六年级数学《比的化简》教学设计

时间:2023-11-14 10:23:27 晓丽 教学设计 我要投稿
  • 相关推荐

六年级数学《比的化简》教学设计(精选14篇)

  作为一名优秀的教育工作者,时常需要用到教学设计,教学设计是一个系统化规划教学系统的过程。那要怎么写好教学设计呢?下面是小编精心整理的六年级数学《比的化简》教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

六年级数学《比的化简》教学设计(精选14篇)

  六年级数学《比的化简》教学设计 1

  教学内容分析:

  《比的化简》是(北师大版)六年级上册第52--53页的教学内容,主要学习化简比的方法。教材联系学生的生活创设问题情境,让学生在解决问题的过程中加深对比的意义的理解,进一步感受比、除法、分数的关系,体会化简比的必要性,学会化简比的方法。

  学生分析:

  在这之前,学生早已学过"商不变的规律"和"分数的基本性质",最近又认识了比,初步理解了比的意义,以及比与除法、分数的关系,大部分学生能较为熟练地求比值。比较而言,实际上化简比与求比值的方法有相通之处,那么借助知识的迁移能帮助学生顺利理解掌握新知识。

  教学目标:

  知识目标:在实际情境中,让学生体会化简比的必要性,进一步体会比的意义。

  能力目标:

  1、在观察、比较中理解什么是化简比,会运用商不变的规律或分数的基本性质化简比,并能解决一些简单的实际问题。

  2、促进知识迁移,培养学生的概括能力。

  情感目标:体验知识的相通性以及数学与生活的联系。

  教学重难点:

  正确运用商不变的性质或分数的基本性质来化简比。

  教学关键:

  理解"化简比"。

  教学过程:

  一、情景导入:

  (一)今天老师给大家带来了一些礼物,想知道是什么吗?

  生:(想)

  师端出以准备的蜂蜜水两小杯。问老师刚才一直在想一个问题,今天给你们准备的这两杯蜂蜜水哪杯更甜一些?你有什么办法吗?

  引导学生说出可以(尝一尝)(知道它是怎么配成的)。

  (二)分别用两种方法验证

  1、叫5个学生尝说出那杯甜。

  2、给出配方课件出示(用40毫升蜂蜜、360毫升水调制了一大杯。用了2小杯蜂蜜、18小杯水调制了一杯)。

  看到这个信息结合以前学过的数学知识你发现了什么?同桌互相说一说(蜂蜜是水的1/9,水是蜂蜜的9倍等)说对了都给以肯定。

  设计意图:注意了培养学生的兴趣,营造利于学生探究创新的宽松课堂气氛。

  二、观察比较、引入新课:

  (一)体会化简比的必要性。

  师:可以用我们刚学的方法能解决吗?

  小组讨论交流。

  小组探究要求:1先观察算式的特点小组内互相说一说。

  2每个小组选其中一张卡片,完成上面的表格。

  3每组选一名代表汇报你们小组的讨论结果。

  学生汇报讨论结果:师板书

  40:360=40÷360=1÷9=1:9

  2:18=2/18=1/9=1:9

  也就是说,两个杯子中的蜂蜜与水的比其实都是1:9,所以两杯蜂蜜水一样甜。

  观察、比较:原来的比与后来得出的比有什么联系与区别?(比不一样,比值相等)

  根据学生发言,师板书:最简单的整数比。

  设计意图:学生们展开了激烈的讨论,让学生体会化简比的必要性。还发挥小组骨干引领作用,培养学生的合作能力。

  (二)通过例子认识到,就像分数约分一样再不能约分了,比的前项、后项只有公因数1(是互质数),这样的整数比就是最简整数比。

  我们把求最简整数比的过程叫比的化简。引出课题比的化简(板书)

  揭示课题:比的`化简

  刚才化简比时,用到了以前学的什么知识?(回忆分数基本性质和商不变规律。)

  小结:分数根据分数的基本性质可以约分,比也可以根据分数的基本性质或商不变的规律化简。

  (三)分数的基本性质或商不变的规律可以化简比。

  那比有这样的性质吗?你觉得是什么?同桌说一说(课件出示比的基本性质)

  设计意图:通过观察、比较,以"最简单的整数比"为突破口,引导学生理解"化简比"。并初步感知化简比的方法,进一步感受比、除法、分数之间的关系,体验到知识的联系性。

  三、化简比:

  (一)利用比的基本性质化简比

  (1)出示化简比:24:42 14:21

  (2)学生自己试一试完成。请两个学生板演

  全班交流。说说你的思路。

  刚才你们做的不错有没有信心向更难的题挑战。

  出示化简比0.6∶0.8 1/6:2/9 7/10:14 0.3:3/4

  学生每人选两道计算(选用自己喜欢的方法分数的基本性质或商不变的规律或比的基本性质化简比)投影展示学生计算结果师评价。

  设计意图:通过练习讲评这一系列的数学活动,使学生体会化简比的方法,让学生谈谈自己对化简比的理解,使学生非常轻松地掌握化简比的方法。一方面照顾到学生的个性发展,一方面促进学生知识的内化。

  四、训练巩固及延伸:

  1判断正误,有错就改:

  ①40∶120=1∶3这个过程叫求比值。( )

  ②3/4:1/2化简后是1.5。( )

  ③0.4∶1化简后是2/5。( )

  2.写出各杯子中糖与水的质量比。这几杯糖水有一样甜的吗?

  判断正误,有错就改:

  ①40∶120=1∶3这个过程叫求比值。( )

  ②3/4:1/2化简后是1.5。( )

  ③0.4∶1化简后是2/5。( )

  (强调区别:求比值就是求“商”,得到的是一个数,可以写成分数、小数,有时也能写成整数。而化简比则是为了得到一个最简单的整数比,可以写成真分数或假分数的形式,但是不能写成带分数,小数或整数。)

  设计意图:通过练习提高了学生综合运用知识解决实际问题的能力,实现三维目标的整合。

  五、小结:

  (1)这节课你学到了些什么?

  (2)请大家翻开课本52页记录一下这节课你认为重要的内容。

  (让学生对知识有一个整理回顾,并最终回到课本,记录下自己的收获。)

  六、板书设计:

  比的化简

  最简单的整数比

  40:360=40÷360=1/9=1:9

  10:90=10/90=1/9=1:9

  14:21=(14÷7):(21÷7)=3:2 互质

  反思:

  本节课上得比较成功。很真实。同学们听得很认真,能够用生活中的例子创设情景,让学生不知不觉就学到了化简比的方法,从而导出用比的基本性质来化简比。课堂气氛特别活跃,感觉上的很轻松,学生学得也很轻松。

  通过教学,我有以下几点反思:

  1、在教学设计中我注意了培养学生的兴趣托尔斯泰说过:“成功的教学所需要的不是强制,而是激发学生的兴趣。”“兴趣是最好的老师。”当一个学生对某一学科发生兴趣时,他总是积极主动、心情愉快地去进行学习,而不会觉得是一种沉重的负担。例如教学一开始让学生尝蜂蜜水一下子让课堂气氛活起来。让学生觉得有趣,愿意学。

  2、在这节课上我特别注意尊重和信任学生,给学生提供展示自我的空间,发挥学生的主体性。在自己平时教学中我也一直这样做。

  3、在教学中发现不少学生对化简比与求比值区分不清。针对这一情况,我在备课时要预设问题,课堂上有针对性的指导与讲解,让学生去发现求比值和化简比的区别,这样学生对化简比和求比值就有了一个更清晰的认识。

  4、练习层次鲜明,层层递进。遵从学生的认知规律,我安排了模仿练习(化简整数比)、提高练习(化简小数比、分数比)、综合练习,循序渐进,使学生练而不厌,让学生一步步体验化简比的方法,为后面概括做了准备。

  5、我注意照顾个性差异,分层练习。

  化简比有几种类型,我并不强调学生必须用哪一种方法,根据他们的知识经验,允许他们选择自己喜欢,又拿手的方法。在综合练习中,我让不同程度的学生自己选择做两道题,既照顾了其个性差异,又利于调动学生的积极性。

