灯机或实物投影仪

  教学过程设计

  1.复习引入

  练习:判断下列命题是真命题还是假命题(用幻灯投影):

  (1)若,则;

  (2)若,则;

  (3)全等三角形的面积相等;

  (4)对角线互相垂直的四边形是菱形;

  (5)若,则;

  (6)若方程有两个不等的实数解,则.

  (学生口答,教师板书.)

  (1)、(3)、(6)是真命题,(2)、(4)、(5)是假命题.

  置疑:对于命题“若,则”,有时是真命题,有时是假命题.如何判断其真假的?

  答:看能不能推出,如果能推出,则原命题是真命题,否则就是假命题.

  对于命题“若,则”,如果由经过推理能推出,也就是说,如果成立,那么一定成立.换句话说,只要有条件就能充分地保证结论的成立,这时我们称条件是成立的充分条件,记作.

  2.讲授新课

  (板书充分条件的定义.)

  一般地,如果已知,那么我们就说是成立的充分条件.

  提问:请用充分条件来叙述上述(1)、(3)、(6)的条件与结论之间的关系.

  (学生口答)

  (1)“,”是“”成立的充分条件;

  (2)“三角形全等”是“三角形面积相等”成立的充分条件;

  (3)“方程的有两个不等的实数解”是“”成立的充分条件.

  从另一个角度看,如果成立,那么其逆否命题也成立,即如果没有,也就没有,亦即是成立的必须要有的条件,也就是必要条件.

  (板书必要条件的定义.)

  提出问题:用“充分条件”和“必要条件”来叙述上述6个命题.

  (学生口答).

  (1)因为,所以是的充分条件,是的必要条件;

  (2)因为,所以是的必要条件,是的充分条件;

  (3)因为“两三角形全等”“两三角形面积相等”,所以“两三角形全等”是“两三角形面积相等”的充分条件,“两三角形面积相等”是“两三角形全等”的必要条件;

  (4)因为“四边形的对角线互相垂直”“四边形是菱形”,所以“四边形的对角线互相垂直”是“四边形是菱形”的必要条件,“四边形是菱形”是“四边形的对角线互相垂直”的充分条件;

  (5)因为,所以是的必要条件,是的充分条件;

  (6)因为“方程的有两个不等的实根”“”,而且“方程的有两个不等的实根”“”,所以“方程的有两个不等的实根”是“”充分条件,而且是必要条件.

  总结:如果是的充分条件,又是的必要条件,则称是的充分必要条件,简称充要条件,记作.

  (板书充要条件的定义.)

  3.巩固新课

  例1(用投影仪投影.)

  (学生活动,教师引导学生作出下面回答.)

  ①因为有理数一定是实数,但实数不一定是有理数,所以是的充分非必要条件,是的必要非充分条件;

  ②一定能推出,而不一定推出,所以是的充分非必要条件,是的必要非充分条件;

  ③、是奇数,那么一定是偶数;是偶数,、不一定都是奇数(可能都为偶数),所以是的充分非必要条件,是的必要非充分条件;

  ④表示或,所以是成立的必要非充分条件;

  ⑤由交集的定义可知且是成立的充要条件;

  ⑥由知且,所以是成立的充分非必要条件;

  ⑦由知或,所以是,成立的必要非充分条件;

  ⑧易知“是4的倍数”是“是6的倍数”成立的既非充分又非必要条件;

  (通过对上述问题的交流、思辩,在争论中得到了正确答案,并加深了对充分条件、必要条件的认识.)

  例2已知是的充要条件,是的必要条件同时又是的充分条件,试与的关系.(投影)

  解:由已知得,

  所以是的充分条件,或是的必要条件.

  4.小结回授

  今天我们学习了充分条件、必要条件和充要条件的概念,并学会了判断条件A是B的什么条件,这为我们今后解决数学问题打下了等价转化的基础.

  课内练习:课本(人教版,试验修订本,第一册(上))第35页练习l、2;第36页练习l、2.

  (通过练习,检查学生掌握情况,有针对性的进行讲评.)

  5.课外作业:教材第36页 习题 1、2、3.

高一数学教案4

  教学准备

  教学目标

  熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。

  教学重难点

  熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。

  教学过程

  【复习要求】熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。

  【方法规律】应用数列知识界实际应用问题的关键是通过对实际问题的综合分析,确定其数学模型是等差数列,还是等比数列,并确定其首项,公差或公比等基本元素,然后设计合理的计算方案,即数学建模是解答数列应用题的关键。

  一、基础训练

  1、某种细菌在培养过程中,每20分钟*一次一个*为两个,经过3小时,这种细菌由1个可繁殖成

  A、511B、512C、1023D、1024

  2、若一工厂的生产总值的月平均增长率为p,则年平均增长率为

  A、B、

  C、D、

  二、典型例题

  例1:某人每期期初到银行存入一定金额A,每期利率为p,到第n期共有本金nA,第一期的利息是nAp,第二期的利息是n—1Ap……,第n期即最后一期的利息是Ap,问到第n期期末的本金和是多少?

  评析:此例来自一种常见的存款叫做零存整取。存款的方式为每月的某日存入一定的金额,这是零存,一定时期到期,可以提出全部本金及利息,这是整取。计算本利和就是本例所用的有穷等差数列求和的方法。用实际问题列出就是:本利和=每期存入的金额[存期+1/2存期存期+1利率]

  例2:某人从1999到20xx年间,每年6月1日都到银行存入m元的一年定期储蓄,若每年利率q保持不变,且每年到期的存款本息均自动转为新的一年定期,到20xx年6月1日,此人到银行不再存款,而是将所有存款的'本息全部取回,则取回的金额是多少元?

