《二次函数》数学教案

时间:2022-12-02 16:25:28 数学教案 我要投稿

《二次函数》数学教案(精选10篇)

  作为一名无私奉献的老师,时常需要用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么大家知道正规的教案是怎么写的吗?下面是小编收集整理的《二次函数》数学教案(精选10篇),仅供参考,欢迎大家阅读。

《二次函数》数学教案(精选10篇)

  《二次函数》数学教案 篇1

  学习目标:

  1、能解释二次函数 的图像的位置关系;

  2、体会本节中图形的变化与 图形上的点的坐标变化之间的关系(转化),感受形数 结合的数学思想等。

  学习重点与难点:

  对二次函数 的图像的位置关系解释和研究问题的数学方法的感受是学习重点;难点是对数学问题研究问题方法的感受和领悟。

  学习过程:

  一、知识准备

  本节课的学习的内容是课本P12-P14的内容,内容较长,课本上问题较多,需要你操作、观察、思考和概括,请你注意:学习时要圈、点、勾、画,随时记录甚至批注课本,想想那个人是如何研究出来的。你有何新的发现呢?

  二、学习内容

  1.思考:二次函数 的图象是个什么图形?是抛物线吗?为什么?(请你仔细看课本P12-P13,作出合理的解释)

  x -3 -2 -1

  0 1 2 3

  类似的:二次函数 的图象与函数 的图象有什么关系?

  它的对称轴、顶点、最值、增减性如何?

  2.想一想:二次函数 的图象是抛物线吗?如果结合下表和看课本P13-P14你的解释是什么?

  x

  -8 -7 -6 -3 -2 -1 0 1 2 3 4 5 6

  类似的:二次函数 的图象与二次函数 的图象有什么关系 ?它的对称轴、顶点呢?它的对称轴、顶点、最值、增减性如何呢

  三、知识梳理

  1、二次函数 图像的形状,位置的关系是:

  2、它们的性质是:

  四、达标测试

  ⒈.将抛物线y=4x2向上平移3个单位,所得的抛物线的函数式是 。

  将抛物线y=-5x2+1向下平移5个单位,所得的抛物线的函数式是 。

  将函数y=-3x2+4的图象向 平移 个单位可得y=-3x2的图象;

  将y=2x2-7的图象向 平移 个单位得到可由 y=2x2的图象。

  将y=x2-7的图象向 平移 个单位 可得到 y=x2+2的图象。

  2.抛物线y=-3(x-1)2可以看作是抛物线y=-3x2沿x 轴 平移了 个单位;

  抛物线y=-3(x+1)2可以看作是抛物线y=-3x2沿x轴 平移了 个单位.

  抛物线y=-3(x-1)2的顶点是 ;对称轴 是 ;

  抛物线y=-3(x+1)2的顶点是 ;对称轴是 .

  3.抛物线y=-3(x-1)2在对称轴(x=1)的左侧,即当x 时, y随着x的增大而 ; 在对称轴(x=1)右侧,即当x 时, y随着x的增大而 .当x= 时,函数y有最 值,最 值是 ;

  二次 函数y=2x2+5的图像是 ,开口 ,对称轴是 ,当x= 时,y有最 值,是 。

  4.将函数y=3 (x-4)2的图象沿x轴对折后得到的函数解析式是 ;

  将函数y=3(x-4)2的 图象沿y轴对折后得到的函数解析式是 ;

  5.把抛物线y=a(x-4)2向左平移6个单位后得到抛物线y=- 3(x-h)2的图象,则a= ,h= .

  函数y=(3x+6)2的图象是由函数 的图象向左平移5个单位得到的,其图象开口向 ,对称轴是 ,顶点坐标是 ,当x 时,y随x的增大而增大,当x= 时,y有最 值是 .

  6.已知二次函数y=ax2+c ,当x取x1,x2(x1x2), x1,x2分别是A,B两点的横坐标)时,函数值相等,

  则当x取x1+x2时,函数值为 ( )

  A. a+c B. a-c C. c D. c

  7.已知二次函数y=a(x-h)2, 当x=2时有最大值,且此函数的图象经过点(1,-3),求此函数的解析式,并指出当x为何值时,y随x的增大而增大?

  《二次函数》数学教案 篇2

  教学目标

  【知识与技能】

  使学生会用描点法画出函数y=ax2的图象,理解并掌握抛物线的有关概念及其性质.

  【过程与方法】

  使学生经历探索二次函数y=ax2的图象及性质的过程,获得利用图象研究函数性质的经验,培养学生分析、解决问题的能力.

  【情感、态度与价值观】

  使学生经历探索二次函数y=ax2的图象和性质的过程,培养学生观察、思考、归纳的良好思维品质.

  重点难点

  【重点】

  使学生理解抛物线的有关概念及性质,会用描点法画出二次函数y=ax2的图象.

  【难点】

  用描点法画出二次函数y=ax2的图象以及探索二次函数的性质.

  教学过程

  一、问题引入

  1.一次函数的图象是什么?反比例函数的图象是什么?

  (一次函数的图象是一条直线,反比例函数的图象是双曲线.)

  2.画函数图象的一般步骤是什么?

  一般步骤:(1)列表(取几组x,y的对应值);(2)描点(根据表中x,y的数值在坐标平面中描点(x,y));(3)连线(用平滑曲线).

  3.二次函数的图象是什么形状?二次函数有哪些性质?

  (运用描点法作二次函数的图象,然后观察、分析并归纳得到二次函数的性质.)

  二、新课教授

  【例1】 画出二次函数y=x2的图象.

  解:(1)列表中自变量x可以是任意实数,列表表示几组对应值.

  (2)描点:根据上表中x,y的数值在平面直角坐标系中描点(x,y).

  (3)连线:用平滑的曲线顺次连接各点,得到函数y=x2的图象,如图所示.

  思考:观察二次函数y=x2的图象,思考下列问题:

  (1)二次函数y=x2的图象是什么形状?

  (2)图象是轴对称图形吗?如果是,它的对称轴是什么?

  (3)图象有最低点吗?如果有,最低点的坐标是什么?

  师生活动:

  教师引导学生在平面直角坐标系中画出二次函数y=x2的图象,通过数形结合解决上面的3个问题.

  学生动手画图,观察、讨论并归纳,积极展示探究结果,教师评价.

  函数y=x2的图象是一条关于y轴(x=0)对称的曲线,这条曲线叫做抛物线.实际上二次函数的图象都是抛物线.二次函数y=x2的图象可以简称为抛物线y=x2.