  当然本节课还有好多不满意的地方。在以后教学中我要时时反思、扬长避短、继续努力,新的教材,新的要求,新的挑战,新的思考。只要我们把握好教材,理解好课改的理念,多注意教学策略,同样能使我们的数学教学教出“甜”来。

  六年级数学《比的化简》教学设计 2

  学习内容分析:

  义务教育课程标准实验教科书(北师大版)六年级上册第72——73页。

  《比的化简》一课是在学生初步了解了比的意义、比与分数、除法各部分之间的关系的基础上进行学习的。教材设计了三个学习活动,先是让学生在实际情境中初步体会化简比,加深对比的意义的理解;然后在学生对商不变的规律和分数的基本性质掌握的基础上去发现体会比的基本性质;继而通过化简不同形式的比来再次加深对比的意义、比的基本性质、比与分数除法的关系的理解,并总结出化简比的基本方法。学生在从具体到抽象的数学活动中发现、思考、总结,以实现本节课的学习目标。

  学生分析:

  学生已经了解了商不变的规律和分数的基本性质,在上一节课中对比的意义有了初步的理解,了解了比与分数、除法之间的关系。在课前了解中发现学生对商不变的规律和分数的基本性质的相关内容有一定的遗忘,会应用,但说不清自己的思考过程。在本节课的学习中要注重学生的体会、发现和总结,既要理解化简比每一步是如何得到的,能正确化简,还要能解决相关的实际问题,加深对比的意义的理解。

  学习目标:

  1、在实际情境中,体会化简比的必要性,进一步体会比的意义。

  2、能写出相等的比,并用自己的话总结出比的基本性质。

  3、会运用商不变的规律、分数基本性质和比的基本性质化简比,理解化简的过程并能归纳总结出化简比的方法。

  4、应用化简比解决相应的简单实际问题。

  学习重难点:

  1、重点:加深对比的意义的理解,理解并掌握化简比的方法。

  2、难点:体会化简比的必要性,并能解决相关的简单实际问题。

  学习过程:

  一、创设情境,乐学启智。

  1、请两名学生品尝调制好的水。你们觉得哪杯水更甜?需要我提供哪些信息?

  出示相关信息:

  (1)调制这杯蜂蜜水用了3小杯蜂蜜,12小杯水。

  (2)这杯蜂蜜水用了4小杯蜂蜜,16小杯水。

  【设计意图:引导学生从数学的角度来分析判断,同时培养学生选择有用信息的能力。】

  2、根据这些信息,你知道哪杯水更甜吗?说说你是怎么想的。

  (1)请学生把自己的判断方法写一写。

  (2)同桌简单交流后,把自己的想法和同学们说一说。

  3:12=3/12=1/4=1:4

  4:16=4/16=1/4=1:4

  (12:3=4:1 ; 16:4=4:1)

  小结:看来我们把这两杯水蜂蜜与水的杯数比进行简化之后,发现都是平均1小杯蜂蜜用了4小杯的水,所以它们一样甜,这样非常便于我们进行比较。

  【设计意图:利用比的相关知识来解决实际问题,进一步理解比的意义,初步体会比的化简及其必要性。】

  二、发现总结,乐究寻智。

  (1)你能从上面的式子中找到相等的比吗?

  3:12 =1:4 4:16=1:4 1:4=4:16(12:3=16:4)

  观察这些相等的比,你有什么发现?

  (结合商不变的规律和分数的基本性质,叙述两个比前项和后项的变化情况。)

  (2)请你说一说这组相等的比是怎样得到的?

  1:2=10:20 4:12=1:3

  (3)你能也写出几组相等的比吗?并和同桌说一说你是怎么想的。

  观察这些相等的比,你有什么发现?

  学生总结:比的前项和后项同时乘或除以一个相同的数(0除外),比值的大小不变。

  【设计意图:通过找相等的比、判断相等的比、写相等的比逐层加深对比的基本性质的体会与理解,为应用做好准备。】

  小结:利用比的基本性质,既可以帮助我们得到一组相等的比,也可判断一组比是否相等,其实它还有一项非常重要的作用——比的化简。(板书课题)

  三、探讨归纳,乐享汇智。

  分数可以约分,比也可以化简,其实我们在比较哪杯水甜的时候就已经用到了比的化简。3:12和4:16不便于比较,用比的前项除以比的后项,经过计算得到了1:4,很容易判断出两杯水是一样甜的。我们知道分数可以约分成最简分数,比也可以化简成最简整数比。(比的前项和后项除了1以外没有其他公因数,这样的比就是最简整数比。)

  【设计意图:结合情境体会比的化简的必要性,了解比的化简的.基本方法。】

  1、你能试着应用我们以前学习的内容和今天总结出的比的基本性质把这些比化简成最简整数比吗?

  24:42 2/5:1/4 0.7:0.8

  2、先独立完成,再和同伴说说每一步是如何得到的。

  结合刚才的化简过程,想一想我们在化简比的时候用了哪些方法?

  学生总结:方法一:把两个数的比转化为这两个数相除,用分数表示他们的商,再把这个商化成最简分数,这个最简分数的分子就是比的前项,分母就是比的后项。方法二:直接用比的基本性质进行化简,把不是整数比的化成整数比,把不是最简整数比的化为最简整数比。

  【设计意图:学生通过尝试、交流、总结出化简比的基本方法,说清每一步的想法使学生条理更加清晰,既掌握化简比的方法,还明白化简比的算理。】

  四、解决应用,乐凝升智。

  1、这里有4杯糖水,你能用今天所学判断出这里有一样甜的吗?

  【设计意图:鼓励学生再次经历解决问题的过程,提高应用所学解决实际问题的能力。】

  2、

  【设计意图:体会到投球命中率的高低,其实就是比值的大小,同时通过实际问题的解决感受化简比和求比值的区别与联系。】

  五、课堂总结。

  通过今天的学习相信同学们又加深了对比的认识,谁来说说你今天的收获。

  总结:比在我们的生活中应用广泛,通过对比的化简能帮助我们更方便进行比较和判断,希望同学们不断加深对比的认识,正确的化简比,更好的应用比。

  六、作业设计:

  化简比和求比值一样吗?可以举例说明。

  六年级数学《比的化简》教学设计 3

  分数乘、除法及比是本册教材的重点内容,为突出知识间的内在联系,帮助学生形成知识网络,本节复习课在教学设计上主要关注以下几个方面:

  1.重视对分数乘、除法之间的关系及分数乘、除法计算方法的复习。

  教学中,结合教材内容,进一步强调分数乘、除法之间的关系,加强计算方法的指导,使学生在进一步理解并掌握分数除法是分数乘法的逆运算的同时,计算能力得到提高。

  2.重视对相关概念、性质及某些知识间相互关系的复习。

  教学中,把比的相关概念、倒数的相关概念、比的性质以及比与分数、除法的关系等作为重要的复习内容,结合教材相关习题进行全面、系统地复习,使学生加深对概念的理解,同时将比与分数、除法联系起来。

  3.重视对学生解决问题能力的培养。

  教学中,把用分数乘、除法解决问题和用比解决实际问题作为重要的`复习内容之一,结合教材习题,重点分析题中的数量关系,使学生通过对比练习,更好地掌握解决分数乘、除法问题以及比的有关问题的思路,提高学生分析问题、解决问题的能力。

  相同点:题中的数量关系相同,解题思路相同。

  不同点:

  ①题表示单位“1”的量已知,用乘法计算。

  ②题表示单位“1”的量未知,列方程解答或用除法计算。

  (3)总结解决分数乘、除法问题的方法和解题关键。

  ①方法:表示单位“1”的量已知,求单位“1”的几分之几是多少,用乘法计算;表示单位“1”的量未知,已知一个数的几分之几是多少,求这个数,列方程解答或用除法计算。

  ②关键:找准表示单位“1”的量。

  设计意图:结合教材习题,复习画线段图分析问题的方法,在对比中使学生进一步理解并掌握解决分数乘、除法问题的方法和解题关键,提高学生解决问题的能力。

  ⊙巩固练习

  1.完成教材115页6题。

  地球上海洋面积是36000万平方千米,占地球总面积的。地球总面积是多少万平方千米?

