初中数学微课教案

时间:2021-01-21 10:46:56 数学教案 我要投稿

初中数学微课教案模板

  作为一名初中数学老师,要教会学生把微课的数学知识运用到生活中。小编整理的观教案模板,希望大家喜欢,仅供参考哦。

初中数学微课教案模板

  教学背景:

  配方法是初中数学一种很重要的思想方法,具有举足轻重的作用和地位,在中考中频频出现,是初中生必备的一种数学能力。在解一元二次方程,二次函数,因式分解,解特殊方程,有关最大或最小值题目,代数式求值中有广泛应用。

  教学目标:

  1、了解配方法的定义;

  2、理解并掌握配方法的应用;

  教学方法:

  视频教学、例题讲解

  教学过程:

  一、 温故知新

  什么是配方法?

  配方法是指通过配、凑等手段得到完全平方形式,再利用完全平方项是非负数等性质,达到增加题目的条件等目的。

  二、 学习新知

  展示配方法的四个方面应用:

  (一)、配方法解一元二次方程

  例1:用配方法解方程3x2+8x-3=0.

  步骤:

  1.化1:把二次项系数化为1;

  2.移项:把常数项移到方程的右边;

  3.配方:方程两边都加上一次项系数绝对值一半的平方;

  4.变形:方程左边分解因式,右边合并同类;

  5.开方:根据平方根意义,方程两边开平方;

  6.求解:解一元一次方程;

  7.定解:写出原方程的解.

  重点讲解第一和第三步骤

  (二)、配方法求二次函数的'最值

  例2:已知x是实数,求y=x2-6x+10的最值.

  分析:配方成顶点式即可求出函数最值.

  (三)、配方法求代数式的最值

  例3:证明无论x为何实数,代数式2x2-3x+10的值恒大于零.

  分析:将这个二次三项式配方,就可判断其最值是什么.

  接着提问:你能求出此代数式的最值吗?

  (四)、配方法解特殊方程

  例4:已知方程x2 -10x +y2-8y+41=0.求x+y值.

  分析:先解方程求出x和y值,将41拆成25+16,等式左边配方凑成两完全平方式,于是可化为两数平方和为0的式子,从而分别求出x、y的值.

  三、 回味无穷

  1、配方法的应用

  一、配方法解一元二次方程

  二、配方法求二次函数的最值

  三、配方法求代数式的最值

  四、配方法解特殊方程

  2、思考:上面配方法的四个应用中,哪些是“配”,哪些是“凑”呢?

  第一、二、三方面关键在“配”,第四方面关键在“凑”.

  四、作业设计:见进阶练习

  五、教学总结:

  配方法在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好。


【初中数学微课教案】相关文章:

初中数学说课教案11-09

初中语文《斑羚飞渡》微课教案02-10

优秀初中英语微课教案11-10

初中美术微课教案:有趣的墙03-13

浅谈大学数学微课论文03-29

初中数学旋转的特征说课教案范文04-10

初探大学数学微课建设论文03-28

数学微课教学设计(精选5篇)06-09

初中数学全国优质课教案教学设计02-14