  由图象可以看出,抛物线y=x2开口向上;y轴是抛物线y=x2的对称轴:抛物线y=x2与它的对称轴的交点(0,0)叫做抛物线的顶点,它是抛物线y=x2的最低点.实际上每条抛物线都有对称轴,抛物线与对称轴的交点叫做抛物线的顶点,顶点是抛物线的最低点或最高点.

  【例2】 在同一直角坐标系中,画出函数y=x2及y=2x2的图象.

  解:分别填表,再画出它们的图象.

  思考:函数y=x2、y=2x2的图象与函数y=x2的图象有什么共同点和不同点?

  师生活动:

  教师引导学生在平面直角坐标系中画出二次函数y=x2、y=2x2的图象.

  学生动手画图,观察、讨论并归纳,回答探究的思路和结果,教师评价.

  抛物线y=x2、y=2x2与抛物线y=x2的开口均向上,顶点坐标都是(0,0),函数y=2x2的图象的开口较窄,y=x2的图象的开口较大.

  探究1:画出函数y=-x2、y=-x2、y=-2x2的图象,并考虑这些图象有什么共同点和不同点。

  师生活动:

  学生在平面直角坐标系中画出函数y=-x2、y=-x2、y=-2x2的图象,观察、讨论并归纳.教师巡视学生的探究情况,若发现问题,及时点拨.

  学生汇报探究的思路和结果,教师评价,给出图形.

  抛物线y=-x2、y=-x2、y=-2x2开口均向下,顶点坐标都是(0,0),函数y=-2x2的图象开口最窄,y=-x2的图象开口最大.

  探究2:对比抛物线y=x2和y=-x2,它们关于x轴对称吗?抛物线y=ax2和y=-ax2呢?

  师生活动:

  学生在平面直角坐标系中画出函数y=x2和y=-x2的图象,观察、讨论并归纳.

  教师巡视学生的探究情况,发现问题,及时点拨.

  学生汇报探究思路和结果,教师评价,给出图形.

  抛物线y=x2、y=-x2的图象关于x轴对称.一般地,抛物线y=ax2和y=-ax2的图象也关于x轴对称.

  教师引导学生小结(知识点、规律和方法).

  一般地,抛物线y=ax2的对称轴是y轴,顶点是原点.当a0时,抛物线y=ax2的开口向上,顶点是抛物线的最低点,当a越大时,抛物线的开口越小;当a0时,抛物线y=ax2的开口向下,顶点是抛物线的最高点,当a越大时,抛物线的开口越大.

  从二次函数y=ax2的图象可以看出:如果a0,当x0时,y随x的增大而减小,当x0时,y随x的增大而增大;如果a0,当x0时,y随x的增大而增大,当x0时,y随x的增大而减小.

  三、巩固练习

  1.抛物线y=-4x2-4的开口向,顶点坐标是,对称轴是,当x=时,y有最值,是.

  【答案】下 (0,-4) x=0 0 大 -4

  2.当m≠时,y=(m-1)x2-3m是关于x的二次函数.

  【答案】1

  3.已知抛物线y=-3x2上两点A(x,-27),B(2,y),则x=,y=.

  【答案】-3或3 -12

  4.抛物线y=3x2与直线y=kx+3的交点坐标为(2,b),则k=,b=.

  【答案】 12

  5.已知抛物线的顶点在原点,对称轴为y轴,且经过点(-1,-2),则抛物线的表达式为.

  【答案】y=-2x2

  6.在同一坐标系中,图象与y=2x2的图象关于x轴对称的是()

  A.y=x2B.y=x2

  C.y=-2x2 D.y=-x2

  【答案】C

  7.抛物线y=4x2、y=-2x2、y=x2的图象,开口最大的是()

  A.y=x2 B.y=4x2

  C.y=-2x2 D.无法确定

  【答案】A

  8.对于抛物线y=x2和y=-x2在同一坐标系中的位置,下列说法错误的是()

  A.两条抛物线关于x轴对称

  B.两条抛物线关于原点对称

  C.两条抛物线关于y轴对称

  D.两条抛物线的交点为原点

  【答案】C

  四、课堂小结

  1.二次函数y=ax2的图象过原点且关于y轴对称,自变量x的取值范围是一切实数.

  2.二次函数y=ax2的性质:抛物线y=ax2的对称轴是y轴,顶点是原点.当a0时,抛物线y=x2开口向上,顶点是抛物线的最低点,当a越大时,抛物线的开口越小;当a0时,抛物线y=ax2开口向下,顶点是抛物线的最高点,当a越大时,抛物线的开口越大.

  3.二次函数y=ax2的图象可以通过列表、描点、连线三个步骤画出来.

  教学反思

  本节课的内容主要研究二次函数y=ax2在a取不同值时的图象,并引出抛物线的有关概念,再根据图象总结抛物线的有关性质.整个内容分成:

  (1)例1是基础;

  (2)在例1的基础之上引入例2,让学生体会a的大小对抛物线开口宽阔程度的影响;

  (3)例2及后面的练习探究让学生领会a的正负对抛物线开口方向的影响;

  (4)最后让学生比较例1和例2,练习归纳总结。

  《二次函数》数学教案 篇3

  一、教材分析

  1、教材的地位和作用

  二次函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,在初中的学习中已经给出了二次函数的图象及性质,学生已经基本掌握了二次函数的图象及一些性质,只是研究函数的方法都是按照函数解析式---定义域----图象----性质的方法进行的,基于这种情况,我认为本节课的作用是让学生借助于熟悉的函数来进一步学习研究函数的更一般的方法,即:利用解析式分析性质来推断函数图象。它可以进一步深化学生对函数概念与性质的理解与认识,使学生得到较系统的函数知识和研究函数的方法,站在新的高度研究函数的性质与图象。因此,本节课的内容十分重要。

  2、教学的重点和难点

  教学重点:使学生掌握二次函数的概念、性质和图象;从函数的性质推断图象的方法。

  教学难点:掌握从函数的性质推断图象的方法。

  二、目标分析

  按照新课标指出三维目标,根据任教班级学生的实际情况,本节课我确定的教学目标是:

  1、知识与技能:掌握二次函数的性质与图象,能够借助于具体的二次函数,理解和掌握从函数的性质推断图象的方研究法。

  2、过程与方法:通过老师的引导、点拨,让学生在分组合作、积极探索的氛围中,掌握从函数解析式、性质出发去认识函数图象的高度理解和研究函数的方法。

  3、情感、态度、价值观:让学生感受数学思想方法之美、体会数学思想方法之重要;培养学生主动学习、合作交流的意识等。

  三、教法学法分析

  遵循“教师的主导作用和学生的主体地位相统一的教学规律”,从教师的角色突出体现教师是设计者、组织者、引导者、合作者,经过教师对教材的分析理解,在教师的组织引导和师生互动过程中以问题为载体实施整个教学过程;在学生这方面,通过自主探索、合作交流、归纳方法等一系列活动为主线,感受知识的形成过程,拓展和完善自己的认知结构,进而体现出教学过程中教师与学生的双主体作用。