  2.完成教材116页8题。

  (1)五年级同学收集了165个易拉罐,六年级同学比五年级多收集了。六年级收集了多少个易拉罐?

  (2)四年级比六年级少收集了,四年级收集了多少个易拉罐?

  3.完成教材116页10题。

  一列火车的速度是180千米/时。一辆小汽车的速度是这列火车的,是一架喷气式飞机的。这架喷气式飞机的速度是多少?

  4.完成教材116页11题。

  (1)用84 cm长的铁丝围成一个长方形,这个长方形的长与宽的比是2∶1。这个长方形的长与宽分别是多少厘米?

  84÷2=42(cm) 长:42×=28(cm)

  宽:42×=14(cm)

  (2)用84 cm长的铁丝围成一个三角形,这个三角形三条边长度的比是3∶4∶5。三条边各是多少厘米?

  [84÷(3+4+5)=7(cm) 7×3=21(cm)

  7×4=28(cm) 7×5=35(cm)]

  ⊙课堂总结

  通过本节课的复习,你有什么收获?

  六年级数学《比的化简》教学设计 4

  设计说明

  根据本节课的内容进行如下设计:

  1、创设有效情境,自然引入新课。

  首先利用教材中的情境,让学生交流分橘子的方法,从而引出平均分的方法不公平,而按照学生人数的比来分橘子比较合理,将学生的思路自然而然地引入到本节课,即按一定的比进行分配的问题的探讨中来。

  2、给学生提供了充分思考和活动的空间。

  在新知的探究过程中,给学生提供充分的体验空间。让学生利用手中的小棒代替橘子,鼓励他们实际分配,并做好分配的记录,使学生在这一操作过程中进一步体会比的意义。有了上面的实际操作经验,在解决把140个橘子按3∶2进行分配时,给学生提供了充分的探究和交流的空间。在学生探究出不同的解决问题的策略后,组织他们将不同的策略进行比较,发现其中的共同点,让学生在比较的基础上选择自己认为合理的策略解决问题。

  课前准备

  教师准备PPT课件

  学生准备小棒

  教学过程

  导入新课

  1、观察情境图,获取图中的`信息。(课件出示)

  从这幅图中你知道了哪些信息?(指名回答)

  2、提出问题。

  把这些橘子分给1班和2班,怎样分合理?

  3、讨论分配方案。

  请同学们想一想,说一说你的分法。

  (1)学生思考,同桌交流。

  (2)指名汇报,说明理由。

  预设

  生1:可以每个班各分一半。

  生2:按1班和2班人数的比来分配。

  引导学生说出两个班的人数不一样,平均分看似公平,其实并不公平,而根据两个班人数的比3∶2来分比较合理。

  4、引入课题。

  像这样,把一个数量按一定的比进行分配的问题在生活中常常会遇到,今天我们就来共同学习这类问题的解决方法。(板书课题:比的应用)

  设计意图:通过具体情境,使学生体会到数学与生活的密切联系,激发学生的学习兴趣,引导学生分析情境中的数学信息,为后面的动手操作、分析推导解题方法奠定基础。

  探究新知

  (一)初探新知。

  要把这筐橘子按3∶2分给1班和2班的小朋友,应该怎样分?我们用小棒代替橘子分一分。

  1、小组交流后学生动手分配。

  引导学生明确1班占3份,2班占2份。

  2、记录分配的过程。

  引导学生在记录过程中发现6∶4,30∶20……都等于3∶2,为寻找解决问题的策略奠定基础。

  3、各小组汇报,说说自己的分法。

  引导学生不断调整每次分配的.数量,明确1班占3份,2班占2份。

  4、在这次分小棒的过程中,你有什么发现?说说感受。

  (每次分的小棒的根数比都是3∶2)

  设计意图:在分小棒的操作活动中,进一步体会比的意义,在观察记录的过程中发现6∶4,30∶20……都等于3∶2,巩固了化简比的内容。另外,学生不断地调整每次分配的数量,不断地产生新的解题策略,理解按一定的比进行分配的意义。

  六年级数学《比的化简》教学设计 5

  教学目标:

  1、使学生理解掌握比的基本性质,能应用比的基本性质进行比的化简。

  2、培养学生类比、推理和概括思维能力。

  教学重点:

  1、理解比的基本性质。

  2、运用比的基本性质进行化简比。

  一、探究新知

  (一)比的基本性质

  1、前面我们认识了比,想一想2:4与6:12这两个比的大小是相等的吗?你能证明吗?----小研究(后附)

  (1)4人小组交流

  (2)全班交流

  (3)比值相等可以证明,还可以运用学过的哪个知识也可以证明呢?

  (4)商不变的性质是不是对每个比都适用呢?自己举例试一试。

  2、联系除法中商不变的性质和分数的基本性质这两个已学过的知识,就得到今天的比的基本性质。能利用学过的知识解决新问题,是最棒的。谁能完整地说一说比的性质呢?

  3、老师板书结语:比的前项和后项同时乘上(除以)相同的数,比值不变。这句话有问题吗?添上0除外,为什么?

  4、学生齐读,我们学习比的基本性质有什么作用呢?分数的性质可以使分数化简,比的性质同样可以使比化简,那么,什么样的比才是最简单的整数比呢?(比的前项和后项是互质数)最简单的整数比就简称为最简比。

  5、你能举例说几个最简比吗?说得很好,在计算结果时,我们一般要得到最简比。

  (二)化简比---完成练习题(后附)

  1、小组交流

  2、全班交流

  小结:化简比时,我们一般利用比的性质把比的前项和后项化成整数,再化简比较快。但在比的前项和后项都是分数时,用求比值的..方法较快,只是注意最后结果要写成真分数、假分数或比的形式。

  结合学生的汇报,引导学生注意化简比和求比值的区别。化简比:它是为了得到一个最简单的整数比。结果可以写成比的形式,也可以写成分数的形式,但不能写成带分数、小数获整数的形式。

  二、巩固练习

  1、学校体育室有10个篮球,15个足球,篮球与足球的个数比是()。

  2、李师傅8小时生产了72个零件,李师傅生产零件总个数和时间的比是()。

  3、拓展练习

  3:8=(3+6):(8+)

  (让学生分小组讨论方法)

  三、课堂总结

  这节课有哪些收获?师生共同总结。

  ()年()班姓名

  比的基本性质小研究

  你知道2:4与6:12这两个比的大小相等吗?你能证明吗?你有什么发现?

  方法一

  我的发现:

  聪明的同学:请你结合这节课所学的知识化简下面各比,说说你有什么发现?

  六年级数学《比的化简》教学设计 6

  【教材分析】

  《比的应用》是新世纪小学数学六年级上册的内容,是在学生理解了比的意义、比的化简、比与分数的联系、以及掌握用分数乘、除法解决简单问题的基础上,把比的知识应用于解决相关的实际问题的一个课例。比的应用又称按比例分配,按比例分配有按正比例分配和反比例分配两种,由于按反比例分配的实际应用并不广泛,而且可以转化为按正比例分配来解答,因此教材只教学按正比例分配。按比分配是“平均分”问题的发展,平均分是按比分配的特例。研究比的应用,也为以后学习“比例”、“比例尺”的知识奠定基础。

  教材有两部分内容:分一分和算一算。分一分:创设一个给两个班的小朋友分橘子的情境,鼓励学生通过实际操作,在交流不同分法的过程中体会到1:1分配的不合理性,产生按比分配的需要,同时体会按比分配在生活当中的实际应用;算一算:在有了实际操作的基础上,解决把140个橘子按3:2分给两个班,引导学生自主探索出不同的解决问题的策略,鼓励学生运用合理的解题策略解决实际问题。

  【学生分析】

  学生在二年级上册学习了除法的意义,了解了“平均分”,即按1:1分,学生在五年级上册学过分数的意义、分数与除法的关系,本单元学习了比的意义和比的化简。由于比与除法、分数有着密切的联系,所以,比的很多基础知识与除法、分数的相关知识具有明显的、可供利用的内在联系,这些对于学生学习比的应用奠定了良好的知识基础。

