- 相关推荐
高一数学教案优秀
在教学工作者实际的教学活动中,往往需要进行教案编写工作,教案有助于学生理解并掌握系统的知识。那么教案应该怎么写才合适呢?下面是小编为大家整理的高一数学教案优秀,仅供参考,大家一起来看看吧。
高一数学教案优秀1
教学目标:
①掌握对数函数的性质。
②应用对数函数的性质可以解决:对数的大小比较,求复合函数的定义域、值 域及单调性。
③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高解题能力。
教学重点与难点:对数函数的性质的应用。
教学过程设计:
⒈复习提问:对数函数的概念及性质。
⒉开始正课
1 比较数的大小
例 1 比较下列各组数的大小。
⑴loga5.1 ,loga5.9 (a>0,a≠1)
⑵log0.50.6 ,logЛ0.5 ,lnЛ
师:请同学们观察一下⑴中这两个对数有何特征?
生:这两个对数底相等。
师:那么对于两个底相等的对数如何比大小?
生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。
师:对,请叙述一下这道题的解题过程。
生:对数函数的单调性取决于底的大小:当0
调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递
增,所以loga5.1
板书:
解:Ⅰ)当0
∵5.1<5.9 loga5.1="">loga5.9
Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,∵5.1<5.9 ∴loga5.1
师:请同学们观察一下⑵中这三个对数有何特征?
生:这三个对数底、真数都不相等。
师:那么对于这三个对数如何比大小?
生:找“中间量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnл>1,
log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。
板书:略。
师:比较对数值的大小常用方法:
①构造对数函数,直接利用对数函
数 的单调性比大小
②借用“中间量”间接比大小
③利用对数
函数图象的位置关系来比大小。
2 函数的定义域, 值 域及单调性。
例 2 ⑴求函数y=的定义域。
⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)
师:如何来求⑴中函数的定义域?(提示:求函数的定义域,就是要使函数有意义。若函数中含有分母,分母不为零;有偶次根式,被开方式大于或等于零;若函数中有对数的形式,则真数大于零,如果函数中同时出现以上几种情况,就要全部考虑进去,求它们共同作用的结果。)
生:分母2x-1≠0且偶次根式的被开方式log0.8x-1≥0,且真数x>0。
板书:
解:∵ 2x-1≠0 x≠0.5
log0.8x-1≥0 , x≤0.8
x>0 x>0
∴x(0,0.5)∪(0.5,0.8〕
师:接下来我们一起来解这个不等式。
分析:要解这个不等式,首先要使这个不等式有意义,即真数大于零,再根据对数函数的单调性求解。
师:请你写一下这道题的解题过程。
生:<板书>
解: x2+2x-3>0 x<-3 x="">1
(3x+3)>0 , x>-1
x2+2x-3<(3x+3) -2
不等式的解为:1
例 3 求下列函数的值域和单调区间。
⑴y=log0.5(x- x2)
⑵y=loga(x2+2x-3)(a>0,a≠1)
师:求例3中函数的的值域和单调区间要用及复合函数的思想方法。
下面请同学们来解⑴。
生:此函数可看作是由y= log0.5u, u= x- x2复合而成。
板书:
解:⑴∵u= x- x2>0, ∴0
u= x- x2=-(x-0.5)2+0.25, ∴0
∴y= log0.5u≥log0.50.25=2
∴y≥2
x x(0,0.5] x[0.5,1)
u= x- x2
y= log0.5u
y=log0.5(x- x2)
函数y=log0.5(x- x2)的单调递减区间(0,0.5],单调递 增区间[0.5,1)
注:研究任何函数的.性质时,都应该首先保证这个函数有意义,否则
函数都不存在,性质就无从谈起。
师:在⑴的基础上,我们一起来解
⑵。请同学们观察一下⑴与⑵有什
么区别?
生:
⑴的底数是常值
⑵的底数是字母。
师:那么⑵如何来解?
