数列数学教案设计

时间:2021-01-10 12:38:51 数学教案 我要投稿

数列数学教案设计

  教学目标: 理解数列的概念、表示、分类、通项等基本概念,了解数列和函数之间的关系,了解数列的 通项公式,并会用通项公式写出数列的任意一项,对于比较简单的数列,会根据其前几项写出它 的一个通项公式;培养学生认真观察的习惯,培养学生从特殊到一般的归纳能力 教学重点: 1.理解数列概念; 2.用通项公式写出数列的任意一项. 教学难点: 根据一些数列的前几项抽象、归纳出数列的通项公式. ,提高观察、抽象的能力 一、基本概念 数列:按照一定顺序排列着的一列数.

数列数学教案设计

  数列的项、数列的项数 表示数列的第n项与序号n之间的关系的公式 通项公式:不是所有的数列都有通项公式 n n +1 、( 1) 符号控制器:如( 1) 递推公式:表示任一项与它的前一项(或前几项)间的关系的公式.

  有穷数列:项数有限的数列. 无穷数列:项数无限的数列. 递增数列:从第2项起,每一项都不小于它的前一项的数列. 数列分类 递减数列:从第2项起,每一项都不大于它的前一项的数列. 常数列:各项相等的数列. 摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列.二、等差数列:从第 2 项起,每一项与它的前一项的差等于同一个常数,这个常数称为等差数列 的公差.

  an an 1 d , n 2且n Z ,或 an 1 an d , n 1且n Z an a1 n 1 d am n m d kn b a a1 an am 1、若等差数列 an 的首项是 a1 ,公差是 d ,则有 d n n 1 n m a a n n 1 1 d 等差中项:三个数a,G,b组成的等差数列,则称G为a与b的等差中项 2G=a b 2n p q 2an a p aq 若{an }是等差数列,则 性质: m n p q am an a p aq 若{an }是等差数列,则am、am k、am 2 k、am 3k、 构成公差公差kd的等差数列 若{a }、{b }是等差数列, 则{ a + }、 { an + bn }是等差数列 n n n 2、等差数列的前 n 项和的公式: Sn 等差数列的前 n 项和的性质:

  n a1 an n n 1 na1 d pn2 qn 2 2

  S偶 S奇 nd * a S奇 若项数为2n n ,则S2 n n an an 1 , n S偶 an 1 (1) S奇 S偶 an * 若项数为2n 1 n

  ,则S n S奇 2 n 1 2n 1 an,S奇 nan S 偶 n 1 an, S偶 n 1

  Sm,S2 m Sm ,S3m S2 m成等差数列 (2) S n { }是等差数列 n

  若等差数列 {an } , {bn } 的前 n 项和为 Sn , Tn ,,则

  an S 2 n 1 bn T2 n 1

  (3)等差数列的求和最值问题:(二次函数的配方法;通项公式求临界项法) ①若

  ak 0 a1 0 ,则 S n 有最大值,当 n=k 时取到的最大值 k 满足 d 0 ak 1 0 ak 0 a1 0 ,则 S n 有最小值,当 n=k 时取到的最大值 k 满足 d 0 ak 1 0

  ②若

  三、等比数列:从第 2 项起,每一项与它的前一项的比等于同一个常数,这个常数称为等比数列 的公比. 1、通项公式及其性质

  an a1q n 1 am q n m 若等比数列 an 的首项是 a1 ,公比是 q ,则 n 1 an n m an . q a , q am 1

  a,G,b成等比数列,则称G为a与b的等比中项 G 2 ab 2 2n p q an a p aq 性质:若 {an }是等比数列,则 m n p q am an a p aq k am、am k、am 2 k、am 3k、 成公比q 的等比数列2、前 n 项和及其性质

  na1 q 1 , (q 1) . Sn a1 1 q n a a q a a q n a a 1 n 1 1 1 q n 1 Aq n A, q 1 1 q 1 q 1 q 1 q 1 q

  Sn m Sn q n Sm Sn、S2 n Sn、S3n S2 n成等比数列 . 性质 S偶 若项数为2n,则 S q 奇 Sm,S2 m Sm ,S3m S2 m成等比数列四、(1) an 与 Sn 的关系: an

  n 1 S1 ; (检验 a1 是否满足 an Sn Sn 1 ) S S n 2 n 1 n

  n(n 1) 1 2 3 n 2 n(n 1)(n 2) (2) 12 22 32 n 2 6 2 3 3 3 n (n 1) 2 3 1 2 3 n 4

  五、一些方法 1、等差数列、等比数列的最大项、最小项;前 n 项和的最大值、最小值 2、求通向公式的常见方法 (1)观察法;待定系数法(已知是等差数列或等比数列); (2) an an 1 f (n), 累加消元;

  an f (n), 累乘消元。 an 1

  (3 )

  an 1 1 an 1 , (倒数构造等差: k ) ; an k an an 1 an an 1 an an 1 , (两边同除构造等差: 1 1 1) ; an an 1

  (4) an kan 1 b, 化为 (an x) k (an 1 x) 构造等比

  an qan 1 pn r(构造等比数列: , an xn y q an 1 x n 1 y )an qan 1 pn ,化为3、求前 n 项和的常见方法 公式法、倒序相加、错位相减、列项相消、分组求和

  an q an

  1 q 1 ,分 是否等 1 讨论。 n n 1 p p p p

  来在学习第二章函数知识的基础上,今天我们一起来学习第三章数列有关知识,首先我们 看一些例子. 1,2,3,4,…,50 1,2,22,23,…,263 ① ②

  15,5,16,16,28 0,10,20,30,…,1000 1,0.84,0.842,0.843,…

  ③ ④ ⑤

  请同学们观察上述例子,看它们有何共同特点? 它们均是一列数,它们是有一定次序的. 引出数列及有关定义. 1.定义 (1)数列:按照一定次序排成的'一列数. 看来上述例子就为我们所学数列.那么一些数为何将其按照一定的次序排列,它有何实际意 义呢?也就是说和我们生活有何关系呢? 如数列①,它就是我们班学生的学号由小到大排成的一列数. 数列②,是引言问题中各个格子里的麦粒数按放置的先后排成的一列数. 数列③,好像是我国体育健儿在五次奥运会中所获金牌数排成的一列数. 数列④,可看作是在 1 km 长的路段上,从起点开始,每隔 10 m 种植一棵树,由近及远各 棵树与起点的距离排成的一列数. 数列⑤,我们在化学课上学过一种放射性物质,它不断地变化为其他物质,每经过 1 年,它 就只剩留原来的 84%, 若设这种物质最初的质量为 1, 则这种物质各年开始时的剩留量排成一列 数,则为:1,0.84,0.842,0.843,…. 诸如此类,还有很多,举不胜举,我们学习它,掌握它,也是为了使我们的生活更美好,下 面我们进一步讨论,好吗? 现在,就上述例子,我们来看一下数列的基本知识. 比如,数列中的每一个数,我们以后把其称为数列的项,各项依次叫做数列的第 1 项(或首 项),第 2 项,…,第 n 项,…. 那么,数列一般可表示为 a1,a2,a3,…,an,….其中数列的第 n 项用 an 来表示. 数列还可简记作{an}.

【数列数学教案设计】相关文章:

数学数列的优秀教案12-19

高考数学数列问题知识01-30

高二数学数列教案01-25

高一数学《等比数列的性质及应用》教案设计01-28

高考数学数列易错知识01-30

数学教案M: 数列的求和03-17

高考数学数列练习题01-17

高二数学数列知识点01-29

等比数列的数学教案12-19