  比的知识在生活中有着很广泛的应用,因此,学生也有一定的经验基础。因此,教学这部分内容时,应当充分利用原有的学习基础,引导学生联系相关的已学知识,进行类比和推理,尽可能让学生自主学习,通过自己的思考,推出新结论,解决新问题。

  【教学目标】

  1、能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的实际意义;

  2、让学生通过观察、操作,经历与他人交流各自解题策略的过程,体验策略的多样性,并选择合适的方法;

  3、使学生在探索未知、寻求成果的过程中品味学习的乐趣,并养成积极、主动的探究精神。

  【教具准备】

  课前准备:学生查找有关事物各组成部分比的资料,课前让学生熟悉用量杯量取溶液的方法。

  课上准备:有关课件、黄、蓝色颜料、量杯等。

  【教学重点】

  理解按比分配的实际意义,并能运用比的意义解决按照一定的比进行分配的实际问题。

  【教学难点】

  理解按比分配的实际意义,沟通比与分数之间的联系。

  【教学实录】

  一、情境导入

  师:同学们,作为一个大连人,你熟悉自己的家乡吗?大连给你留下最深的印象是什么?谁能用简短的一个词来概括。

  生1:我最喜欢大连的.星海广场。

  师:你对大连的星海广场印象最深。还有吗?

  生2:大连的海。

  生3:大连的草坪。

  师:今天,老师也给同学们带来了几幅大连的风光图片,我们一块来看一看。

  (放投影,出示大连的星海广场等图片,学生情不自禁地说出地点。)

  师:看了这些风光片之后,你还有什么新的感受?谈谈你的感想。

  生:这些图片大部分都是绿色,给人一种朝气蓬勃、心旷神怡的感受。

  师:如果我们把这些画面画下来,你认为主色调应该是什么色?

  生齐:绿色。(师板书:绿)

  师:绿色充满了生命的活力。孩子们,知道绿色是怎么调配出来的吗?

  生:知道,是黄色和蓝色调配出来的。(师板书:黄+蓝——)

  【策略说明:优美的风景与和谐的音乐会把学生带入了一个轻松的世界,会使数学学习活动在一种轻松愉悦的.氛围中展开。这种直观的图片不仅会激发学生对家乡的热爱之情,更会自然地引入到“绿色是怎么调配出来的”这一主题。】

  二、实验操作

  1、动手操作,调配绿色

  提前给每组准备了蓝色和黄色颜料,一个小量杯,二个大量杯,大量杯上贴上组号。

  师:老师给每组都准备了黄色和蓝色两种颜料,等会,你就可以用这两种颜料调配出你最喜欢的绿色来。在调配之前,先听老师说要求:在调配之前,组内先商量好想用多少ml的蓝色和黄色,记录好数据之后再开始调配。我们用小量杯来量取颜料,倒入大量杯进行调配。听清楚了吗?

  生:听清楚了。

  师:现在各小组可以调配了。

  学生开始操作,由小组长进行分工,一人记录,一人操作,一人负责传递器材、搅拌颜料,还有一个人负责卫生工作。

  师:调好的小组请组长将颜色放到前面来,并把数据记录在黑板上。

  将调配好的绿色按组序一字排开,量杯上标明组号,学生能清楚地看到各组调配出来的颜色。

  师:老师想请一个小组的组长汇报一下你们用了多少ml的蓝色和多少ml黄色。

  生:我们第四小组用了100ml的黄色和60ml蓝色调配出了一种绿色。

  师:我们再看看其他组的数据。

  【策略说明:数学内容的呈现应该是现实的、生活化的,尤其是贴近学生的生活实际,使学生体会数学与生活的联系,体会数学的应用价值。因此,教师要联系学生生活,就地取材,将贴近学生生活的题材充实到教学中去,从而丰富学生的学习材料。调配绿色是现实而有趣的学习活动,也是学生喜闻乐见的,学生是乐于参与的。第一次的配色活动没有给学生规定统一的数据,目的是让学生在自由活动的过程去观察和发现不同的结果,从而得出结论。】

  2、观察发现,得出结论

  (1)观察。

  师:孩子们,结合这些数据,再观察这些绿色,你有什么发现?

  生1:我发现黄色越多,调出来的绿色越浅;蓝色越多,调出来的绿色越深。

  生2:各组调出来的绿色都不一样。

  师:咦,我们都是用黄色和蓝色来调,为什么调出来的绿色有深有浅呢?

  有个别学生举手了。

  师:不少同学有想法了,把你的想法在组内跟小伙伴们交流交流。(学生讨论)

  生1:我发现每个组用的黄色和蓝色不一样多,调出来的绿色深浅也不一样。

  师:还有其它的想法吗?生2:黄色与蓝色的量不一样,所以它们的比不一样。

  生3:我认为蓝色和黄色的比不一样,所以调出来的颜色就不一样。

  (2)得出结论。

  六年级数学《比的化简》教学设计 7

  一、教学内容

  比的应用的练习课。(教材第55~56页练习十二第3~7题)

  二、教学目标

  1.复习巩固按比分配问题的解题方法。

  2.进一步培养学生应用知识解决实际问题的能力。

  三、重点难点

  重难点:会灵活运用按比分配问题的解题方法解决实际问题。

  教学过程

  一、基础练习

  1.师:比的意义和基本性质是什么?(点名学生回答)

  2.教材第55页练习十二第5、6题。

  (学生独立完成,集体订正)

  3.师:按比分配问题有几种解题方法?是什么?(同桌之间说一说)

  引导学生回顾按比分配的两种解题方法。

  二、指导练习

  1.教学教材第55页练习十二第3题。

  (1)组织学生观察图画,理解题意,了解信息。

  (2)组织学生小组讨论,如何解决问题。

  教师巡视,并引导学生理解每个橡皮艇上有1名救生员和7名游客,也就是救生员和游客的人数比是1∶7。

  (3)交流后,学生独立完成,集体订正。

  2.教学教材第55页练习十二第4题。

  (1)学生读题,理解题意。

  (2)师:已知总棵树和每班的人数,要求各班栽的棵数,应先求出什么?

  引导学生明确应先求出各班的人数比,人数比等于棵数比,然后根据按比分配求出各班栽的棵数。

  教师提示:两个数的按比分配问题的解题方法同样适用于三个及以上的数的比。

  (3)学生独立完成,集体订正。

  3.教学教材第56页练习十二第7题。

  (1)学生读题看图,理解题意。

  (2)师:西红柿的面积可直接用乘法求得,黄瓜和茄子的面积可以怎样求得?

  组织小组交流讨论,学生可能有两种回答:

  ①先求出种黄瓜和茄子的总面积。再根据按比分配问题的解题方法解答。

  ②先求出黄瓜和茄子占总面积的比,然后用乘法直接根据按比分配分别求出黄瓜和茄子的.面积。

  (3)学生独立完成,点名学生回答,根据回答板书:

  (方法一)西红柿:800×2/5=320(m2)

  黄瓜和茄子:800-320=480(m2)

  黄瓜:480×2/(2+1)=320(m2)

  茄子:480×1/(2+1)=160(m2)

  (方法二)西红柿:800×2/5=320(m2)

  黄瓜占总面积:1-2/5×2/(2+1)=2/5

  茄子占总面积:1-2/5×1/(2+1)=1/5

  黄瓜:800×2/5=320(m2)

  茄子:800×1/5=160(m2)

  三、巩固练习

  1.完成教材第56页“练习十二”第8题。(要求学生提出不同的问题并解答)

  (答案不唯一)我和爸爸的年龄比:12∶38=6∶19;爸爸与妈妈的年工资比:36000∶(20xx×12)=3∶2。

  2.完成教材第56页“练习十二”第9x题。(点名学生板演,其余独立计算,集体订正)

  150 t∶60 t∶15 t=10∶4∶1

  3.完成教材第56页“练习十二”第10x题。(学生独立完成,同桌订正)

  水泥:20×2/(2+3+5)=4(t)

  沙子:20×3/(2+3+5)=6(t)

  石子:20×5/(2+3+5)=10(t)

  4.完成教材第56页“练习十二”第11x题。(小组讨论解决方法并汇报)

  120÷4=30(cm)

  长:30×3/(3+2+1)=15(cm)

  宽:30×2/(3+2+1)=10(cm)

  高:30×1/(3+2+1)=5(cm)

  四、课堂小结

  你有哪些收获?还有什么不明白的地方?