  例3、某地区位于沙漠边缘,人与自然进行长期顽强的斗争,到1999年底全地区的绿化率已达到30%,从20xx年开始,每年将出现以下的变化:原有沙漠面积的16%将栽上树,改造为绿洲,同时,原有绿洲面积的4%又被侵蚀,变为沙漠。问经过多少年的努力才能使全县的绿洲面积超过60%。lg2=0.3

  例4、流行性感冒简称流感是由流感病毒引起的急性呼吸道传染病。某市去年11月分曾发生流感,据资料记载,11月1日,该市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染着减少30人,到11月30日止,该市在这30天内感染该病毒的患者共有8670人,问11月几日,该市感染此病毒的新的患者人数最多?并求这一天的新患者人数。

高一数学教案5

  一、指导思想:

  使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

  1。获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  2。提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

  3。提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  4。发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

  5。提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的`钻研精神和科学态度。

  6。具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  二、教材特点:

  我们所使用的教材是人教版《普通高中课程标准实验教科书数学(a版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:

  1。亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

  2。问题性:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

  3。科学性与思想性:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

  4。时代性与应用性:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

  三、教法分析:

  1。选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。

  2。通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

  3。在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

  四、学情分析:

  1、基本情况:12班共人,男生人,女生人;本班相对而言,数学尖子约人,中上等生约人,中等生约人,中下生约人,后进生约人。

  14班共人,男生人,女生人;本班相对而言,数学尖子约人,中上等生约人,中等生约人,中下生约人,后进生约人。

  2、两个班均属普高班,学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

  五、教学措施:

  1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

  2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

  3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

  4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

  5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

  6、重视数学应用意识及应用能力的培养。

高一数学教案6

  教学目标

  (1)掌握一元二次不等式的解法;

  (2)知道一元二次不等式可以转化为一元一次不等式组;

  (3)了解简单的分式不等式的解法;

  (4)能利用二次函数与一元二次方程来求解一元二次不等式,理解它们三者之间的内在联系;

  (5)能够进行较简单的分类讨论,借助于数轴的直观,求解简单的含字母的一元二次不等式;

  (6)通过利用二次函数的图象来求解一元二次不等式的解集,培养学生的数形结合的数学思想;

  (7)通过研究函数、方程与不等式之间的内在联系,使学生认识到事物是相互联系、相互转化的,树立辨证的世界观.

  教学重点:一元二次不等式的解法;

  教学难点:弄清一元二次不等式与一元二次方程、二次函数的关系.

  教与学过程设计

  第一课时

  Ⅰ.设置情境

  问题:

  ①解方程

  ②作函数 的图像

  ③解不等式

  【置疑】在解决上述三问题的基础上分析,一元一次函数、一元一次方程、一元一次不等式之间的关系。能通过观察一次函数的图像求得一元一次不等式的解集吗?

  【回答】函数图像与x轴的交点横坐标为方程的根,不等式 的解集为函数图像落在x轴上方部分对应的横坐标。能。

  通过多媒体或其他载体给出下列表格。扼要讲解怎样通过观察一次函数的图像求得一元一次不等式的解集。注意色彩或彩色粉笔的运用

  在这里我们发现一元一次方程,一次不等式与一次函数三者之间有着密切的联系。利用这种联系(集中反映在相应一次函数的图像上!)我们可以快速准确地求出一元一次不等式的解集,类似地,我们能不能将现在要求解的一元二次不等式与二次函数联系起来讨论找到其求解方法呢?

  Ⅱ.探索与研究

  我们现在就结合不等式 的求解来试一试。(师生共同活动用“特殊点法”而非课本上的“列表描点”的方法作出 的图像,然后请一位程度中下的同学写出相应一元二次方程及一元二次不等式的解集。)

  【答】方程 的解集为

  不等式 的解集为

  【置疑】哪位同学还能写出 的解法?(请一程度差的同学回答)

  【答】不等式 的解集为

  我们通过二次函数 的图像,不仅求得了开始上课时我们还不知如何求解的那个第(5)小题 的解集,还求出了 的解集,可见利用二次函数的图像来解一元二次不等式是个十分有效的方法。

  下面我们再对一般的一元二次不等式 与 来进行讨论。为简便起见,暂只考虑 的情形。请同学们思考下列问题:

  如果相应的一元二次方程 分别有两实根、惟一实根,无实根的话,其对应的二次函数 的图像与x轴的位置关系如何?(提问程度较好的学生)

  【答】二次函数 的图像开口向上且分别与x轴交于两点,一点及无交点。

  现在请同学们观察表中的二次函数图,并写出相应一元二次不等式的解集。(通过多媒体或其他载体给出以下表格)

  【答】 的解集依次是

  的解集依次是

  它是我们今后求解一元二次不等式的主要工具。应尽快将表中的结果记住。其关键就是抓住相应二次函数 的图像。

  课本第19页上的例1.例2.例3.它们均是求解二次项系数 的一元二次不等式,却都没有给出相应二次函数的图像。其解答过程虽很简练,却不太直观。现在我们在课本预留的位置上分别给它们补上相应二次函数图像。

  (教师巡视,重点关注程度稍差的同学。)

  Ⅲ.演练反馈

  1.解下列不等式:

  (1) (2)

  (3) (4)

  2.若代数式 的值恒取非负实数,则实数x的取值范围是 。

  3.解不等式

  (1) (2)

  参考答案:

  1.(1) ;(2) ;(3) ;(4)R

  2.