  四、教学过程分析

  根据新课标的理念,我把整个的教学过程分为六个阶段,即:创设情景、提出问题

  师生互动、探究新知

  独立探究,巩固方法

  强化训练,加深理解

  小结归纳,拓展深化

  布置作业,提高升华

  环节1本节课一开始我就让学生直接总结出二次函数的性质与图象形状,在学生回答后,以有必要再重复吗?编者的失误?还是另有用意呢?的设问来激发学生的求知欲,在学生感觉很疑惑的时候马上进入环节2:试作出二次函数的图象。目的是充分暴露学生在作图时不能很好的结合函数的性质而出现的错误或偏差问题,突出本节课的重要性。在学生总结交流的基础上教师指出学生的错误并以设问的方式提出本节课的目标:如何利用函数性质的研究来推断出较为准确的函数图象,进而引导学生进入师生互动、探究新知阶段。

  在这个阶段,我引用课本所给的例题1请同学们以学习小组为单位尝试完成并作出总结发言。目的是:让学生充分参与,在合作探究中让学生最大限度地突破目标或暴露出在尝试研究过程中出现的分析障碍,即不能很好的把握函数的性质对图象的影响,不能把抽象的性质与直观的图象融会贯通,这样便于教师在与学生互动的过程中准确把握难点,各个击破,最终形成知识的迁移。在学生探讨后,教师选小组代表做总结发言,其他小组作出补充,教师引导从逐步完善函数性质的分析。其中,学生对于对称轴的确定、单调区间及单调性的分析阐述等可能存在困难。这时教师可以利用对解析式的分析结合多媒体演示引导学生得到分析的思路和解决的方法,在师生互动的过程中把函数的性质完善。之后进入环节3:再次让学生利用二次函数的性质推断出二次函数的图象,强化用二次函数的性质推断图象的关键。进而突破教学难点。让学生真正实现知识的迁移,完成整个探究过程,形成较为完整的新的认知体系.当然,在这个过程中可能会有学生提出图象为什么是曲线而不是直线等问题,为了消除学生的疑惑,进入第4个环节:教师要简单说明这是研究函数要考虑的一个重要的性质,是函数的凹凸性,后面我们将要给大家介绍,同学们可以阅读课本第110页的探索与研究。这样也给学生留下一个思考与探索的空间,培养学生课外阅读、自主研究的能力,增强学生学习数学的积极性。

  在以上环节完成后,进入第5个环节:让学生对利用解析式分析性质然后推断函数图象的研究过程进行梳理并加以提炼、抽象、概括,得出研究函数的具体操作过程,使问题得以升华,拓宽学生的思维,将新知识内化到自己的认知结构中去.最终寻求到解决问题的方法。

  教学的最终目标应该落实到每一个学生个体的内化与发展,由此让引导学生进入独立探究,巩固方法的阶段。例2在题目的设置上变换二次函数的开口方向,目的是一方面使学生加深对知识的理解,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力,学生在例1的基础上将会目标明确地进行函数性质的研究,然后推断出比较准确的函数图象,使新知得到有效巩固。

  通过前面三个阶段的学习,学生应该基本掌握了本节课的相关知识。但对二次函数中系数a、b、c的对二次函数的影响还有待提高,为此我把课本中的例3进行改编,引导学生进入强化训练,加深理解阶段。一方面可以解决学生对奇偶性的质疑,另一方面也可以把学生对二次函数的认识提到新的高度。

  第五个阶段:小结归纳,拓展深化。为了让学生能够站在更高的角度认识二次函数和掌握函数的一般研究方法,教师引导学生从两个方面总结。在你对函数图象与性质的关系有怎样的理解方面教师要引导、拓展,明确今天所学习的方法实际上是研究函数性质图象的一般方法,对于一些陌生的或较为复杂的函数只要借助于适当的方法得到相关的性质就可以推断出函数的图象,从而把学生的认知水平定格在一个新的高度去理解和认识函数问题。

  最后一个阶段是布置作业,提高升华,作业的设置是分层落实.巩固题让学生复习解题思路,准确应用,以便举一反三.探究题通过对教材例题的改编,供学有余力的学生自主探索,提高他们分析问题、解决问题的能力.

  以上六个阶段环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动手操作,动眼观察,动脑思考,亲身经历了知识的形成和发展过程,并得以迁移内化。而最终的探究作业又将激发学生兴趣,带领学生进入对二次函数更进一步的思考和研究之中,从而达到知识在课堂以外的延伸。总之,这节课是本着“授之以渔”而非“授之以鱼”的理念来设计的。

  《二次函数》数学教案 篇4

  一、教材分析

  本节课在讨论了二次函数y=a(x-h)2+k(a≠0)的图像的基础上对二次函数y=ax2+bx+c(a≠0)的图像和性质进行研究。主要的研究方法是通过配方将y=ax2+bx+c(a≠0)向y=a(x-h)2+k(a≠0)转化,体会知识之间在内的联系。在具体探究过程中,从特殊的例子出发,分别研究a>0和a<0的情况,再从特殊到一般得出y=ax2+bx+c(a≠0)的图像和性质。

  二、学情分析

  本节课前,学生已经探究过二次函数y=a(x-h)2+k(a≠0)的图像和性质,面对一般式向顶点式的转化,让学上体会化归思想,分析这两个式子的区别。

  三、教学目标

  (一)知识与能力目标

  1. 经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程;

  2. 能通过配方把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式,从而确定开口方向、顶点坐标和对称轴。

  (二)过程与方法目标

  通过思考、探究、化归、尝试等过程,让学生从中体会探索新知的方式和方法。

  (三)情感态度与价值观目标

  1. 经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程,渗透配方和化归的思想方法;

  2. 在运用二次函数的知识解决问题的过程中,亲自体会到学习数学知识的价值,从而提高学生学习数学知识的兴趣并获得成功的体验。

  四、教学重难点

  1.重点

  通过配方求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标。

  2.难点

  二次函数y=ax2+bx+c(a≠0)的图像的性质。

  五、教学策略与 设计说明

  本节课主要渗透类比、化归数学思想。对比一般式和顶点式的区别和联系;体会式子的恒等变形的重要意义。

  六、教学过程

  教学环节(注明每个环节预设的时间)

  (一)提出问题(约1分钟)

  教师活动:形如y=a(x-h)2+k(a≠0)的抛物线的对称轴、顶点坐标分别是什么?那么对于一般式y=ax2+bx+c(a≠0)顶点坐标和对称轴又怎样呢?图像又如何?