生:只要对a进行分类讨论,做法与⑴类似。
板书:略。
⒊小结
这堂课主要讲解如何应用对数函数的性质解决一些问题,希望能
通过这堂课使同学们对等价转化、分类讨论等思想加以应用,提高解题能力。
⒋作业
⑴解不等式
①lg(x2-3x-4)≥lg(2x+10);
②loga(x2-x)≥loga(x+1),(a为常数)
⑵已知函数y=loga(x2-2x),(a>0,a≠1)
①求它的单调区间;
②当0
⑶已知函数y=loga (a>0, b>0, 且 a≠1)
①求它的定义域;
②讨论它的奇偶性;
③讨论它的单调性。
⑷已知函数y=loga(ax-1) (a>0,a≠1)
①求它的定义域;
②当x为何值时,函数值大于1;
③讨论它的
单调性。
5、课堂教学设计说明
这节课是安排为习题课,主要利用对数函数的性质解决一些问题,整个一堂课分两个部分:一 。比较数的大小,想通过这一部分的练习,培养同学们构造函数的思想和分类讨论、数形结合的思想。二。函数的定义域, 值 域及单调性,想通过这一部分的练习,能使同学们重视求函数的定义域。因为学生在求函数的值域和单调区间时,往往不考虑函数的定义域,并且这种错误很顽固,不易纠正。因此,力求学生做到想法正确,步骤清晰。为了调动学生的积极性,突出学生是课堂的主体,便把例题分了层次,由易到难,力求做到每题都能由学生独立完成。但是,每一道题的解题过程,老师都应该给以板书,这样既让学生有了获取新知识的快乐,又不必为了解题格式的不熟悉而烦恼。每一题讲完后,由教师简明扼要地小结,以使好学生掌握地更完善,较差的学生也能够跟上。
高一数学教案优秀2
教材分析
圆是学生在初中已初步了解了圆的知识及前面学习了直线方程的基础上来进一步学习《圆的标准方程》,它既是前面圆的知识的复习延伸,又是后继学习圆与直线的位置关系奠定了基础。因此,本节课在本章中起着承上启下的重要作用。
教学目标
1、知识与技能:探索并掌握圆的标准方程,能根据方程写出圆的坐标和圆的半径。
2、过程与方法:通过圆的标准方程的学习,掌握求曲线方程的方法,领会数形结合的思想。
3、情感态度与价值观:激发学生学习数学的兴趣,感受学习成功的喜悦。
教学重点难点
以及措施
教学重点:圆的标准方程理解及运用
教学难点:根据不同条件,利用待定系数求圆的标准方程。
根据教学内容的特点及高一年级学生的年龄、认知特征,紧紧抓住课堂知识的结构关系,遵循“直观认知――操作体会――感悟知识特征――应用知识”的认知过程,设计出包括:观察、操作、思考、交流等内容的教学流程。并且充分利用现代化信息技术的教学手段提高教学效率。以此使学生获取知识,给学生独立操作、合作交流的机会。学法上注重让学生参与方程的推导过程,努力拓展学生思维的空间,促其在尝试中发现,讨论中明理,合作中成功,让学生真正体验知识的形成过程。
学习者分析
高一年级的学生从知识层面上已经掌握了圆的相关性质;从能力层面具备了一定的观察、分析和数据处理能力,对数学问题有自己个人的看法;从情感层面上学生思维活跃积极性高,但他们数学应用意识和语言表达的能力还有待加强。
教法设计
问题情境引入法启发式教学法讲授法
学法指导
自主学习法讨论交流法练习巩固法
教学准备
ppt课件导学案
教学环节
教学内容
教师活动
学生活动
设计意图
情景引入
回顾复习
(2分钟)
1、观赏生活中有关圆的图片
2、回顾复习圆的定义,并观看圆的.生成flash动画。
提问:直线可以用一个方程表示,那么圆可以用一个方程表示吗?
教师创设情景,引领学生感受圆。
教师提出问题。引导学生思考,引出本节主旨。
学生观赏圆的图片和动画,思考如何表示圆的方程。
生活中的图片展示,调动学生学习的积极性,让学生体会到园在日常生活中的广泛应用。
自主学习
(5分钟)
1、介绍动点轨迹方程的求解步骤:
(1)建系:在图形中建立适当的坐标系;
(2)设点:用有序实数对(x,y)表示曲线上任意一点M的坐标;
(3)列式:用坐标表示条件P(M)的方程;
(4)化简:对P(M)方程化简到最简形式;
2、学生自主学习圆的方程推导,并完成相应学案内容,教师介绍求轨迹方程的步骤后,引导学生自学圆的标准方程。
自主学习课本中圆的标准方程的推导过程,并完成导学案的内容,并当堂展示。
培养学生自主学习,获取知识的能力
合作探究(10分钟)
1、根据圆的标准方程说明确定圆的方程的条件有哪些?
2、点M(x0,y0)与圆(x—a)2+(y—b)2=r2的关系的判断方法:
(1)点在圆上
(2)点在圆外
(3)点在圆内
教师引导学生分组探讨,从旁巡视指导学生在自学和探讨中遇到的问题,并鼓励学生以小组为单位展示探究成果。
【高一数学教案优秀】相关文章:
高一数学教案02-04
高一数学教案10-31
高一数学教案15篇02-24
高一数学教案必修一10-30
优秀的数学教案07-08
小学数学教案(优秀)08-24
大班优秀数学教案02-04
小学数学教案优秀01-19
大班优秀数学教案09-19