  3.(1)

  (2)当 或 时, ,当 时,当 或 时, 。

  Ⅳ.总结提炼

  这节课我们学习了二次项系数 的.一元二次不等式的解法,其关键是抓住相应二次函数的图像与x轴的交点,再对照课本第39页上表格中的结论给出所求一元二次不等式的解集。

  (五)、课时作业

  (P20.练习等3、4两题)

  (六)、板书设计

  第二课时

  Ⅰ.设置情境

  (通过讲评上一节课课后作业中出现的问题,复习利用“三个二次”间的关系求解一元二次不等式的主要操作过程。)

  上节课我们只讨论了二次项系数 的一元二次不等式的求解问题。肯定有同学会问,那么二次项系数 的一元二次不等式如何来求解?咱们班上有谁能解答这个疑问呢?

  Ⅱ.探索研究

  (学生议论纷纷.有的说仍然利用二次函数的图像,有的说将二次项的系数变为正数后再求解,…….教师分别请持上述见解的学生代表进一步说明各自的见解.)

  生甲:只要将课本第39页上表中的二次函数图像次依关于x轴翻转变成开口向下的抛物线,再根据可得的图像便可求得二次项系数 的一元二次不等式的解集.

  生乙:我觉得先在不等式两边同乘以-1将二次项系数变为正数后直接运用上节课所学的方法求解就可以了.

  师:首先,这两种见解都是合乎逻辑和可行的不过按前一见解来操作的话,同学们则需再记住一张类似于第39页上的表格中的各结论.这不但加重了记忆负担,而且两表中的结论容易搞混导致错误.而按后一种见解来操作时则不存在这个问题,请同学们阅读第19页例4.

  (待学生阅读完毕,教师再简要讲解一遍.)

  [知识运用与解题研究]

  由此例可知,对于二次项系数的一元二次不等式是将其通过同解变形化为 的一元二次不等式来求解的,因此只要掌握了上一节课所学过的方法。我们就能求

  解任意一个一元二次不等式了,请同学们求解以下两不等式.(调两位程度中等的学生演板)

  (1) (2)

  (分别为课本P21习题1.5中1大题(2)、(4)两小题.教师讲评两位同学的解答,注意纠正表述方面存在的问题.)

  训练二 可化为一元一次不等式组来求解的不等式.

  目前我们熟悉了利用“三个二次”间的关系求解一元二次不等式的方法虽然对任意一元二次不等式都适用,但具体操作起来还是让我们感到有点麻烦.故在求解形如 (或 )的一元二次不等式时则根据(有理数)乘(除)运算的“符号法则”化为同学们更加熟悉的一元一次不等式组来求解.现在清同学们阅读课本P20上关于不等式 求解的内容并思考:原不等式的解集为什么是两个一次不等式组解集的并集?(待学生阅读完毕,请一程度较好,表达能力较强的学生回答该问题.)

  【答】因为满足不等式组 或 的x都能使原不等式 成立,且反过来也是对的,故原不等式的解集是两个一元二次不等式组解集的并集.

  这个回答说明了原不等式的解集A与两个一次不等式组解集的并集B是互为子集的关系,故它们必相等,现在请同学们求解以下各不等式.(调三位程度各异的学生演板.教师巡视,重点关注程度较差的学生).

  (1) [P20练习中第1大题]

  (2) [P20练习中第1大题]

  (3) [P20练习中第2大题]

  (老师扼要讲评三位同学的解答.尤其要注意纠正表述方面存在的问题.然后讲解P21例5).

  例5 解不等式

  因为(有理数)积与商运算的“符号法则”是一致的,故求解此类不等式时,也可像求解 (或 )之类的不等式一样,将其化为一元一次不等式组来求解。具体解答过程如下。

  解:(略)

  现在请同学们完成课本P21练习中第3、4两大题。

  (等学生完成后教师给出答案,如有学生对不上答案,由其本人追查原因,自行纠正。)

  [训练三]用“符号法则”解不等式的复式训练。

  (通过多媒体或其他载体给出下列各题)

  1.不等式 与 的解集相同此说法对吗?为什么[补充]

  2.解下列不等式:

  (1) [课本P22第8大题(2)小题]

  (2)   [补充]

  (3) [课本P43第4大题(1)小题]

  (4) [课本P43第5大题(1)小题]

  (5) [补充]

  (每题均先由学生说出解题思路,教师扼要板书求解过程)

  参考答案:

  1.不对。同 时前者无意义而后者却能成立,所以它们的解集是不同的。

  2.(1)

  (2)原不等式可化为: ,即

  解集为 。

  (3)原不等式可化为

  解集为

  (4)原不等式可化为 或

  解集为

  (5)原不等式可化为: 或 解集为

  Ⅲ.总结提炼

  这节课我们重点讲解了利用(有理数)乘除法的符号法则求解左式为若干一次因式的积或商而右式为0的不等式。值得注意的是,这一方法对符合上述形状的高次不等式也是有效的,同学们应掌握好这一方法。