  板书设计

  比的应用(练习课)

  第7题:

  (方法一)西红柿:800×2/5=320(m2)

  黄瓜和茄子:800-320=480(m2)

  黄瓜:480×2/(2+1)=320(m2)

  茄子:480×1/(2+1)=160(m2)

  (方法二)西红柿:800×2/5=320(m2)

  黄瓜占总面积:1-2/5×2/(2+1)=2/5

  茄子占总面积:1-2/5×1/(2+1)=1/5

  黄瓜:800×2/5=320(m2)

  茄子:800×1/5=160(m2)

  答:西红柿的种植面积是320 m2,黄瓜的种植面积是320 m2,茄子的`种植面积是160 m2。

  教学反思

  1.本次练习,总的来说学生都能熟练地进行列式计算,但他们还没有达到真正理解利用比的基本性质进行思考解题。究其原因,大概是和一些学生的惰性思维有关。一些学生总认为只要会做就行,没有必要去深究为什么,以至于当新型问题出现时,他们往往不知如何下手。为了改变这种思想,还需要在教学中多注意方法的引导和理解,让其熟练掌握一般方法,能够以不变应万变地去解题。

  2.我的补充:

  备课资料参考

  典型例题准备

  【例题】甲、乙两个仓库有很多货物,先从甲仓库运走80 t货物,甲仓库的剩余货物与乙仓库货物的质量比为3∶2;再从乙仓库运走55t货物,乙仓库剩余货物的质量是甲仓库剩余货物的质量的1/4。甲、乙两个仓库原来共有货物多少吨?

  分析:不变量:从甲仓库运走80吨货物,甲仓库剩余货物的质量不变。

  前后变化的分率:

  (1)原来乙仓库货物的质量是甲仓库剩余货物质量的2/3;

  (2)从乙仓库运走55 t后,乙仓库剩余货物的质量是甲仓库剩余货物质量的1/4。

  对应量:甲、乙两个仓库货物质量变化的分率差的对应量是55 t。

  解答:甲仓库剩余的货物:55÷2/3-1/4=132(t)

  甲、乙原来共有货物:132+80+132×2/3=300(t)

  答:甲、乙两个仓库原来共有货物300 t。

  解法归纳:解决此类比与分率前后变化的问题,关键是抓住不变量,找出已知量对应的分率,从而用除法解决问题。

  相关知识阅读

  公侯伯子男,五四三二一。

  假有金五秤,依率要分讫。

  【注释】:1秤=15斤,5秤=75斤。

  有公、侯、伯、子、男五等官员,想要根据官位高低来分75斤金子,按5∶4∶3∶2∶1的比分完。可以通过按比分配问题的知识求出每种官位分得金子的质量。

  六年级数学《比的化简》教学设计 8

  教学目标:

  1、理解并掌握比的意义,掌握比的读、写,认识比各部分名称。

  2、掌握求比值的方法,并能正确求出比的比值。

  3、理解比和除法、分数的关系。

  4、向学生渗透转化思想,培养学生抽象、概括能力。

  教学重点:

  理解比的意义,掌握求比值的方法。

  教学难点:

  理解比的意义,建立比的概念。

  课前准备:

  制作教学课件。

  教学过程:

  一、复习铺垫,导入新课。

  1、口答:78= 135= =( )( ) =( )( )

  指名说出分数与除法的关系。

  2、师:在日常生产和生活中,常常需要把两个数量进行比较。比较的方法我们已经学过两种,即比较两个数量之间相差关系用减法;比较两个数量之间的倍数关系用除法。下面请大家看这个例子(出示P52的例如):一个镜框长5分米,宽3分米。谁能提出关于长和宽的倍数关系的问题?

  根据学生提出的问题板书:

  长是宽的几倍?53= 宽是长的几分之几?35=

  师:刚才,我们用除法来表示两个数或数量之间的关系,也就是两个数相除(板书:两个数相除),有时我们也把这样两个数量的关系换一种说法。这也就是我们今天这堂课要研究的问题比的意义。

  板书课题。

  二、教学新知,初步感知。

  1、揭示比的意义。

  师:例如,长是宽的 倍我们可以这样说,长和宽的比是5比3。(板书:长和宽的比是5比3)(学生跟着老师练说)那么,按照这种说法,宽是长的' 还可以怎样说?同坐试着说,再指名说。(板书:宽和长的比是3比5)

  师:我们再来看一个例子(出示P52的又如,一辆汽车2小时行驶90千米)路程和时间的关系可以用速度(也就是每小时行多少千米)来表示。怎样列式?(学生回答,教师板书:902=45)谁能用比来表示路程和时间的关系?(板书:路程和时间的比是90比2)

  引导学生观察板书、归纳比的意义。提问:什么叫做比?(学生可通过或讨论、或看书得出比的意义,教师接着两个数相除后面板书:又叫做两个数的比。)

  练一练。

  (1)、有5个红球和8个白球,红球和白球个数的比是 比 ,白球和红球个数的比是 比 。

  (2)、 一个美术兴趣小组有男生15人, 女生8人, 男生和女生人数的比是 比 。男生和美术兴趣小组总人数的比是 比 。

  2、通过自学,掌握比各部分的名称和求比值的方法。

  (1)出示自学提纲:

  ①用数学方法如何写比,如何读呢?

  ②比的.各部分的名称分别叫什么?

  ③比和除法、分数的关系各是什么?填入表中。

  ④比的后项为什么不能为零?

  (2)学生自学课本或分组讨论。

  (3)集体讨论第①个问题并板书:5:3 3:5 90:2

  师:比还有一种写法,你知道是怎样写的吗?(教学比的分数形式)

  在学生讨论的基础上教师叙述:两个数的比还可以写成分数形式,例如:5:3也可以写成 ,仍读作5比3。请大家把3:5、90:2改写成分数形式。

  (4)集体讨论第②个问题并板书:

  (5)根据上面式子,指名说说比和除法、分数的关系及求比值的方法。

  在学生讨论的基础上出示下面关系表:

  名称 联系 区别

  比 前项 :比号 后项 比值 一种关系

  除法 被除数 除号 除数 商 一种运算

  分数 分子 分数线 分母 分数值 一种数

  指名说说,比的后项为什么不能是零?

  辨析:在亚洲女足锦标赛中, 中国女足健儿努力拚博,夺得了金牌,为祖国争得了荣誉,其中,中国队以1:0战胜了日本队,那么为什么这个比的后项可以是0呢?

  师说明:因为各类比赛中的比不是我们这节课学习的比,它只是一种计分形式,不是相除的关系。

  问:怎样求比值呢?

  学生回答后小结:求比值用比的前项除以后项。比值通常用分数表示,也可以用小数表示,有时也可能是整数。

  练习:求比值:4:5 0.8:0.4 :

  三、巩固练习,深化认识。

  1、完成P53练一练。

  2、完成练习十二第1题。

  3、完成练习十二第2题。

  四、综合练习,提高技能。

  1、口答:白兔的只数是黑兔的4倍,

  白兔只数与黑兔只数的比是( )

  黑兔只数与白兔只数的比是( )

  黑兔只数与总只数的比是()

  总只数只数与黑兔的比是()

  白兔只数与总只数的比是()

  总只数与白兔只数的比是()

  2、动脑筋根据题目中提供的信息,寻找合适的量,自己提出各种问题,并说说这些量之间的比

  小龙今年12岁,是六(1)班学生,该班共有45个学生,小龙爸爸今年39岁,在保险公司上班,每月工资1800元;小明妈妈每月工资1400元,她所在单位有职工28人。

  五、全课总结,释疑解惑。

  这节课,你学会了那些知识?还有哪些问题需要探讨的吗?

