二次函数的数学优秀教案

时间:2021-02-23 18:55:15 数学教案 我要投稿

二次函数的数学优秀教案

  一.学习目标

 二次函数的数学优秀教案

  1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义。

  2.了解二次函数关系式,会确定二次函数关系式中各项的系数。

  二.知识导学

  (一)情景导学

  1.一粒石子投入水中,激起的波纹不断向外扩展,扩大的圆的面积S与半径r之间的函数关系式是 。

  2.用16米长的篱笆围成长方形的生物园饲养小兔,怎样围可使小兔的活动范围较大?

  设长方形的长为x 米,则宽为 米,如果将面积记为y平方米,那么变量y与x之间的函数关系式为 .

  3.要给边长为x米的正方形房间铺设地板,已知某种地板的价格为每平方米240元,踢脚线的价格为每米30元,如果其他费用为1000元,门宽0.8米,那么总费用y为多少元?

  在这个问题中,地板的费用与 有关,为 元,踢脚线的费用与 有关,为 元;其他费用固定不变为 元,所以总费用y(元)与x(m)之间的函数关系式是 。

  (二)归纳提高。

  上述函数函数关系有哪些共同之处?它们与一次函数、反比例函数的关系式有什么不同?

  。

  一般地,我们称 表示的函数为二次函数。其中 是自变量, 函数。

  一般地,二次函数 中自变量x的取值范围是 ,你能说出上述三个问题中自变量的取值范围吗?

  (三)典例分析

  例1、判断:下列函数是否为二次函数,如果是,指出其中常数a.b.c的值.

  (1) y=1— (2)y=x(x-5) (3)y= - x+1 (4) y=3x(2-x)+ 3x2

  (5)y= (6) y= (7)y= x4+2x2-1 (8)y=ax2+bx+c

  例2.当k为何值时,函数 为二次函数?

  例3.写出下列各函数关系,并判断它们是什么类型的函数.

  ⑴正方体的表面积S(cm2)与棱长a(cm)之间的函数关系;

  ⑵圆的面积y(cm2)与它的周长x(cm)之间的函数关系;

  ⑶某种储蓄的年利率是1.98%,存入10000元本金,若不计利息,求本息和y(元)与所存年数x之间的函数关系;

  ⑷菱形的两条对角线的和为26cm,求菱形的面积S(cm2)与一对角线长x(cm)之间的函数关系.

  三.巩固拓展

  1.已知函数 是二次函数,求m的值.

  2. 已知二次函数 ,当x=3时,y= -5,当x= -5时,求y的值.

  3.一个长方形的长是宽的1.6倍,写出这个长方形的面积S与宽x之间函数关系式。

  4.一个圆柱的高与底面直径相等,试写出它的表面积S与底面半径r之间的函数关系式

  5.用一根长为40 cm的铁丝围成一个半径为r的扇形,求扇形的面积y与它的半径x之间的函数关系式.这个函数是二次函数吗?请写出半径r的取值范围.

  6. 一条隧道的截面如图所示,它的上部是一个半圆,下部是一个矩形,矩形的一边长2.5 m.

  ⑴求隧道截面的面积S(m2)关于上部半圆半径r(m)的函数关系式;

  ⑵求当上部半圆半径为2 m时的截面面积.(π取3.14,结果精确到0.1 m2)

  课堂练习:

  1.判断下列函数是否是二次函数,若是,请指出它的二次项系数、一次项系数、常数项。

  (1)y=2-3x2; (2)y=x2+2x3; (3)y= ; (4)y= .

  2.写出多项式的对角线的条数d与边数n之间的函数关系式。

  3.某产品年产量为30台,计划今后每年比上一年的产量增长x%,试写出两年后的产量y(台)与x的函数关系式。

  4.圆柱的高h(cm)是常量,写出圆柱的体积v(cm3)与底面周长C(cm)之间的'函数关系式。

  课外作业:

  A级:

  1.下列函数:(1)y=3x2+ +1;(2)y= x2+5;(3)y=(x-3)2-x2;(4)y=1+x- ,属于二次函数的

  是 (填序号).

  2.函数y=(a-b)x2+ax+b是二次函数的条件为 .

  3.下列函数关系中,满足二次函数关系的是( )

  A.圆的周长与圆的半径之间的关系; B.在弹性限度内,弹簧的长度与所挂物体质量的关系;

  C.圆柱的高一定时,圆柱的体积与底面半径的关系;

  D.距离一定时,汽车行驶的速度与时间之间的关系.

  4.某超市1月份的营业额为200万元,2、3月份营业额的月平均增长率为x,求第一季度营业额y(万元)与x的函数关系式.

  B级:

  5、一块直角三角尺的形状与尺寸如图,若圆孔的半径为 ,三角尺的厚度为16,求这块三角尺的体积V与n的函数关系式.

  6.某地区原有20个养殖场,平均每个养殖场养奶牛2000头。后来由于市场原因,决定减少养殖场的数量,当养殖场每减少1个时,平均每个养殖场的奶牛数将增加300头。如果养殖场减少x个,求该地区奶牛总数y(头)与x(个)之间的函数关系式。

  C级:

  7.圆的半径为2cm,假设半径增加xcm 时,圆的面积增加到y(cm2).

  (1)写出y与x之间的函数关系式;

  (2)当圆的半径分别增加1cm、 时,圆的面积分别增加多少?

  (3)当圆的面积为5πcm2时,其半径增加了多少?

  8.已知y+2x2=kx(x-3)(k≠2).

  (1)证明y是x的二次函数;

  (2)当k=-2时,写出y与x的函数关系式。

【 二次函数的数学优秀教案】相关文章:

高考数学复习初等函数知识点:二次函数11-21

高考数学复习知识点:二次函数10-15

高考数学知识点之二次函数11-28

高考数学知识点总结:二次函数11-20

高中数学二次函数知识点总结10-22

高一数学教案《函数概念》12-15

高一数学上册知识点:一次函数和二次函数10-25

数学优秀教案09-25

九年级数学下册《二次函数》教学反思范文(精选4篇)02-23

初中数学函数与方程的思想12-24