  (五)布置作业

  (P22.2(2)、(4);4;5;6。)

  (六)板书设计

高一数学教案7

  一、教学目标

  1. 知识与技能:

  掌握集合的并集、交集、补集的概念及表示方法。

  能够运用集合的基本运算解决简单问题。

  2. 过程与方法:

  通过实例分析,引导学生理解集合运算的实质。

  采用讲练结合的方法,提高学生的运算能力。

  3. 情感态度与价值观:

  培养学生的逻辑思维能力和严谨的科学态度。

  二、教学重点和难点

  重点:集合的并集、交集、补集的概念及表示方法。

  难点:运用集合的基本运算解决复杂问题。

  三、教学方法

  讲授法:通过教师讲解,引导学生理解集合运算的基本概念。

  练习法:通过大量练习,提高学生的运算能力和解题技巧。

  多媒体辅助教学:利用PPT等多媒体工具展示实例,帮助学生直观理解。

  四、教学过程

  1. 引入新课(约2分钟)

  通过复习集合的概念和表示方法,引出集合运算的重要性。

  2. 新课讲授(约20分钟)

  概念讲解:详细讲解集合的.并集、交集、补集的概念及表示方法。

  实例分析:通过具体实例,引导学生理解集合运算的实质和运算规则。

  例题讲解:给出几道例题,教师边讲边练,引导学生掌握解题技巧。

  3. 巩固练习(约15分钟)

  给出几道练习题,让学生独立完成,然后小组内交流答案,教师点评。

  4. 课堂小结(约5分钟)

  总结本节课的知识点,强调集合运算的重要性,布置课后作业。

  五、教学器材

  多媒体PPT课件

  黑板及粉笔

  练习册或作业本

高一数学教案8

  学习目标

  1.能根据抛物线的定义建立抛物线的标准方程;

  2.会根据抛物线的标准方程写出其焦点坐标与准线方程;

  3.会求抛物线的标准方程。

  一、预习检查

  1.完成下表:

  标准方程

  图形

  焦点坐标

  准线方程

  开口方向

  2.求抛物线的焦点坐标和准线方程.

  3.求经过点的抛物线的标准方程.

  二、问题探究

  探究1:回顾抛物线的定义,依据定义,如何建立抛物线的标准方程?

  探究2:方程是抛物线的标准方程吗?试将其与抛物线的标准方程辨析比较.

  例1.已知抛物线的顶点在原点,对称轴为坐标轴,焦点在直线上,求抛物线的方程.

  例2.已知抛物线的焦点在轴上,点是抛物线上的一点,到焦点的距离是5,求的值及抛物线的标准方程,准线方程.

  例3.抛物线的顶点在原点,对称轴为轴,它与圆相交,公共弦的长为.求该抛物线的方程,并写出其焦点坐标与准线方程.

  三、思维训练

  1.在平面直角坐标系中,若抛物线上的点到该抛物线的焦点的距离为6,则点的横坐标为.

  2.抛物线的焦点到其准线的距离是.

  3.设为抛物线的焦点,为该抛物线上三点,若,则=.

  4.若抛物线上两点到焦点的距离和为5,则线段的中点到轴的距离是.

  5.(理)已知抛物线,有一个内接直角三角形,直角顶点在原点,斜边长为,一直角边所在直线方程是,求此抛物线的'方程。

  四、课后巩固

  1.抛物线的准线方程是.

  2.抛物线上一点到焦点的距离为,则点到轴的距离为.

  3.已知抛物线,焦点到准线的距离为,则.

  4.经过点的抛物线的标准方程为.

  5.顶点在原点,以双曲线的焦点为焦点的抛物线方程是.

  6.抛物线的顶点在原点,以轴为对称轴,过焦点且倾斜角为的直线被抛物线所截得的弦长为8,求抛物线的方程.

  7.若抛物线上有一点,其横坐标为,它到焦点的距离为10,求抛物线方程和点的坐标。

高一数学教案9

  本文题目:高一数学教案:函数的奇偶性

  课题:1.3.2函数的奇偶性

  一、三维目标:

  知识与技能:使学生理解奇函数、偶函数的概念,学会运用定义判断函数的奇偶性。

  过程与方法:通过设置问题情境培养学生判断、推断的能力。

  情感态度与价值观:通过绘制和展示优美的函数图象来陶冶学生的情操. 通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的思维品质。

  二、学习重、难点:

  重点:函数的奇偶性的概念。

  难点:函数奇偶性的判断。

  三、学法指导:

  学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对函数奇偶性的全面的体验和理解。对于奇偶性的应用采取讲练结合的方式进行处理,使学生边学边练,及时巩固。

  四、知识链接:

  1.复习在初中学习的轴对称图形和中心对称图形的定义:

  2.分别画出函数f (x) =x3与g (x) = x2的.图象,并说出图象的对称性。

  五、学习过程:

  函数的奇偶性:

  (1)对于函数 ,其定义域关于原点对称:

  如果______________________________________,那么函数 为奇函数;

  如果______________________________________,那么函数 为偶函数。

  (2)奇函数的图象关于__________对称,偶函数的图象关于_________对称。

  (3)奇函数在对称区间的增减性 ;偶函数在对称区间的增减性 。

  六、达标训练:

  A1、判断下列函数的奇偶性。

  (1)f(x)=x4;(2)f(x)=x5;

  (3)f(x)=x+ (4)f(x)=

  A2、二次函数 ( )是偶函数,则b=___________ .

