函数的奇偶性数学教案

时间:2022-10-11 18:23:06 数学教案 我要投稿
  • 相关推荐

函数的奇偶性数学教案

  一、三维目标:

函数的奇偶性数学教案

  知识与技能:使学生理解奇函数、偶函数的概念,学会运用定义判断函数的奇偶性。

  过程与方法:通过设置问题情境培养学生判断、推断的能力。

  情感态度与价值观:通过绘制和展示优美的函数图象来陶冶学生的情操. 通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的思维品质。

  二、学习重、难点:

  重点:函数的奇偶性的概念。

  难点:函数奇偶性的判断。

  三、学法指导:

  学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对函数奇偶性的全面的体验和理解。对于奇偶性的应用采取讲练结合的方式进行处理,使学生边学边练,及时巩固。

  四、知识链接:

  1.复习在初中学习的轴对称图形和中心对称图形的定义:

  2.分别画出函数f (x) =x3与g (x) = x2的图象,并说出图象的对称性。

  五、学习过程:

  函数的奇偶性:

  (1)对于函数 ,其定义域关于原点对称:

  如果______________________________________,那么函数 为奇函数;

  如果______________________________________,那么函数 为偶函数。

  (2)奇函数的图象关于__________对称,偶函数的图象关于_________对称。

  (3)奇函数在对称区间的增减性 ;偶函数在对称区间的增减性 。

  六、达标训练:

  A1、判断下列函数的奇偶性。

  (1)f(x)=x4;(2)f(x)=x5;

  (3)f(x)=x+ (4)f(x)=

  A2、二次函数 ( )是偶函数,则b=___________ .

  B3、已知 ,其中 为常数,若 ,则

  _______ .

  B4、若函数 是定义在R上的奇函数,则函数 的图象关于 ( )

  (A) 轴对称 (B) 轴对称 (C)原点对称 (D)以上均不对

  B5、如果定义在区间 上的函数 为奇函数,则 =_____ .

  C6、若函数 是定义在R上的奇函数,且当 时, ,那么当

  时, =_______ .

  D7、设 是 上的奇函数, ,当 时, ,则 等于 ( )

  (A)0.5 (B) (C)1.5 (D)

  D8、定义在 上的奇函数 ,则常数 ____ , _____ .

  七、学习小结:

  本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称。单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质。

  八、课后反思:

【函数的奇偶性数学教案】相关文章:

高一数学《函数的奇偶性》教案设计(精选5篇)05-11

《函数的图象》数学教案10-16

《二次函数》数学教案(精选10篇)12-02

关于二次函数的图像与性质的数学教案(精选9篇)01-02

高一数学教案《方程根与函数零点》(精选11篇)11-19

高中常考的数学知识点:对数函数与幂函数11-10

关于Excel的Hour函数介绍09-22

Excel日期和时间函数11-27

关于Excel工程函数大全11-27

关于excel中的cos函数11-03