  学生活动:学生快速回答出第一个问题,第二个问题引起学生的思考。

  目的:由旧有的知识引出新内容,体现复习与求新的关系,暗示了探究新知的方法。

  (二)探究新知

  1.探索二次函数y=0.5x2-6x+21的函数图像(约2分钟)

  教师活动:教师提出思考问题。这里教师适当引导能否将次一般式化成顶点式?然后结合顶点式确定其顶点和对称轴。

  学生活动:讨论解决

  目的:激发兴趣

  2.配方求解顶点坐标和对称轴(约5分钟)

  教师活动:教师板书配方过程:y=0.5x2-6x+21=0.5(x2-12x+42)

  =0.5(x2-12x+36-36+42)

  =0.5(x-6)2+3

  教师还应强调这里的配方法比一元二次方程的配方稍复杂,注意其区别与联系。

  学生活动:学生关注黑板上的讲解内容,注意自己容易出错的地方。

  目的:即加深对本课知识的认知有增强了配方法的应用意识。

  3.画出该二次函数图像(约5分钟)

  教师活动:提出问题。这里要引导学生是否可以通过y=0.5x2的图像的平移来说明该函数图像。关注学生在连线时是否用平滑的曲线,对称性如何。

  学生活动:学生通过列表、描点、连线结合二次函数图像的对称性完成作图。

  目的:强化二次函数图像的画法。即确定开口方向、顶点坐标、对称轴结合图像的对称性完成图像。

  4.探究y=-2x2-4x+1的函数图像特点(约3分钟)

  教师活动:教师提出问题。找学生板演抛物线的开口方向、顶点和对称轴内容,教师巡视,学生互相查找问题。这里教师要关注学生是否真正掌握了配方法的步骤及含义。

  学生活动:学生独立完成。

  目的:研究a<0时一个具体函数的图像和性质,体会研究二次函数图像的一般方法。

  5.结合该二次函数图像小结y=ax2+bx+c(a≠0)的性质(约14分钟)

  教师活动:教师将y=ax2+bx+c(a≠0)通过配方化成y=a(x-h)2+k(a≠0)的形式。确定函数顶点、对称轴和开口方向并着重讨论分析a>0和a<0时,y随x的变化情况、抛物线与y的交点以及函数的最值如何。

  学生活动:仔细理解记忆一般式中的顶点坐标、对称轴和开口方向;理解y随x的变化情况。

  目的:体会由特殊到一般的过程。体验、观察、分析二次函数图像和性质。

  6.简单应用(约11分钟)

  教师活动:教师板书:已知抛物线y=0.5x2-2x+1.5,求这条抛物线的开口方向、顶点坐标、对称轴图像和y轴的交点坐标并确定y随x的变化情况和最值。

  教师巡视,个别指导。教师在这里可以用两种方法解决该问题:i)用配方法如例题所示;ii)我们可以先求出对称轴,然后将对称轴代入到原函数解析式求其函数值,此时对称轴数值和所求出的函数值即为顶点的横、纵坐标。

  学生活动:学生先独立完成,约3分钟后讨论交流,最后形成结论。

  目的:巩固新知

  课堂小结(2分钟)

  1. 本节课研究的内容是什么?研究的过程中你遇到了哪些知识上的问题?

  2. 你对本节课有什么感想或疑惑?

  布置作业(1分钟)

  1. 教科书习题22.1第6,7两题;

  2. 《课时练》本节内容。

  板书设计

  提出问题 画函数图像 学生板演练习

  例题配方过程

  到顶点式的配方过程 一般式相关知识点

  教学反思

  在教学中我采用了合作、体验、探究的教学方式。在我引导下,学生通过观察、归纳出二次函数y=ax2+bx+c的图像性质,体验知识的形成过程,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。整个教学过程主要分为三部分:第一部分是知识回顾;第二部分是学习探究;第三部分是课堂练习。从当堂的反馈和第二天的作业情况来看,绝大多数同学能掌握本节课的知识,达到了学习目标中的要求。

  我认为优点主要包括:

  1.教态自然,能注重身体语言的作用,声音洪亮,提问具有启发性。

  2.教学目标明确、思路清晰,注重学生的自我学习培养和小组合作学习的落实。

  3.板书字体端正,格式清晰明了,突出重点、难点。

  4.我觉的精彩之处是求一般式的顶点坐标时的第二种方法,给学生减轻了一些负担,不一定非得配方或运用公式求顶点坐标。

  所以我对于本节课基本上是满意的。但也有很多需要改进的地方主要表现在:

  1.知识的生成过程体现的不够具体,有些急于求成。在学生活动中自己引导的较少,时间较短,讨论的不够积极;

  2.一般式图像的性质自己总结的较多,学生发言较少,有些知识完全可以有学生提出并生成,这样的结论学生理解起来会更深刻;

  3.学生在回答问题的过程中我老是打断学生。提问一个问题,学生说了一半,我就迫不及待地引导他说出下一半,有的时候是我替学生说了,这样学生的思路就被我打断了。破坏学生的思路是我们教师最大的毛病,此顽疾不除,教学质量难以保证。

  4.合作学习的有效性不够。正所谓:“水本无波,相荡乃成涟漪;石本无火,相击而生灵光。”只有真正把自主、探究、合作的学习方式落到实处,才能培养学生成为既有创新能力,又能适应现代社会发展的公民。

  重新去解读这节课的话我会注意以上一些问题,再多一些时间给学生,让他们去体验,探究而后形成自己的知识。

  《二次函数》数学教案 篇5

  一、重视每一堂复习课

  数学复习课不比新课,讲的都是已经学过的东西,我想许多老师都和我有相同的体会,那就是复习课比新课难上。

  二、重视每一个学生

  学生是课堂的主体,离开学生谈课堂效率肯定是行不通的。而我校的学生数学基础大多不太好,上课的积极性普遍不高,对学习的热情也不是很高,这些都是十分现实的事情,既然现状无法更改,那么我们只能去适应它,这就对我们老师提出了更高的要求

  三、做好课外与学生的沟通

  学生对你教学理念认同和教学常规配合与否,功夫往往在课外,只有在课外与学生多进行交流和沟通,和学生建立起比较深厚的师生情谊,那么最顽皮的学生也能在他喜欢的老师的课堂上听进一点