  B3、已知 ,其中 为常数,若 ,则

  _______ .

  B4、若函数 是定义在R上的奇函数,则函数 的图象关于 ( )

  (A) 轴对称 (B) 轴对称 (C)原点对称 (D)以上均不对

  B5、如果定义在区间 上的函数 为奇函数,则 =_____ .

  C6、若函数 是定义在R上的奇函数,且当 时, ,那么当

  时, =_______ .

  D7、设 是 上的奇函数, ,当 时, ,则 等于 ( )

  (A)0.5 (B) (C)1.5 (D)

  D8、定义在 上的奇函数 ,则常数 ____ , _____ .

  七、学习小结:

  本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称。单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质。

  八、课后反思:

高一数学教案10

  1、知识与技能

  (1)掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);

  (2)理解任意角的三角函数不同的定义方法;

  (3)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;

  (4)掌握并能初步运用公式一;

  (5)树立映射观点,正确理解三角函数是以实数为自变量的函数。

  2、过程与方法

  初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数。引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义。根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号。最后主要是借助有向线段进一步认识三角函数。讲解例题,总结方法,巩固练习。

  3、情态与价值

  任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点。过去习惯于用角的终边上点的坐标的“比值”来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的.集合到比值的集合”的对应关系与学生熟悉的一般函数概念中的“数集到数集”的对应关系有冲突,而且“比值”需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解。

  本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数。这个定义清楚地表明了正弦、余弦函数中从自变量到函数值之间的对应关系,也表明了这两个函数之间的关系。

  教学重难点

  重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一)。

  难点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解。

高一数学教案11

  教学目标

  1。使学生掌握的概念,图象和性质。

  (1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域。

  (2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质。

  (3)能利用的性质比较某些幂形数的大小,会利用的图象画出形如的图象。

  2。通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法。

  3。通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣。使学生善于从现实生活中数学的发现问题,解决问题。

  教学建议

  教材分析

  (1)是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究。

  (2)本节的教学重点是在理解定义的基础上掌握的图象和性质。难点是对底数在和时,函数值变化情况的区分。

  (3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究。

  教法建议

  (1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是。

  (2)对底数的限制条件的理解与认识也是认识的重要内容。如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来。

  关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象。

  教学设计示例

  课题

  教学目标

  1。理解的定义,初步掌握的图象,性质及其简单应用。

  2。通过的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法。

  3。通过对的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣。

  教学重点和难点

  重点是理解的定义,把握图象和性质。

  难点是认识底数对函数值影响的认识。

  教学用具

  投影仪

  教学方法

  启发讨论研究式

  教学过程

  一。引入新课

  我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数———————。

  1.6。(板书)

  这类函数之所以重点介绍的原因就是它是实际生活中的一种需要。比如我们看下面的问题:

  问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂次后,得到的细胞分裂的个数与之间,构成一个函数关系,能写出与之间的函数关系式吗?

  由学生回答:与之间的关系式,可以表示为。

  问题2:有一根1米长的`绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了次后绳子剩余的长度为米,试写出与之间的函数关系。

  由学生回答:。

  在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的"形式,且自变量均在指数的位置上,那么就把形如这样的函数称为。

  一。的概念(板书)

  1。定义:形如的函数称为。(板书)

  教师在给出定义之后再对定义作几点说明。

  2。几点说明(板书)

  (1)关于对的规定:

  教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若会有什么问题?如,此时,等在实数范围内相应的函数值不存在。

  若对于都无意义,若则无论取何值,它总是1,对它没有研究的必要。为了避免上述各种情况的发生,所以规定且。

  (2)关于的定义域(板书)

  教师引导学生回顾指数范围,发现指数可以取有理数。此时教师可指出,其实当指数为无理数时,也是一个确定的实数,对于无理指数幂,学过的有理指数幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以的定义域为。扩充的另一个原因是因为使她它更具代表更有应用价值。

  (3)关于是否是的判断(板书)

  刚才分别认识了中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是,请看下面函数是否是。

高一数学教案12

  1、知识与技能

  (1)掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);

  (2)理解任意角的三角函数不同的定义方法;

  (3)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;

  (4)掌握并能初步运用公式一;

  (5)树立映射观点,正确理解三角函数是以实数为自变量的函数.

  2、过程与方法

  初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数.引导学生把这个定义推广到任意角,通过单位圆和角的'终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义.根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号.最后主要是借助有向线段进一步认识三角函数.讲解例题,总结方法,巩固练习.

  3、情态与价值

  任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点.过去习惯于用角的终边上点的坐标的“比值”来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合”的对应关系与学生熟悉的一般函数概念中的“数集到数集”的对应关系有冲突,而且“比值”需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解.

  本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.这个定义清楚地表明了正弦、余弦函数中从自变量到函数值之间的对应关系,也表明了这两个函数之间的关系.

  教学重难点

  重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一).

  难点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解.

高一数学教案13

  集合的表示方法

  一、教学目标:

  1、集合的两种表示方法(列举法和特征性质描述法)。

  2、能选择适当的方法正确的表示一个集合。

  重点:集合的表示方法。

  难点:集合的特征性质的概念,以及运用特征性质描述法表示集合。

  二、复习回顾:

  1、集合中元素的特性:______________________________________.