  六、作业:

  完成练习十二第3-5题。

  六年级数学《比的化简》教学设计 9

  教学内容:

  教材第84页例1---3题,练习十七第1、3题。

  教学目标:

  1、进一步理解比和比例的意义与基本性质,掌握比和分数、除法的关系。能够正确、迅速地求出比值和化简比。

  2、应用比的意义求出平面图的比例尺,并根据比例尺求图上距离和实际距离。

  3、体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。

  教学重点:

  掌握比和比例的意义与基本性质。

  教学难点:

  根据比例尺求图上距离和实际距离。

  教具准备:

  多媒体课件

  教学过程:

  一、 导言引入课题

  比和比例(一)

  二、教学例1

  先在下表中写比和比例的一些知识,再举例说明。

  比 比例

  意义

  各部分名称

  基本性质

  三、教学例2

  比和分数、除法有什么联系?先填写下来,说一说它们的区别。

  联系 例子

  各部分名称

  分数 分子 分数线 分母 分数值

  除法

  比

  做一做:5:6=( )( )

  四、教学例3

  比的基本性质、分数的基本性质、商不变规律之间有什么联系?

  1、学生交流

  2、化简比。

  3、化简比与求比值有什么不同之处?

  一般方法 结果

  求比值

  化简比

  五、解比例

  X= :2【说一说思路和方法】

  六、比例尺

  1、什么叫做比例尺?

  2、说出下面各比例尺的具体意义。

  ①比例尺1:3000000表示_____________

  ②比例尺20:1表示 _____________

  3、求比例尺: 一条绿化带长350米,在平面图上用7厘米的线段表示。这幅图的比例尺是多少?

  4、求实际距离:在比例尺是 的地图上,量得A到B的距离是5厘米。求AB两地的实际距离?

  5、求图上距离:甲乙两地相距200千米,在比例尺是 的.地图上,甲乙两地用多少厘米表示?

  七、知识应用

  练习十七第1、3题。

  八、总结梳理

  回顾本节课的学习,说一说你有哪些收获?

  板书设计:

  比和比例(一)

  比和比例的意义与性质。

  比和分数、除法的关系。 比和比例(一)

  比、比例的基本性质的用途。

  比例尺。

  比例尺的应用。

  教学反思:

  在教学中,让学生重温小学阶段比和比例的有关知识并进行系统整理。先让学生回忆,配合相关的练习题,让学生进行训练,加深学生的理解。进一步理解掌握比和分数、除法的关系。能够应用比的意义求出平面图的比例尺,并根据比例尺求图上举例和实际距离培养学生用数学眼光观察生活的习惯。

  六年级数学《比的化简》教学设计 10

  教学目标

  1. 使学生结合实例,理解比的意义,知道比的前项和后项,会正确地读、写两个数的比,会求比值。了解比和分数、除法之间的联系,会把比改写成分数的形式。

  2. 在解决实际问题的过程中,了解比在日常生活中的广泛应用,体会数学与生活的联系,培养对数学学习的兴趣。

  教学重点

  理解比的意义,比和分数、除法之间的联系。

  教学过程

  一、 创设问题情境,引入比

  电脑出示三幅长方形的画(标出每一幅的长和宽)。

  谈话:这里有三幅不同形状的画,你们觉得哪幅画的形状看起来最舒服、最美观?(学生都认为第二幅比较美观)三幅画画的都是美丽的海滨,为什么同学们都认为第二幅比较美观呢?(第一幅和第三幅画要么太长,要么太窄,长和宽的比例不合适)这三幅画长和宽的长度不同,所以给人的感觉就不一样,你知道可以怎样来表示每幅画长和宽的关系吗?(第一幅画长是宽的2倍,宽是长的1/2……)

  提问:还可以怎样表示它们的关系?

  过渡:是的,我们还可以用比来表示每一幅画长和宽的关系。今天这节课我们就来认识比。

  二、 自主活动,认识比

  1. 用比表示两个同类量的.相除关系。

  (1)讲解:像第一幅画长是宽的2倍,也可以表示为:长和宽的比是2比1,记作2 ∶ 1,“∶”是比号。宽是长的1/2也可以表示为:宽和长的比是1 ∶ 2。你能说一说怎样用比表示第二幅画、第三幅画长和宽的关系吗?

  学生分别用比表示另外两幅画的长和宽的关系。

  (2)出示一瓶××牌洗洁液,用实物投影放大洗洁液的使用说明。

  谈话:在日常生活中,我们经常用比表示两个数量之间的关系。如:这瓶洗洁液,上面的使用说明就是用比来表示的。

  指说明中1∶4的图,提问:这里浅色部分和深色部分分别表示什么?你知道1 ∶ 4是表示什么意思吗?(表示洗洁液和水的比是1 ∶ 4,就是1份洗洁液要加4份水的意思,洗洁液的体积是水的1/4)

  再问:那么水和洗洁液的比是几比几?表示什么意思?

  师生共同讨论1 ∶ 8和1 ∶ 1的含义。

  2. 用比表示两个不同类量的相除关系。

  谈话:通过刚才的学习,同学们对比有了初步的认识。下面我们再看一幅图(出示图:一堆梨,下面标有2千克,共3元;一堆苹果,下面标有3千克,共6元)。

  提问:根据图中的信息,你知道梨的单价是多少元吗?

  根据学生回答,板书:单价=总价÷数量。

  讲解:像这样总价和数量之间的关系也可以用比来表示,梨的'总价和数量的比是3 ∶ 2,表示总价除以数量。

  提问:你能用比来表示苹果的总价和数量之间的关系吗?

  这里的6 ∶ 3表示什么意思?(表示总价除以数量)

  3. 理解比的意义。

  谈话:根据上面的例子,你能说一说什么叫两个数的比吗?

  小结:两个数相除又叫做两个数的比。

  4. 自学课本。

  提问:关于比,你还想了解哪些知识?下面请同学们带着这些问题自学课本第53页,再和小组里的同学互相说一说,你知道了什么?

  反馈:通过自学,你又了解了哪些知识?

  师生共同讨论下面的问题:

  (1)比由哪几部分组成,分别叫什么?比的后项能为0吗?为什么?

  (2)什么叫比值?怎样求比的比值?

  (3)比和除法、分数有什么联系?

  (4)比还可以写成怎样的形式?

  小结:(略)

  三、 巩固练习,深化理解

  1. 完成“练一练”第1、2题。

  学生完成填空后,让学生说一说每个比所表示的意思。

  2. 完成“练一练”第3题。

  学生改写后,再读一读,并分别指出每一个比的前项和后项。

  3. 小强和爸爸身高的比。

  出示:小强的身高是1米,他爸爸的身高是 173厘米。写出小强和他爸爸身高的比。

  学生练习后,组织交流,并说一说为什么小强和他爸爸身高的比不能写成1 ∶ 173。

  4. 糖水的甜度。

  出示:两杯糖水,并标出糖和水质量的比,第一杯是1 ∶ 20,第二杯是1 ∶ 25。

  提问:你知道哪杯水甜吗?为什么?

  出示:第三杯中糖4克,水100克。

  谈话:这杯糖水和刚才的哪一杯一样甜?先想一想,再和同桌说一说你是怎样比较的。

  提问:根据第一杯糖和水质量的比是1 ∶ 20,你能说出第一杯中糖和糖水质量的比吗?

  四、 课堂总结

  提问:今天我们共同学习了什么?你们有什么收获?还有什么问题吗?

  五、 课外延伸

  出示课始的三幅画,谈话:还记得我们一开始出示的三幅画吗?为什么大家都认为第二幅比较美观呢?你能算出这幅画长和宽的比值吗?(学生算出长和宽的比值大约是0.618)其实呀,这里面还藏着许多奥秘呢,同学们想了解吗?

  课件播放短片,介绍黄金比。

  谈话:其实,在我们的身边就有很多的黄金比,如我们经常见到的长方形纸的长和宽的比,等等。同学们如果有兴趣,可以在课后再去研究。

  六年级数学《比的化简》教学设计 11

  一、创设情境,导入新课

  1、提问

  师:除法、分数和比之间有什么联系?