  四、要多了解学生

  你对学生的了解更有助于你的教学,特别是在初三总复习间断,及时了解每个学生的复习情况有助于你更好的制定复习计划和备下一堂课,也有利于你更好的改进教学方法。

  二次函数教学方法一

  一、立足教材,夯实双基:

  进行中考数学复习的时候,要立足于教材,重新梳理教材中的典例和习题,就显得尤为重要。并且要让学生在掌握的基础上,能够做到知识的延伸和迁移,让解题方法、技巧在学生遇到相似问题时,能在头脑中再现

  二、立足课堂,提高效率:

  做到教师入题海,学生出题海。教师应多做题、多研究近几年的中考试题,并根据本班学生的实际情况,从众多复习资料中,选择适合本班学生的最佳练习,也可通过对题目的重组。

  三、教师在设计教学目标时,要做到胸中有书,目中有人

  让每一节课都给学生留有时间,让他们有独立思考、合作探究交流的过程,最大限度的调动学生的参与度,激发他们的学习兴趣,达到最佳的复习效果。

  四、激发兴趣,提高质量:

  兴趣是学习最好的动力,在上复习课时尤为重要。因此,我们在授课的过程中,在关注知识复习的同时,也要关注学生的学习欲望和学习效果,要让学生在学习的过程中体验成功的快感。这样他们才会更有兴趣的学习下去。

  二次函数教学方法二

  1、质疑问难是学生自主学习的重要表现,优化课堂结构,激活学生的主体意识,必须鼓励学生质疑问难。教师要创造和谐融合的课堂气氛,允许学生随时“插嘴”、提问、争辩,甚至提出与教师不同的看法。

  2、二次函数是初中阶段继一次函数、反比例函数之后,学生要学习的最后一类重要的代数函数,它也是描述现实世界变量之间关系的重要的`数学模型。

  3、生有疑而问、质疑问难,是用心思考、自主学习、主动探究的可贵表现,理应得到老师的热情鼓励和赞扬。现在对学生的随时“插嘴”,提出的各种疑难问题,应抱欢迎、鼓励的态度给与肯定,并做出正确的解释。

  4、初中阶段主要研究二次函数的概念、图像和性质,用二次函数的观点审视一元二次方程,用二次函数的相关知识分析和解决简单的实际问题。

  二次函数教学方法三

  1、教学案例、教学设计、教学实录、教学叙事的区别:教学案例与教案:教案(教学设计)是事先设想的教育教学思路,是对准备实施的教育措施的简要说明,反映的是教学预期;而教学案例则是对已发生的教育教学过程的描述,反映的是教学结果。

  2、教学案例与教学实录:它们同样是对教育教学情境的描述,但教学实录是有闻必录(事实判断),而教学案例是根据目的和功能选择内容,并且必须有作者的反思(价值判断)。

  3、教学案例与叙事研究的联系与区别:从“情景故事”的意义上讲,教育叙事研究报告也是一种“教育案例”,但“教学案例”特指有典型意义的、包含疑难问题的、多角度描述的经过研究并加上作者反思(或自我点评)的教学叙事;

  4、教学案例必须从教学任务分析的目标出发,有意识地选择有关信息,必须事先进行实地作业,因此日常教育叙事日志可以作为写作教学案例的素材积累。

  《二次函数》数学教案 篇6

  教学目标

  1、经历用三种方式表示变量之间二次函数关系的过程,体会三种方式之间的联系与各自不同的特点

  2、能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题

  3、能够根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究

  教学重点和难点

  重点:用三种方式表示变量之间二次函数关系

  难点:根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究

  教学过程设计

  一、从学生原有的认知结构提出问题

  这节课,我们来学习二次函数的三种表达方式。

  二、师生共同研究形成概念

  1、用函数表达式表示

  ☆做一做书本P56矩形的周长与边长、面积的关系

  鼓励学生间的互相交流,一定要让学生理解周长与边长、面积的关系。

  比较全面、完整、简单地表示出变量之间的关系

  2、用表格表示

  ☆做一做书本P56填表

  由于运算量比较大,学生的运算能力又一般,因此,建议把这个表格的一部分数据先给出来,让学生完成未完成的部分空格。

  表格表示可以清楚、直接地表示出变量之间的数值对应关系

  3、用图象表示

  ☆议一议书本P56议一议

  关于自变量的问题,学生往往比较难理解,讲解时,可适当多花时间讲解。

  可以直观地表示出函数的变化过程和变化趋势

  ☆做一做书本P57

  4、三种方法对比

  ☆议一议书本P58议一议

  函数的表格表示可以清楚、直接地表示出变量之间的数值对应关系;函数的图象表示可以直观地表示出函数的变化过程和变化趋势;函数的表达式可以比较全面、完整、简单地表示出变量之间的关系。这三种表示方式积压自有各自的优点,它们服务于不同的需要。

  在对三种表示方式进行比较时,学生的看法可能多种多样。只要他们的想法有一定的道理,教师就应予以肯定和鼓励。

  《二次函数》数学教案 篇7

  教学目标:

  (1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

  (2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

  重点难点:

  能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

  教学过程:

  一、试一试

  1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,

  AB长x(m)123456789

  BC长(m)12

  面积y(m2)48

  2.x的值是否可以任意取?有限定范围吗?

  3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,

  对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:

  (1)从所填表格中,你能发现什么?

  (2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。

  对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0

  《二次函数》数学教案 篇8

  教学目标:

  会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质,能较熟练地利用函数的性质解决函数与圆、三角形、四边形以及方程等知识相结合的综合题。

  重点难点:

  重点;用待定系数法求函数的解析式、运用配方法确定二次函数的特征。

  难点:会运用二次函数知识解决有关综合问题。

  教学过程:

  一、例题精析,强化练习,剖析知识点

  用待定系数法确定二次函数解析式.