  2、常见的数集的.简写符号:自然数集 整数集 正整数集

  有理数集 实数集

  三、知识预习:

  1. ___________________________________________________________________________ ____________________________________________________________________叫做列举法;

  2. _______________________ ____________________________________________________叫做集合A的一个特征性质。 ___________________________________________________________________________________

  叫做特征性质描述法,简称描述法。

  说明:概念的理解和注意问题

  1. 用列举法表示集合时应注意以下5点:

  (1) 元素间用分隔号,

  (2) 元素不重复;

  (3) 不考虑元素顺序;

  (4) 对于含有较多元素的集合,如果构成该集合的元素有明显规律,可用列举法,但必须把元素间的规律显示清楚后方能用省略号。

  (5) 无限集有时也可用列举法表示。

  2. 用特征性质描述法表示集合时应注意以下6点;

  (1) 写清楚该集合中元素的代号(字母或用字母表达的元素符号);

  (2) 说明该集合中元素的性质;

  (3) 不能出现未被说明的字母;

  (4) 多层描述时,应当准确使用且和或

  (5) 所有描述的内容都要写在集合符号内;

  (6) 用于描述的语句力求简明,准确。

  四、典例分析

  题型一 用列举法表示下列集合

  例1 用列举法表示下列集合

  (1)A={x N|0

  变式训练:○1课本7页练习A第1题。 ○2课本9页习题A第3题。

  题型二 用描述法表示集合

  例2 用描述法表示下列集合

  (1){-1,1} (2)大于3的全体偶数构成的集合 (3)在平面 内,线段AB的垂直平分线

  变式训练:课本8页练习A第2题、练习B第2题、9页习题A第4题。

  题型三 集合表示方法的灵活运用

  例3 分别判断下列各组集合是否为同一个集合:

  (1)A={x|x+32} B={y|y+32}

  (2) A={(1,2)} B={1,2}

  (3) M={(x,y)|y= +1} N={y| y= +1}

  变式训练:1、集合A={x|y= ,x Z,y Z},则集合A的元素个数为( )

  A 4 B 5 C 10 D 12

  2、课本8页练习B第1题、习题A第1题

  例4 已知集合A={x|k -8x+16=0}只有一个元素,试求实数k的值,并用列举法表示集合A.

  作业:课本第9页A组第2题、B组第1、2题。

  限时训练

  1. 选择

  (1)集合 的另一种表示法是( B )

  A. B. C. D.

  (2) 由大于-3小于11的偶数所组成的集合是( D )

  A. B.

  C. D.

  (3) 方程组 的解集是( D )

  A. (5, 4) B. C. (-5, 4) D. (5,-4)

  (4)集合M= (x,y)| xy0, x , y 是( D )

  A. 第一象限内的点集 B. 第三象限内的点集

  C. 第四象限内的点集 D. 第二、四象限内的点集

  (5)设a, b , 集合 1,a+b, a = 0, , b , 则b-a等于( C )

  A. 1 B. -1 C. 2 D. -2

  2. 填空

  (1)已知集合A= 2, 4, x2-x , 若6 ,则x=___-2或3______.

  (2)由平面直角坐标系内第二象限的点组成的集合为__ __.

  (3)下面几种表示法:○1 ;○2 ; ○3 ;

  ○4(-1,2);○5 ;○6 . 能正确表示方程组

  的解集的是__○2__○5_______.

  (4) 用列举法表示下列集合:

  A= =___{0,1,2}________________________;

  B= =___{-2,-1,0,1,2}________________________;

  C= =___{(2,0), (-2,0),(0,2),(0,-2)}___________.

  (5) 已知A= , B= , 则集合B=__{0,1,2}________.

  3. 已知集合A= , 且-3 ,求实数a. (a= )

  4. 已知集合A= .

  (1) 若A中只有一个元素,求a的值;(a=0或a=1)

  (2)若A中至少有一个元素,求a的取值范围;(a1)

  (3)若A中至多有一个元素,求a的取值范围。(a=0或a1)

高一数学教案14

  重点

  理解角与角的相关概念;掌握角的度量单位以及单位之间的换算.

  难点

  理解角与角的相关概念;掌握角的度量单位以及单位之间的换算.

  一、创设情境,导入新知

  展示实物:时钟,圆规,折扇等.

  (1)观察实物与图片,你发现其中有什么相同图形吗?学生回答,教师点评,注意鼓励学生.

  (2)你能把观察得到的图形画在本子上或黑板上吗?这是一些什么图形?思考,动手画一画.

  (3)从黑板上这些不同的图形中,你能归纳出它们的共同特点吗?

  学生相互交流并回答,挖掘和利用现实生活中与角相关的背景,让学生在现实背景中认识角,培养学生的动手能力.引导学生观察并归纳角的共同点,进而引入课题.

  二、自主合作,感受新知

  回顾以前学的知识、阅读课文并结合生活实际,完成“预习导学”部分.

  三、师生互动,理解新知

  探究点一:角的概念及表示方法

  活动一:从生活中认识角

  我们看物体时,有视角,钟表的指针转动也形成角.请同学们看课本后回答下面问题.

  (1)角是一个几何图形,请大家说说,角是由什么图形构成的?(学生回答,教师点评,注意鼓励学生)

  (2)如果我们把角看作是一条射线绕它的端点旋转围成的图形,那么始边和终边又指什么?