  2.做复习题,师:第一题你这样做根据的是什么?(商不变的性质)它的内容是什么?第二题呢?

  3.导入课题:

  我们以前学过商不变的性质和分数的基本性质,今天我们就在这些旧知识的基础上学习新的知识。下面,我们就一起研究研究。(板书课题:比的基本性质)

  二、学习新课

  1.教学例3比的基本性质。

  (1)学生填表(2)提问:联系商不变的性质和分数的基本性质这两个性质想一想:在比中又有什么规律可循?

  (3)师生共同总结比的.基本性质演示课件“比的基本性质”比的前项和后项同时乘上或者同时除以相同的.数(0除外),比值不变.

  (4)师:你觉得哪些词语比较重要? 0除外你怎样理解得?

  2.教学例4应用比的基本性质化简比。

  我们以前学过最简分数,想一想:什么叫做最简分数?最简单的整数比就是比的前项、后项是互质数,像9∶8就是最简单的整数比。

  出示:把下面各比化成最简单的整数比

  (1)12:18 (2) (3)1.8:0.09

  (1)让学生试做第(1)题

  师:你是怎么做的?6和12、18有着怎样的关系?

  引导学生小结出整数比化简的方法:用比的前后项分别除以它们的公约数,使比的前后项是互质数。

  (2)化简 (2)

  师:这个比的前、后项是什么数?(分数)我们已经会化简整数比了,那么你能不能利用比的基本性质把分数比先化成整数比呢?

  (3)引导学生小结出分数比化简的方法:(演示课件出示)比的前、后项同时乘以它们的分母的最小公倍数,就可以把分数比转化成整数比,进而化简成最简单的整数比。

  (4)化简(3)1.8:0.09

  师:想一想如何化简小数比呢?

  让学生独立在书上化简,指名板演

  师:那么应用比的基本性质把整数比、小数比、分数比化成最简单的整数比的方法是什么?

  三、巩固练习

  1.练一练,填完整

  2.做练习十三第5-8题。

  3.补充练习

  选择

  1.1千米∶20千米=( )

  (1)1∶20 (2)1000∶20 (3)5∶1

  2.做同一种零件,甲2小时做7个,乙3小时做10个,甲、乙二人的工效比是( )

  (1)20∶21 (2)21∶20 (3)7∶10

  四、课堂小结

  师:通过今天的学习,你又学习了哪些知识?什么是比的基本性质?应用比的基本性质如何把整数比、分数比、小数比化成最简单的整数比?

  六年级数学《比的化简》教学设计 12

  教学目标

  1、理解比的基本性质。

  2、利用比的基本性质正确化简比。

  教学重难点

  利用比的基本性质正确化简比。

  课前准备

  实物投影仪

  教学过程

  一、创设情境,提出问题

  一、听算练习:

  求比值: 2:0.5 4:1 20:5 200:50

  90:60 9:6 3:2 0.3:0.2

  两个同学板演:写出过程。通过计算你有什么发现?每个比式之间会有什么联系?(提出学习目标)

  二、引导探究,解决问题

  1、观察黑板上的算式,你有什么发现:

  生的发现:前面四个比的比值相等,后面四个比的比值相等。

  板书算式: 2:0.5 = 4:1 = 20:5 = 200:50 = 4

  (2×2) :(0.5×2) (20×10):(5×10)

  90:60 = 9:6 = 3:2 = 0.2:0.3 = 1.5

  (90÷10):(60÷10) (3÷10):(2÷10)

  观察第一组比,他们的比值是相等的,前项和后项有什么变化?

  以前两个比和后两个比为例,找同学说出自己的发现。

  教师添加板书,渗透格式的书写。

  让学生多说自己的发现,从①到③,从①到④,从②到④等,

  然后小结规律:比的前项和后项同时乘同一个数,比值不变。

  2、观察第二组比,发现规律:方法同上。

  比的前项和后项同时除以同一个数(0除外),比值不变。

  (有分数的基本性质做定势,0除外这个关键点学生不会忘记,在这里只须问一句为什么?就可以将这个要点突破)

  3、将上面两个规律综合小结:

  比的前项和后项同时乘或除以同一个数(0除外),比值不变。 这叫做比的基本性质。

  4、出示课题:(比的基本性质)

  5、理解概念,找出关键词。

  6、利用比的基本性质做出准确判断:

  ① 8:10 =(8+10):10+10 = 18:20 ( )

  ② 12:16=(12÷6):(16 ÷ 4)= 2:4 ( )

  ③ 0.8:1=(0.8×10):(1×10)=8:10 ( )

  ④ 比的前项乘3,要使比值不变,比的后项应除以3。 ( )

  7、学习了比的基本性质,你联想到了我们以前学过的那部分知识?

  学生很容易想到这些内容,比的基本性质,商不变性质。联系旧知,形成系统的知识体系。我们刚刚学过分数、除法、比的联系,他们的性质能联系在一起也就不足为奇了。

  问:比的基本性质在数学上有什么用途?(约分、通分)

  商不变的性质有什么用途?(1.2÷0.3 500÷10 )

  那么我们刚刚学过的比的基本性质有什么用途呢?

  学生已经预习过,故学生应该知道利用比的'基本性质可以化简比。

  8、观察黑板上的两组等式,哪一个比最简单?学生回答,教师板书:

  像1:4 3:2这样的比叫做最简整数比。

  请学生举出最简比的例子,多找几个学生回答,

  学生在举例的同时加深了对最简整数比的认识。

  由学生总结。最简整数比的特点:

  学生总结,教师板书。

  1、比的.前项后项必须都是整数。

  2、比的前项后项必须是互质数。

  以后我们写出的比应该都化简成最简整数比。

  9、化简比:

  出示例题:“神州”五号搭载了两面联合国旗,一面的长是15厘米,宽是10厘米,另一面长是180厘米,宽是120厘米。写出这两面旗长与宽的比,并化成最简整数比。

  学生口答写出比: 15:10 180:120

  由于学生已经预习,因此化简的过程教给孩子。尝试练习,找同学板演:

  汇报,学生讲解化简过程,教师规范化简格式。

  化简分数比: 1/6 : 2/9 7/12 :3/8

  化简小数比: 0.5:0.4 0.75:0.25

  这部分内容的学习交给孩子自己,发挥学生的主体作用,学生尝试练习,学生讲解。最后让学生讨论化简整数比,分数比,小数比的方法。

  化简整数比时,比的前项和后项同时除以它们的最大公因数。

  化简分数比时,比的前项和后项同时乘分母的最小公倍数。

  化简小数比时,先把小数比化成整数比,然后再化成最简比。

  三、巩固训练,拓展延伸

  1、等比接龙:

  2:3=20:30=4:6=200:300=( )=( )=( )=( )

  100:50=40:20=( )=( )= ( )=( )

  2、一项工程,甲单独做12天完成,乙单独做10天完成,甲乙所用时间比是( ),工效比是( )。

  3、甲是乙的1.2倍,甲与乙的比是( )。

  4、甲是乙的1又1/4倍,甲与乙的比是( )。

  四、完善认知

  通过本节课学习?你懂得了什么?还有什么疑问吗?

  教后反思:

  xxx

  六年级数学《比的化简》教学设计 13

  教学目的:

  1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。

  3.渗透转化的数学思想和极限思想。

  教学重点:圆面积公式的推导。

  教学关键:弄清圆与转化后的近似图形之间的关系。

  教具:多媒体计算机、幻灯片。

  学具:16等份和32等份的圆形、剪刀、刻度尺、一张圆形纸片。

  教学过程:

  一、设疑导入

  1.启发学生回忆平行四边形、三角形和梯形面积计算公式的推导过程。(微机演示)

  2.微机显示一个圆,再把圆涂成红色。提问:这是什么图形?看到圆想到什么?圆所围平面部分的大小叫什么?(圆的面积)出示课题。怎样计算圆的面积呢?请同学们思考。

  [评:通过对旧知的回忆,激起学生从旧知识探索新知识的兴趣,并决定思想方向,有利于学生想象能力的培养。]

  二、课教学

  1.通过度量,猜想圆面积的大小。

  用边长等于半径的小正方形透明塑料片,直接度量圆面积,

  (如图)观察后得出圆面积比4个小正方形小,好象又比3

  个小正方形大一些。初步猜想:圆的面积相当于r2的3倍多

  由此看出,要求圆的精确面积通过度量是无法得出的。我们在学习推导几何图形的面积公式时,总是把新的图形经过分割、拼合等办法,将它们转化成我们熟悉的图形,今天我们能不能也用这样的方法推导出圆面积的计算公式呢?