  例:根据下列条件,求出二次函数的解析式。

  (1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。

  (2)抛物线顶点P(-1,-8),且过点A(0,-6)。

  (3)已知二次函数y=ax2+bx+c的图象过(3,0),(2,-3)两点,并且以x=1为对称轴。

  (4)已知二次函数y=ax2+bx+c的图象经过一次函数y=-3/2x+3的图象与x轴、y轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x-h)2+k的形式。

  学生活动:学生小组讨论,题目中的四个小题应选择什么样的函数解析式?并让学生阐述解题方法。

  教师归纳:二次函数解析式常用的有三种形式:(1)一般式:y=ax2+bx+c(a≠0)

  (2)顶点式:y=a(x-h)2+k(a≠0)(3)两根式:y=a(x-x1)(x-x2)(a≠0)

  当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。

  当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。

  当已知抛物线与x轴的交点或交点横坐标时,通常设为两根式y=a(x-x1)(x-x2)

  强化练习:已知二次函数的图象过点A(1,0)和B(2,1),且与y轴交点纵坐标为m。

  (1)若m为定值,求此二次函数的解析式;

  (2)若二次函数的图象与x轴还有异于点A的另一个交点,求m的取值范围。

  二、知识点串联,综合应用

  例:如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交

  《二次函数》数学教案 篇9

  二次函数的应用

  教学设计思想

  本节主要研究的是与二次函数有关的实际问题,重点是实际应用题,在教学过程中让学生运用二次函数的知识分析问题、解决问题,在运用中体会二次函数的实际意义。二次函数与一元二次方程、一元二次不等式有密切联系,在学习过程中应把二次函数与之有关知识联系起来,融会贯通,使学生的认识更加深刻。另外,在利用图像法解方程时,图像应画得准确一些,使求得的解更准确,在求解过程中体会数形结合的思想。

  教学目标:

  1.知识与技能

  会运用二次函数计其图像的知识解决现实生活中的实际问题。

  2.过程与方法

  通过本节内容的学习,提高自主探索、团结合作的能力,在运用知识解决问题中体会二次函数的应用意义及数学转化思想。

  3.情感、态度与价值观

  通过学生之间的讨论、交流和探索,建立合作意识和提高探索能力,激发学习的兴趣和欲望。

  教学重点:

  解决与二次函数有关的实际应用题。

  教学难点:

  二次函数的应用。

  教学媒体:

  幻灯片,计算器。

  教学安排:

  3课时。

  教学方法:

  小组讨论,探究式。

  教学过程:

  第一课时:

  Ⅰ.情景导入:

  师:由二次函数的一般形式y= (a0),你会有什么联想?

  生:老师,我想到了一元二次方程的一般形式 (a0)。

  师:不错,正因为如此,有时我们就将二次函数的有关问题转化为一元二次方程的问题来解决。

  现在大家来做下面这两道题:(幻灯片显示)

  1.解方程 。

  2.画出二次函数y= 的图像。

  教师找两个学生解答,作为板书。

  Ⅱ.新课讲授

  同学们思考下面的问题,可以共同讨论:

  1.二次函数y= 的图像与x轴交点的横坐标是什么?它与方程 的根有什么关系?

  2.如果方程 (a0)有实数根,那么它的根和二次函数y= 的图像与x轴交点的横坐标有什么关系?

  生甲:老师,由画出的图像可以看出与x轴交点的横坐标是-1、2;方程的两个根是-1、2,我们发现方程的两个解正好是图像与x轴交点的横坐标。

  生乙:我们经过讨论,认为如果方程 (a0)有实数根,那么它的根等于二次函数y= 的图像与x轴交点的横坐标。

  师:说的很好;

  教师总结:一般地,如果二次函数y= 的图像与x轴相交,那么交点的横坐标就是一元二次方程 =0的根。

  师:我们知道方程的两个解正好是二次函数图像与x轴的两个交点的横坐标,那么二次函数图像与x轴的交点问题可以转化为一元二次方程的根的问题,我们共同研究下面问题。

  [学法]:通过实例,体会二次函数与一元二次方程的关系,解一元二次方程实质上就是求二次函数为0的自变量x的取值,反映在图像上就是求抛物线与x轴交点的横坐标。

  问题:已知二次函数y= 。

  (1)观察这个函数的图像(图34-9),一元二次方程 =0的两个根分别在哪两个整数之间?

  (2)①由在0至1范围内的x值所对应的y值(见下表),你能说出一元二次方程 =0精确到十分位的正根吗?

  x 0 0.1 0.2[ 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

  y -1 -0.89 -0.76 -0.61 -0.44 -0.25 -0.04 -0.19 0.44 0.71 1

  ②由在0.6至0.7范围内的x值所对应的y值(见下表),你能说出一元二次方程 =0精确到百分位的正根吗?

  x 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70

  y -0.040 -0.018 0.004 0.027 0.050 0.073 0.096 0.119 0.142 0.166 0.190

  (3)请仿照上面的方法,求出一元二次方程 =0的另一个精确到十分位的根。

  (4)请利用一元二次方程的求根公式解方程 =0,并检验上面求出的近似解。

  第一问很简单,可以请一名同学来回答这个问题。

  生:一个根在(-2,-1)之间,另一个在(0,1)之间;根据上面我们得出的结论。

  师:回答的很正确;我们知道图像与x轴交点的横坐标就是方程的根,所以我们可以通过观看图象就能说出方程的两个根。现在我们共同解答第(2)问。

  教师分析:我们知道方程的一个根在(0,1)之间,那么我们观看(0,1)这个区间的图像,y值是随着x值的增大而不断增大的,y值也是从负数过渡到正数,而当y=0时所对应的x值就是方程的根。现在我们要求的是方程的近似解,那么同学们想一想,答案是什么呢?

  生:通过列表可以看出,在(0.6,0.7)范围内,y值有-0.04至0.19,如果方程精确到十分位的正根,x应该是0.6。

  类似的,我们得出方程精确到百分位的正根是0.62。

  对于第三问,教师可以让学生自己动手解答,教师在下面巡视,观察其中发现的问题。

  最后师生共同利用求根公式,验证求出的近似解。

  教师总结:我们发现,当二次函数 (a0)的图像与x轴有交点时,根据图像与x轴的交点,就可以确定一元二次方程 的根在哪两个连续整数之间。为了得到更精确的近似解,对在这两个连续整数之间的x的值进行细分,并求出相应得y值,列出表格,这样就可以得到一元二次方程 所要求的精确度的近似解。

  Ⅲ.练习

  已知一个矩形的长比宽多3m,面积为6 。求这个矩形的长(精确到十分位)。

  板书设计:

  二次函数的应用(1)

  一、导入 总结:

  二、新课讲授 三、练习

  第二课时:

  师:在我们的实际生活中你还遇到过哪些运用二次函数的实例?

  生:老师,我见过好多。如周长固定时长方形的面积与它的长之间的关系:圆的面积与它的直径之间的关系等。

  师:好,看这样一个问题你能否解决:

  活动1:如图34-10,张伯伯准备利用现有的一面墙和40m长的篱笆,把墙外的空地围成四个相连且面积相等的矩形养兔场。

  回答下面的问题:

  1.设每个小矩形一边的长为xm,试用x表示小矩形的另一边的长。

  2.设四个小矩形的总面积为y ,请写出用x表示y的函数表达式。

  3.你能利用公式求出所得函数的图像的顶点坐标,并说出y的最大值吗?