  教师总结:角有两个定义,一个是静态的定义,把角看作由一点出发的两条射线组成的图形;另一个定义是动态的,把角看作一条射线绕端点旋转所形成的图形,把开始位置的射线叫做始边,把终止位置的射线叫做终边.

  (3)请同学们说一说,我们日常生活中,哪些地方有角.(学生举例)

  活动二:角的表示方法

  我们怎样表示角呢?请同学们看课本上说了几种表示方法?(学生先看书,后回答)

  教师总结:(1)用三个大写字母可以表示一个角,比如∠AOB.

  练习:谁能指出下列各角的顶点和两条边?

  注意:①三个字母的顺序有规定,顶点的字母必须写在中间.

  ②顶点的字母不一定用O,角的始边与终边的字母也可以随意.

  (2)当一个顶点只有一个角时,也可以用顶点的字母表示.比如,下面的角可以表示为∠O.

  练习:判断下列角可以用顶点的字母表示吗?

  (3)用数字或小写的希腊字母表示角.(注意:角中不能有角)

  练习:下面表示角的方法,哪个是正确的?哪个是错误的?

  探究点二:角的度量

  活动三:角的度量

  (1)请同学们借助量角器画出下列各角:

  ①30° ②45° ③60° ④90° ⑤120° ⑥150° ⑦62° ⑧105°

  学生画图,教师指导.(根据需要教师可先做示范)

  (2)任意画一个角,用量角器测量角的大小.提问:如果这个角的度数不是整数,应该怎样表示这个角的度数呢?引出角的度量单位是度、分、秒.

  教师总结:它们之间的关系是:1°=60′,1′=60″ (强调度、分、秒是60进制,不是十进制).

  (3)还有什么单位是60进制?

  (4)让学生画一个1°角,感受1°角有多大.

  四、应用迁移,运用新知

  1.角的定义

  例1 下列说法中,正确的是( )

  A.两条射线组成的图形叫做角

  B.有公共端点的.两条线段组成的图形叫做角

  C.角可以看作是由一条射线绕着它的端点旋转而形成的图形

  D.角可以看作是由一条线段绕着它的端点旋转而形成的图形

  解析:A.有公共端点的两条射线组成的图形叫做角,故错误;B.根据A可得B错误;C.角可以看作是由一条射线绕着它的端点旋转而形成的图形,正确;D.据C可得D错误.

  方法总结:此题考查了角的定义,有公共端点的两条不重合的射线组成的图形叫做角.这个公共端点叫做角的顶点,这两条射线叫做角的两条边.

  2.角的表示方法

  例2 下列四个图形中,能用∠1、∠AOB、∠O三种方法表示同一个角的图形是( )

  A B C D

  解析:在角的顶点处有多个角时,用一个字母表示这个角,这种方法是错误的.所以A、C、D错误.

  方法总结:角的两个基本元素中,边是两条射线,

  顶点是这两条射线的公共端点.

  3.判断角的数量

  例3 如图所示,在∠AOB的内部有3条射线,则图中角的个数为( )

  A.10 B.15 C.5 D.20

  解析:可以根据图形依次数出角的个数;或者根据公式求图中角的个数是12×5×(5-1)=10.

  方法总结:若从一点发出n条射线,则构成12n(n-1)个角.

  4.角的度量

  例4 见课本P144例1.

  方法总结:用度、分、秒表示的角度和用度表示的角度的相互转化的过程正好相反:大单位化小单位,乘以进率;而小单位化大单位要除以进率.

  五、尝试练习,掌握新知

  课本P144练习第1、2题、P145练习第1、2题.

  “随堂演练”部分.

  六、课堂小结,梳理新知

  通过本节课的学习,我们都学到了哪些数学知识和方法?

  本节课学习了角及角的有关概念,并会表示角;知道角的度量单位,并能进行单位的转换;会把角的知识与现实生活相联系,用角的知识解释生活中的一些现象.

  七、深化练习,巩固新知

  课本P145~146习题4.4第1~4题.

  “课时作业”部分.

高一数学教案15

  教学目的:

  (1)使学生初步理解集合的概念,知道常用数集的概念及记法

  (2)使学生初步了解“属于”关系的意义

  (3)使学生初步了解有限集、无限集、空集的意义

  教学重点:

  集合的基本概念及表示方法

  教学难点:

  运用集合的两种常用表示方法——列举法与描述法,正确表示

  一些简单的集合

  授课类型:

  新授课

  课时安排:

  1课时

  教具:

  多媒体、实物投影仪

  内容分析:

  1、集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础

  把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑

  本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子

  这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念

  集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明

  教学过程:

  一、复习引入:

  1、简介数集的发展,复习公约数和最小公倍数,质数与和数;

  2、教材中的章头引言;

  3、集合论的创始人——康托尔(德国数学家)(见附录);

  4、“物以类聚”,“人以群分”;

  5、教材中例子(P4)

  二、讲解新课:

  阅读教材第一部分,问题如下:

  (1)有那些概念?是如何定义的?

  (2)有那些符号?是如何表示的?

  (3)集合中元素的'特性是什么?

