圆、扇形、弓形的面积数学教案

时间:2022-10-16 14:24:39 数学教案 我要投稿
  • 相关推荐

圆、扇形、弓形的面积数学教案

  教学目标

圆、扇形、弓形的面积数学教案

  1、掌握扇形面积公式的推导过程,初步运用扇形面积公式进行一些有关计算;

  2、通过扇形面积公式的推导,培养学生抽象、理解、概括、归纳能力和迁移能力;

  3、在扇形面积公式的推导和例题教学过程中,渗透“从特殊到一般,再由一般到特殊”的辩证思想.

  教学重点:扇形面积公式的导出及应用.

  教学难点:对图形的分析.

  教学活动设计:

  (一)复习(圆面积)

  已知⊙O半径为R,⊙O的面积S是多少?

  S=πR2

  我们在求面积时往往只需要求出圆的一部分面积,如图中阴影图形的面积.为了更好研究这样的图形引出一个概念.

  扇形:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形.

  提出新问题:已知⊙O半径为R,求圆心角n°的扇形的面积.

  (二)迁移方法、探究新问题、归纳结论

  1、迁移方法

  教师引导学生迁移推导弧长公式的方法步骤:

  (1)圆周长C=2πR

  2)1°圆心角所对弧长=;

  (3)n°圆心角所对的弧长是1°圆心角所对的弧长的n倍;

  (4)n°圆心角所对弧长=.

  归纳结论:若设⊙O半径为R, n°圆心角所对弧长l,则(弧长公式)

  2、探究新问题

  教师组织学生对比研究:

  (1)圆面积S=πR2

  2)圆心角为1°的扇形的面积=;

  (3)圆心角为n°的扇形的面积是圆心角为1°的扇形的面积n倍;

  (4)圆心角为n°的扇形的面积=.

  归纳结论:若设⊙O半径为R,圆心角为n°的扇形的面积S扇形,则

  S扇形= (扇形面积公式)

  (三)理解公式

  教师引导学生理解:

  (1)在应用扇形的面积公式S扇形=进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的;

  (2)公式可以理解记忆(即按照上面推导过程记忆);

  提出问题:扇形的面积公式与弧长公式有联系吗?(教师组织学生探讨)

  S扇形=lR

  想一想:这个公式与什么公式类似?(教师引导学生进行,或小组协作研究)

  与三角形的面积公式类似,只要把扇形看成一个曲边三角形,把弧长l看作底,R看作高就行了.这样对比,帮助学生记忆公式.实际上,把扇形的弧分得越来越小,作经过各分点的半径,并顺次连结各分点,得到越来越多的小三角形,那么扇形的面积就是这些小三角形面积和的极限.要让学生在理解的基础上记住公式.

  (四)应用

  练习:1、已知扇形的圆心角为120°,半径为2,则这个扇形的面积,S扇=____.

  2、已知扇形面积为 ,圆心角为120°,则这个扇形的半径R=____.

  3、已知半径为2的扇形,面积为 ,则它的圆心角的度数=____.

  4、已知半径为2cm的扇形,其弧长为 ,则这个扇形的面积,S扇=____.

  5、已知半径为2的扇形,面积为 ,则这个扇形的弧长=____.

  ( ,2,120°, , )

  例1、已知正三角形的边长为a,求它的内切圆与外接圆组成的圆环的面积.

  学生独立完成,对基础较差的学生教师指导

  (1)怎样求圆环的面积?

  (2)如果设外接圆的半径为R,内切圆的半径为r, R、r与已知边长a有什么联系?

  解:设正三角形的外接圆、内切圆的半径分别为R,r,面积为S1、S2.

  S=.

  ∵ ,∴S=.

  说明:要注意整体代入.

  对于教材中的例2,可以采用典型例题中第4题,充分让学生探究.

  课堂练习:教材P181练习中2、4题.

  (五)总结

  知识:扇形及扇形面积公式S扇形=S扇形=lR

  方法能力:迁移能力,对比方法;计算能力的培养.

  (六)作业 教材P181练习1、3;P187中10.

【圆、扇形、弓形的面积数学教案】相关文章:

高中数学扇形的面积公式09-11

圆的面积教学设计04-11

《圆的面积》教学设计(精选12篇)01-06

面积守恒数学教案10-13

数学教案:《面积单位》03-24

大班数学教案面积守恒11-08

《长方形的面积》数学教案08-21

小学六年级数学《圆的面积》教案03-18

圆的认识数学教案(通用19篇)06-08

数学教案:面积单位间的进率(精选7篇)04-26