  4.你能画出这个函数的图像,并借助图像说出y的最大值吗?

  学生思考,并小组讨论。

  解:已知周长为40m,一边长为xm,看图知,另一边长为 m。

  由面积公式得 y= (x )

  化简得 y=

  代入顶点坐标公式,得顶点坐标x=4,y=5。y的最大值为5。

  画函数图像:

  通过图像,我们知道y的最大值为5。

  师:通过上面这个例题,我们能总结出几种求y的最值得方法呢?

  生:两种;一种是画函数图像,观察最高(低)点,可以得到函数的最值;另外一种可以利用顶点坐标公式,直接计算最值。

  师:这位同学回答的很好,看来同学们是都理解了,也知道如何求函数的最值。

  总结:由此可以看出,在利用二次函数的图像和性质解决实际问题时,常常需要根据条件建立二次函数的表达式,在求最大(或最小)值时,可以采取如下的方法:

  (1)画出函数的图像,观察图像的最高(或最低)点,就可以得到函数的最大(或最小)值。

  (2)依照二次函数的性质,判断该二次函数的开口方向,进而确定它有最大值还是最小值;再利用顶点坐标公式,直接计算出函数的最大(或最小)值。

  师:现在利用我们前面所学的知识,解决实际问题。

  活动2:如图34-11,已知AB=2,C是AB上一点,四边形ACDE和四边形CBFG,都是正方形,设BC=x,

  (1)AC=______;

  (2)设正方形ACDE和四边形CBFG的总面积为S,用x表示S的函数表达式为S=_____.

  (3)总面积S有最大值还是最小值?这个最大值或最小值是多少?

  (4)总面积S取最大值或最小值时,点C在AB的什么位置?

  教师讲解:二次函数 进行配方为y= ,当a0时,抛物线开口向上,此时当x= 时, ;当a0时,抛物线开口向下,此时当x= 时, 。对于本题来说,自变量x的最值范围受实际条件的制约,应为02。此时y相应的就有最大值和最小值了。通过画出图像,可以清楚地看到y的最大值和最小值以及此时x的取值情况。在作图像时一定要准确认真,同时还要考虑到x的取值范围。

  解答过程(板书)

  解:(1)当BC=x时,AC=2-x(02)。

  (2)S△CDE= ,S△BFG= ,

  因此,S= + =2 -4x+4=2 +2,

  画出函数S= +2(02)的图像,如图34-4-3。

  (3)由图像可知:当x=1时, ;当x=0或x=2时, 。

  (4)当x=1时,C点恰好在AB的中点上。

  当x=0时,C点恰好在B处。

  当x=2时,C点恰好在A处。

  [教法]:在利用函数求极值问题,一定要考虑本题的实际意义,弄明白自变量的取值范围。在画图像时,在自变量允许取得范围内画。

  练习:

  如图,正方形ABCD的边长为4,P是边BC上一点,QPAP,并且交DC与点Q。

  (1)Rt△ABP与Rt△PCQ相似吗?为什么?

  (2)当点P在什么位置时,Rt△ADQ的面积最小?最小面积是多少?

  小结:利用二次函数的增减性,结合自变量的取值范围,则可求某些实际问题中的极值,求极值时可把 配方为y= 的形式。

  板书设计:

  二次函数的应用(2)

  活动1: 总结方法:

  活动2: 练习:

  小结:

  第三课时:

  我们这部分学习的是二次函数的应用,在解决实际问题时,常常需要把二次函数问题转化为方程的问题。

  师:在日常生活中,有哪些量之间的关系是二次函数关系?大家观看下面的图片。

  (幻灯片显示交通事故、紧急刹车)

  师:你知道两辆车在行驶时为什么要保持一定的距离吗?

  学生思考,讨论。

  师:汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,这段距离叫做刹车距离。刹车距离是分析、处理道路交通事故的一个重要原因。

  请看下面一个道路交通事故案例:

  甲、乙两车在限速为40km/h的湿滑弯道上相向而行,待望见对方。同时刹车时已经晚了,两车还是相撞了。事后经现场勘查,测得甲车的刹车距离是12m,乙车的刹车距离超过10m,但小于12m。根据有关资料,在这样的湿滑路面上,甲车的刹车距离S甲(m)与车速x(km/h)之间的关系为S甲=0.1x+0.01x2,乙车的刹车距离S乙(m)与车速x(km/h)之间的关系为S乙= 。

  教师提问:

  1.你知道甲车刹车前的行驶速度吗?甲车是否违章超速?

  2.你知道乙车刹车前的行驶速度在什么范围内吗?乙车是否违章超速?

  学生思考!教师引导。

  对于二次函数S甲=0.1x+0.01x2:

  (1)当S甲=12时,我们得到一元二次方程0.1x+0.01x2=12。请谈谈这个一元二次方程这个一元二次方程的实际意义。

  (2)当S甲=11时,不经过计算,你能说明两车相撞的主要责任者是谁吗?

  (3)由乙车的刹车距离比甲车的刹车距离短,就一定能说明事故责任者是甲车吗?为什么?

  生甲:我们能知道甲车刹车前的行驶速度,知道甲车的刹车距离,又知道刹车距离与车速的关系式,所以车速很容易求出,求得x=30km,小于限速40km/h,故甲车没有违章超速。

  生乙:同样,知道乙车刹车前的行驶速度,知道乙车的刹车距离的取值范围,又知道刹车距离与车速的关系式,求得x在40km/h与48km/h(不包含40km/h)之间。可见乙车违章超速了。

  同学们,从这个事例当中我们可以体会到,如果二次函数y= (a0)的某一函数值y=M。就可利用一元二次方程 =M,确定它所对应得x值,这样,就把二次函数与一元二次方程紧密地联系起来了。

  下面看下面的这道例题:

  当路况良好时,在干燥的路面上,汽车的刹车距离s与车速v之间的关系如下表所示:

  v/(km/h) 40 60 80 100 120

  s/m 2 4.2 7.2 11 15.6

  (1)在平面直角坐标系中描出每对(v,s)所对应的点,并用光滑的曲线顺次连结各点。

  (2)利用图像验证刹车距离s(m)与车速v(km/h)是否有如下关系:

  (3)求当s=9m时的车速v。

  学生思考,亲自动手,提高学生自主学习的能力。

  教师提问,学生回答正确答案,教师再进行讲解。

  课上练习:

  某产品的成本是20元/件,在试销阶段,当产品的售价为x元/件时,日销量为(200-x)件。

  (1)写出用售价x(元/件)表示每日的销售利润y(元)的表达式。

  (2)当日销量利润是1500元时,产品的售价是多少?日销量是多少件?