  (一)集合的有关概念:

  由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。集合中的每个对象叫做这个集合的元素。

  定义:一般地,某些指定的对象集在一起就成为一个集合。

  1、集合的概念

  (1)集合:某些指定的对象集在一起就形成一个集合(简称集)

  (2)元素:集合中每个对象叫做这个集合的元素

  2、常用数集及记法

  (1)非负整数集(自然数集):全体非负整数的集合记作N,

  (2)正整数集:非负整数集内排除0的集记作Nx或N+

  (3)整数集:全体整数的集合记作Z,

  (4)有理数集:全体有理数的集合记作Q,

  (5)实数集:全体实数的集合记作R

  注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0

  (2)非负整数集内排除0的集记作Nx或N+Q、Z、R等其它

  数集内排除0的集,也是这样表示,例如,整数集内排除0

  的集,表示成Zx

  3、元素对于集合的隶属关系

  (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A

  (2)不属于:如果a不是集合A的元素,就说a不属于A,记作

  4、集合中元素的特性

  (1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可

  (2)互异性:集合中的元素没有重复

  (3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)

  5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……

  ⑵“∈”的开口方向,不能把a∈A颠倒过来写

  三、练习题:

  1、教材P5练习1、2

  2、下列各组对象能确定一个集合吗?

  (1)所有很大的实数(不确定)

  (2)好心的人(不确定)

  (3)1,2,2,3,4,5.(有重复)

  3、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2__

  4、由实数x,-x,|x|,所组成的集合,最多含(A)

  (A)2个元素(B)3个元素(C)4个元素(D)5个元素

  5、设集合G中的元素是所有形如a+b(a∈Z,b∈Z)的数,求证:

  (1)当x∈N时,x∈G;

  (2)若x∈G,y∈G,则x+y∈G,而不一定属于集合G

  证明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,

  则x=x+0x=a+b∈G,即x∈G

  证明(2):∵x∈G,y∈G,

  ∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)

  ∴x+y=(a+b)+(c+d)=(a+c)+(b+d)

  ∵a∈Z,b∈Z,c∈Z,d∈Z

  ∴(a+c)∈Z,(b+d)∈Z

  ∴x+y=(a+c)+(b+d)∈G,

  又∵=

  且不一定都是整数,

  ∴=不一定属于集合G

  四、小结:本节课学习了以下内容:

  1、集合的有关概念:(集合、元素、属于、不属于)

  2、集合元素的性质:确定性,互异性,无序性

  3、常用数集的定义及记法

  五、课后作业:

  六、板书设计(略)

  高中数学考试的技巧

  一、整体把握、抓大放小

  拿到试卷后可以先快速浏览一下所有题目,根据积累的考试经验,大致估计一下每部分应该分配的时间。对于能够很快做出来的题目,一定要拿到应得的分数。

  二、确定每部分的答题时间

  1、考试时占用了很多时间却一点也没有做出来的题目。对于这类题目,你以后考试时就应该尽量减少时间,或者放弃,等以后学习进阶了再尝试着做。

  2、考试时花了过多的时间才做出来的题目。对于这类题目,你以后平时做题时要尽量加快速度,或者通过“反复训练”等提高反应速度,这样,你下次考试时能用较少的时间做出来。

  三、碰到难题时

  1、你可以先用“直觉”最快的找到解题思路;

  2、如果“直觉”不管用,你可以联想以前做过的类似的题目,从而找到解题思路;

  3、如果这样也不行,你可以猜测一下这道题目可能涉及到的知识点和解题技巧。

  4、对于花了一定时间仍然不能做出来的题目,要勇于放弃。

  四、卷面整洁、字迹清楚、注意小节

  做到卷面整洁、字迹清楚,把标点、符号、解题步骤等小的地方尽量做好,不要丢掉应得的每一分。

  高中数学有效的学习方法

  一、课后及时回忆

  如果等到把课堂内容遗忘得差不多时才复习,就几乎等于重新学习,所以课堂学习的新知识必须及时复习。

  可以一个人单独回忆,也可以几个人在一起互相启发,补充回忆。一般按照教师板书的提纲和要领进行,也可以按教材纲目结构进行,从课题到重点内容,再到例题的每部分的细节,循序渐进地进行复习。在复习过程中要不失时机整理笔记,因为整理笔记也是一种有效的复习方法。

  二、定期重复巩固

  即使是复习过的内容仍须定期巩固,但是复习的次数应随时间的增长而逐步减小,间隔也可以逐渐拉长。可以当天巩固新知识,每周进行周小结,每月进行阶段性总结,期中、期末进行全面系统的学期复习。从内容上看,每课知识即时回顾,每单元进行知识梳理,每章节进行知识归纳总结,必须把相关知识串联在一起,形成知识网络,达到对知识和方法的整体把握。

  三、科学合理安排

  复习一般可以分为集中复习和分散复习。实验证明,分散复习的效果优于集中复习,特殊情况除外。分散复习,可以把需要识记的材料适当分类,并且与其他的学习或娱乐或休息交替进行,不至于单调使用某种思维方式,形成疲劳。分散复习也应结合各自认知水平,以及识记素材的特点,把握重复次数与间隔时间,并非间隔时间越长越好,而要适合自己的复习规律。

【高一数学教案】相关文章:

高一数学教案02-04

高一数学教案15篇02-24

高一数学教案必修一10-30

高一数学教案《方程根与函数零点》(精选11篇)11-19

数学教案02-22

青春的话题作文高一 高一作文03-11

寒假趣事作文高一_高一叙事作文07-06

高一年级数学教案:等比数列的前n项和03-11

奶奶高一作文_高一写人作文07-06