《3的倍数特征》的教学设计

时间:2021-02-08 09:11:01 教学设计 我要投稿

《3的倍数特征》的教学设计

  一、活动激趣,引发思考

《3的倍数特征》的教学设计

  活动:我是小小“设计师”。

  1.用5、6、7,设计一个三位数。

  (1)使这个三位数一定是2的倍数。

  (2)使这个三位数一定是5的倍数。

  【设计意图:抓住学生刚学完2、5的倍数特征这个契机,让学生用5、6、7组数,这样既复习了前两节课所学的知识,也与后续要学习的3的倍数特征相互呼应。】

  2.设计一个三位数,使它一定是3的倍数。看谁的设计有创意?

  预设:学生除了用计算的方法外,还可能会出现以下两种情况(如果不出现,教师可以将其作为自己的设计来展示,并让学生猜猜老师是怎么想的):

  (1)利用各位上都是3的倍数来设计数。(2)利用数字和是3的倍数来设计数。首先让学生说说自己的想法,第一种方法结合竖式很容易想明白,而第二种方法需要实际验证。接着引导学生发现:3的倍数并不一定各个数位都是3的倍数。最后围绕第二种关于利用数字和来设计3的倍数的情况,开始追根溯源,使学生明理。

  【设计意图:一般教学3的倍数特征时,教师都会让学生进行猜想。如此,孩子们很容易受刚学过的2、5的倍数特征的影响进行负迁移。而这种第一印象的错误烙印,往往不会收到我们想要的“吃一堑、长一智”的效果。再者,这个猜想已经在课前调研的时候做过了,如果这里再重复出现,会让学生感觉老生常谈、枯燥乏味。第三,班里已有一半多的孩子知道了3的倍数特征,这个特征已不再是秘密了,此时也就没有什么猜想的必要了。这时,还不如选择用事实来说话,而且会应用比仅仅知道结论重要得多。】

  二、借助直观,探究明理

  1.出示百数表:观察圈出的3的倍数的分布情况,感受与2、5的倍数特征的差异。

  2.观察下面这些数,你发现了什么?变中有没有不变的?(每一斜行的数的数字和都不变,而且都是3的倍数。

  3.分组检验:出示不是3的倍数的数,观察数字和是否一定不是3的倍数。

  4.100以内3的倍数的数字和有规律,那么100以上的3的倍数是否依然有这样的规律?引导学生发现:逐一研究太麻烦,数也举不尽,可以借用研究2、5的倍数时所用的小方格来研究。

  5.揭示“数字和”的秘密。

  (1)选取三个数:“12、48、123”,引导学生利用小方格探究明理。

  ①出示“12”,初步明理,让学生说说想法或自己的发现。

  ②围绕“48”,深入明理,有层次地展示各种方法,引导学生对这些方法进行筛选优化、分析归纳。学生在实际操作中可能会用弃3法弃尽,也可能不弃尽,但最终都会把剩余的个数加起来除以3,也就是直至弃到不能弃为止。

  ③对于“123”,可先让学生闭眼想象各位所余,然后再实际验证。

  (2)引导学生逐步发现。

  ①在方格图上不一定要3个3个地圈,十位上可以9个一圈,百位上可以99个一圈……

  ②可以把每位剩余的方格合起来再弃3,直到不能弃为止,看最后余下几个。

  ③各位数字恰好是各位上弃9、弃99后所余下的格数(如下图),数字和也就是此时余下小方块的总和,之所以把数字和去除以3,就是要看看余下的这些小方格再3个3个地分,最终是否会有余。

  6.小结3的'倍数特征。

  【设计意图:揭示3的倍数特征是看数字和并不难,难的是数字和的真正含义,本节课的重点和难点也正在于此。】

  三、实际应用,拓展提高

  1.观察刚上课时,用5、6、7所组的2的倍数:576、756,以及5的倍数:765。这几个数是3的倍数吗?引导学生发现:如果一个数是3的倍数,那么交换各位数字的顺序,所组成的数依然是3的倍数,因为数字和不变(5+6+7=18)。

  同时也让学生感知到连续的数字组成的三位数一定是3的倍数,因为5+6+7=18,即6×3=18。

  2.369为什么一定是3的倍数,能否联系小方格来说明?

  四、全课总结

  为了检验这次教学效果,我对学生进行了后测:

  (1)圈出下列各数中3的倍数:53、69、72、95、108、264。

  (2)417是3的倍数吗?你能说明其中的道理吗?

  从中可见,学生不仅能应用3的倍数特征进行判断,而且能借助小方格说明道理,真正明白了数字和的含义。

【《3的倍数特征》的教学设计】相关文章:

3的倍数的特征教学设计03-14

识字3教学设计12-04

幼儿美术教案的教学设计3篇02-12

《北大荒的秋天》教学设计3篇02-19

实用的幼儿中班教学活动设计3篇02-13

《春》的教学设计12-28

《母鸡》的教学设计05-27

《桥》的教学设计04-10

速度的教学设计03-15

林海的教学设计03-06