  (3)当售价定为多少时,日销量利润最大?最大日销量利润是多少?

  课堂小结:本节课主要是利用函数求极值的问题,解决此类问题时,一定要考虑到本题的实际意义,弄明白自变量的取值范围。在画图像时,在自变量允许取的范围内画。

  板书设计:

  二次函数的应用(3)

  一、案例 二、例题

  分析: 练习:

  总结:

  数学网

  《二次函数》数学教案 篇10

  一、教材分析

  1.教材的地位和作用

  (1)函数是初等数学中最基本的概念之一,贯穿于整个初等数学体系之中,也是实际生活中数学建模的重要工具之一,二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,也是初中数学教学的重点和难点之一,更为高中学习一元二次不等式和圆锥曲线奠定基础。在历届佛山市中考试题中,二次函数都是必不可少的内容。

  (2)二次函数的图像和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起推动作用。

  (3)二次函数与一元二次方程、不等式等知识的联系,使学生能更好地将所学知识融会贯通。

  2.课标要求:

  ①通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。

  ②会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。

  ③会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导)。

  ④会根据二次函数的性质解决简单的实际问题。

  3.学情分析:

  (1)初三学生在新课的学习中已掌握二次函数的定义、图像及性质等基本知识。

  (2)学生的分析、理解能力较学习新课时有明显提高。

  (3)学生学习数学的热情很高,思维敏捷,具有一定的自主探究和合作学习的能力。

  (4)学生能力差异较大,两极分化明显。

  4.教学目标

  ◆认知目标

  (1)掌握二次函数 y=图像与系数符号之间的关系。通过复习,掌握各类形式的二次函数解析式求解方法和思路,能够一题多解,发散提高学生的创造思维能力。

  ◆能力目标

  提高学生对知识的整合能力和分析能力。

  ◆ 情感目标

  制作动画增加直观效果,激发学生兴趣,感受数学之美。在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会感受探索与创造,体验成功的喜悦。

  5.教学重点与难点:

  重点:(1)掌握二次函数y=图像与系数符号之间的关系。

  (2) 各类形式的二次函数解析式的求解方法和思路。

  (3)本节课主要目的,对历届中考题中的二次函数题目进行类比分析,达到融会贯通的作用。

  难点:(1)已知二次函数的解析式说出函数性质

  (2)运用数形结合思想,选用恰当的数学关系式解决几何问题.

  二、教学方法:

  1. 运用多媒体进行辅助教学,既直观、生动地反映图形变换,增强教学的条理性和形象性,又丰富了课堂的内容,有利于突出重点、分散难点,更好地提高课堂效率。

  2.将知识点分类,让学生通过这个框架结构很容易看出不同解析式表示的二次函数的内在联系,让学生形成一个清晰、系统、完整的知识网络。

  3.师生互动探究式教学,以课标为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初三学生的求知心理和已有的认知水平开展教学.形成学生自动、生生助动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。

  三、学法指导:

  1.学法引导

  “授人之鱼,不如授人之渔”在教学过程中,不但要传授学生基本知识,还要培育学生主动思考,亲自动手,自我发现等能力,增强学生的综合素质,从而达到教学终极目标。

  2.学法分析:新课标明确提出要培养“可持续发展的学生”,因此教师有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主学习,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。

  3、设计理念:《课标》要求,对于课程实施和教学过程,教师在教学过程中应与学生积极互动、共同发展,要处理好传授知识与培养能力的关系,关注个体差异,满足不同学生的学习需要.”

  4、设计思路:不把复习课简单地看作知识点的复习和习题的训练,而是通过复习旧知识,拓展学生思维,提高学生学习能力,增强学生分析问题,解决问题的能力。

  四、教学过程:

  教学环节设计:

  根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点.

  本节课的教学设计环节:

  ◆创设情境,引入新知 :复习旧知识的目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判断”。学生自主完成,不仅体现学生的自主学习意识,调动学生学习积极性,也能为课堂教学扫清障碍。为了更好地理解、掌握二次函数图像与系数之间的关系,根据不同学生的学习需要,按照分层递进的教学原则,设计安排了6个由浅入深的题型,让每一个学生都能为下一步的探究做好准备。

  ◆自主探究,合作交流:本环节通过开放性题的设置,发散学生思维,学生对二次函数的性质作出全面分析。让学生在教师的引导下,独立思考,相互交流,培养学生自主探索,合作探究的能力。通过学生观察、思考、交流,经历发现过程,加深对重点知识的理解。

  ◆运用知识,体验成功:根据不同层次的学生,同时配有两个由低到高、层次不同的巩固性习题,体现渐进性原则,希望学生能将知识转化为技能。让每一个学生获得成功,感受成功的喜悦。

  安排三个层次的练习。

  (一)从定义出发的简单题目。

  (二)典型例题分析,通过反馈使学生掌握重点内容。

  (三)综合应用能力提高。

  既培养学生运用知识的能力,又培养学生的创新意识。引导学生对学习内容进行梳理,将知识系统化,条理化,网络化,对在获取新知识中体现出来的数学思想、方法、策略进行反思,从而加深对知识的理解。并增强学生分析问题,运用知识的能力。

  (四)方法与小结

  由总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题。

  五、评价分析:

  本节课的设计,我以学生活动为主线,通过“观察、分析、探索、交流”等过程,让学生在复习中温故而知新,在应用中获得发展,从而使知识转化为能力。本节教学过程主要由创设情境,引入新知――合作交流;探究新知――运用知识,体验成功;知识深化――应用提高;归纳小结――形成结构等环节构成,环环相扣,紧密联系,体现了让学生成为行为主体即“动手实践、自主探索、合作交流“的《数学新课标》要求。本设计同时还注重发挥多媒体的辅助作用,使学生更好地理解数学知识;贯穿整个课堂教学的活动设计,让学生在活动、合作、开放、探究、交流中,愉悦地参与数学活动的数学教学。

【《二次函数》数学教案】相关文章:

二次函数应用的数学教案02-21

二次函数的应用数学教案02-26

《二次函数定义与性质》数学教案02-22

《二次函数》数学教案设计02-20

《二次函数的最值》数学教案02-27

关于二次函数的图像与性质的数学教案02-20

关于二次函数的性质与图像的数学教案02-22

二次函数的图像和性质数学教案02-23

二次函数数学教案设计范例03-13