- 相关推荐
对函数的进一步认识数学教案
【学习引导】
一、自主学习
1. 阅读课本 P32P33
2. 回答问题
(1)课本内容分成几个层次?每个层次的中心内容是什么?
(2)层次间有什么联系?
(3)什么是映射?什么是一一映射原像和像分别指什么?
(4)函数和映射有什么区别和联系?
3. 完成P33练习.
4. 小结.
二、方法指导
本节通过简单的对应图示了解一一映射的概念,同学们在学习应该认识到事物间是有联系的,对应、映射是一种联系方式. 于此同时同学们的观察能力、判断能力、论述能力都得应该到相应的提高.
【思考引导】
一、 提问题
1.函数有哪几要素?
2.函数是一种特殊的映射,特殊在哪里?
二、变题目
1.在M到N的映射中,下列说法正确的是 ( )
A.M中有两个不同的元素对应的象必不相同
B.N中有两个不同的元素的原象可能相同
C.N中的每一个元素都有原象
D.N中的某一个元素的原象可能不只一个
2. 设A,B是两个集合,并有下列条件:
①集合A中不同元素在集合B中有不同的像;②集合A,B是非空的数集;③集合B中的每一个元素在A中都有原像;④集合A中任何一个元素在集合B中都有唯一的像. 使对应 成为从定义域A到值域B上的函数的条件是( ).
A.①②③ B.①②④ C.①③④ D.②③④
3. 集合A,B是平面直角坐标系中的两个点集,给定从A到B的映射
: ( , ) ( + , ),则(5,2)的原像是 .
4.已知A=B=R, A, B,: = +b,若1, 8的原像相应是3和10,则5在下的像是 .
【总结引导】
1. 在理解映射的概念时,应抓住集合A中的任何一个元素在集合B中都有惟一的元素和它对应,或者说A中的每个元素在B中都有惟一的象;
在理解一一映射的概念时,应抓住三点:①A到B是映射,②A中每个不同元素在B中有不同的象,③B中的每一个元素在A中都有原象;或者抓住两点:①A到B是映射,②B到A也是映射.
2. 函数的实质就是一一对应,一一映射不等同于一一对应.
3.映射必须满足的条件是:(1) ;(2) ; (3) .
【对函数的进一步认识数学教案】相关文章:
《函数的图象》数学教案10-16
《二次函数》数学教案(精选10篇)12-02
《认识小数》数学教案10-19
小学数学教案:认识周长09-01
中班数学教案对0的认识10-15
2017最新数学教案-认识分数11-27
数学教案认识数字010-13
大班数学教案:认识“〈”和“〉”11-27
大班数学教案:认识球体07-20
小班数学教案:认识形状07-18