  [评:这一探索性地设问,使学生产生悬念,引入深思。它与得出圆面积计算公式后的验证,前后呼应,融为一体。使学生对圆面积与r2的倍数关系,获得十分鲜明的表象,而且有助于避免与圆周长的计算公式(c=2r)产生混淆。]

  2.学生操作。

  (1)学生分别把16等份和32等份的圆形剪开,拼成两个近似的`长方形。(微机显示)老师提问:

  ①拼成的图形是长方形吗?(是近似的长方形,因为它的上下两条边不是线段。)

  ②圆和近似的长方形有什么关系?(形状变了,但面积相等)

  ③把圆16等份和32等份后,拼成的图形有什么区别?(32等份后拼成的图形更接近于长方形)

  如果把一个圆等分成64份、128份拼成的长方形会怎样呢?(微机显示)(圆等分的份数越多,拼成的图形越接近于长方形。)

  ④近似长方形的.长相当于圆的哪一部分?怎样用字母表示?(圆周长的一半,c/2=r),它的宽是圆的哪一部分?(半径r)

  ⑤你能推导出圆面积计算公式吗?

  [评:指导学生自己动手,并通过微机演示,把一个圆剪拼成近似的长方形,从长方形面积公式,推出圆面积计算公式。这样,可以培养学生初步的空间想象力,也可以渗透以直代曲的辩证唯物主义观点。]

  (2)把圆16等份分割后拼插成近似的平行四边形,平行四边形的底相当于圆周长的四分之一(c/4=r/2),高等于圆半径的2倍(2r),所以s=r/22r=r2 (见图一)

  (3)把圆16等份分割后可拼插成近似的等腰三角形。三角形的底

  相当于圆周长的1/4,高相当于圆半径的4倍,所以s=1/22r/4r=r2

  (4)把圆分割后,可拼成近似的等腰梯形。梯形上底与下底的和就是圆周长的一半,高等于圆半径的2倍,所以s=1/2r2r=r2 (见图三)。

  3.小结:无论我们把圆拼成什么样的近似图形,都能推导出圆的面积公式s=r2,验证了原来猜想的正确。说明在求圆的面积时,都要知道半径。

  4.比较圆周长和圆面积的计算公式,找出联系和区别,加强记忆。两个公式都与有关,但圆周长等于直径长度的倍,而圆面积等于以半径为边长的正方形面积的,即r2等的倍。

  5.自学例1。注意书写格书和运算顺序。

  [评:引导学生通过多次不同的实验,采用转化的方法,利用等积变形把圆面积转化成近似的长方形、等腰三角形和等腰梯形,从而推导出圆面积计算公式。同时,利用计算机的演示,化静为动,化虚为实,帮助学生把抽象的内容具体化,进一步加深对圆面积公式推导过程的理解。

  三、看书质疑

  四、巩固练习

  1.看图计算圆的面积。

  2.根据下面的条件,求圆的面积。

  r=6厘米 d =0.8厘米 r=1.5分米

  3.一块圆形铁板的半径是3分米,它的面积是多少平方分米?

  4.要求一张圆形纸片的面积,需测量哪些有关数据?比比看谁先做完,谁想的办法多?

  (1)可测圆的半径,根据s=r2求出面积。

  (2)可测圆的直径,根据s=(d/2)2求出面积。

  (3)可测圆的周长,根据s=(c/2)2求出面积。

  [总评:这节课有两大特色:

  一、始终把学生放在学习的主体地位,有目的地培养学生获取知识的能力。

  学习是学生的内部活动,因此,在课堂教学中既重视其学习结果,更要重视学习过程,培养学生自己探索获取知识的能力。这节课的教学,紧紧抓住圆面积公式的推导这一教学重点,敢于放手让学生自己动手操作,归纳推理。通过学生多次不同的剪拼,采用假设、转化、想象等方法,利用等积变形把圆面积转化成其他的平面图形,逐步归纳概括出圆面积的计算方法。这样多层次的操作,多角度的思考,既沟通了新旧知识的联系,又最大限度地激发了学生的求知欲,学生学习兴趣盎然,课堂气氛十分活跃,使学生不仅知其然,更知其所以然。

  (二)运用现代教学手段辅助课堂教学,提高了教学效率。

  计算机辅助课堂教学,有其直观、形象而又生动的特点,它能使静态的画面动态化,抽象的内容形象化,同时还不受时间和空间的限制,这节课恰当地运用了微机演示,充分调动了学生的学习兴趣,提高了课堂教学的效率,是其它教学手段无法比拟的。]

  六年级数学《比的化简》教学设计 14

  教学目标

  1、通过观察和操作认识轴对称图形和轴对称的含义。

  2、会画出轴对称图形的对称轴。

  3、使学生在操作中加深对图形的认识,建立空间观念。

  教学重点

  认识轴对称图形,画对对称图。

  教学难点

  认识图形,建立空间观念。

  教学过程

  一、铺垫孕伏

  1、口算

  二、探究新知

  1、投影出示

  树叶图、青蜓图、天平图,任意不对称图形。

  2、引导学生分组讨论

  (1)这些图形,形状有什么特点?

  (2)再找出一些生活中实例图形。

  3、通过汇报,在教师指导下,使学生明确到:

  树叶图、青蜓图、天平图,图形左右部分一样,并且说明:这些图形给人以美感,如果想象一个图形不对称,使人觉得不舒服。

  4、(课件演示:对称图形下载)

  将树叶图对折、青蜓图对折,天平图对折,使学生观察到这些图形,沿着一条直线对折,两侧的图形能够完全重合。

  5、同桌同学合作实验

  先把一张纸对折,在折好的一侧画出图形,剪下来,再把纸打开,看一看能得到一个什么样的图形?

  6、教师明确:这个图形就是轴对称图形,折痕所在的这条直线叫做对称轴。

  7、投影出示,做一做和练习二十六1题,引导学生判断。

  (1)教师出示投影。

  (2)学生讨论、交流。

  8、分组实验,组内每人画一种图形。

  (1)出示101页上图。

  (2)每人在方格纸上画一种图形,并剪下来。

  (3)比较,哪些图形是轴对称图形,画出它们的对称轴。

  (4)教师指导。

  (5)使学生明确:正方形、长方形、等腰三角形、等腰梯形、圆,都是轴对称图形。

  (6)启发学生,每一种图形,可以画几条对称轴。

  学生分组讨论交流。

  汇报:正方形可以画4条对称轴。

  长方形可以画2条对称轴。

  等腰三角形、等腰梯形各有一条对称轴。

  圆有无数条对称轴。

  (7)引导学生回忆判断,学过的'平面图形,哪些是轮对称图形,哪些图形只有一条对称轴,哪些不止一条,可以出示图形。

  三、课堂练习

  1、下面的数字,哪些是轴对称图形?它们各有几条对称轴?

  2、把一张纸对折后,剪下一个图形,把剪下的图形展开,所得的图形是不是轴对称图形?

  引导学生同桌或组内操作。

  引导学生在书上填画。

  四、课后作业

  运用学过的知识,用纸剪去一个对称图形,可以怎样剪?

  五、板书设计

  轴对称图形

  轴对称图形

【六年级数学《比的化简》教学设计】相关文章:

数学教学设计09-30

六年级数学教案《比的化简》(通用6篇)11-17

数学游戏教学设计06-12

初中数学教学设计07-28

小学数学教学设计09-02

大班数学教学设计04-07

小学数学教学设计(15篇)06-16

高中数学教学设计12-02

初中数学教学设计15篇11-25

小学数学教学设计20篇07-28