圆的认识教学设计

时间:2023-04-24 15:02:12 教学设计 我要投稿

圆的认识教学设计

  作为一名教师,通常需要用到教学设计来辅助教学,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。那要怎么写好教学设计呢?以下是小编为大家收集的圆的认识教学设计,仅供参考,大家一起来看看吧。

圆的认识教学设计

圆的认识教学设计1

  教学内容:《圆的认识》人教版六年级上册

  教学目标:

  1、使学生认识圆的各部分名称,掌握圆的特征及画圆的方法。

  2、在活动中培养学生观察、动手操作、与他人合作交流等方面的能力。

  3、使学生感受生活中圆的存在及作用,感受平面图形的学习价值,提高学生数学学习的兴趣和学好数学的信心。

  教学重难点:掌握圆的特征及画圆的方法。

  教学过程:

  一、创设情境,导入新课

  (1)喜羊羊和灰太狼一起参加动物王国里举办的汽车设计大赛,喜羊羊设计一个圆形车轮的汽车,灰太狼设计一个方形车轮的汽车。它们行驶起来会是什么感觉呢?

  (2)对于圆,我们一定不会感到陌生吧?生活中你们在哪见过它们呢?

  (3)(课件出示)欣赏有关圆的美丽的图片,如向日葵、光环等。

  【设计意图】

  数学来源于生活,又应用于生活。创设学生熟悉的生活情境,使学生产生积极的心理需求,感受数学与生活的密切联系,体验到生活中处处有数学与数学的运用。

  二、自主探索,交流互动

  1、感悟画圆法

  师:好了,欣赏了那么多美丽的圆,大家想画这些圆吗?你们有什么办法把圆画出来呢?

  ……

  2、尝试用圆规画圆

  师:利用实物画圆这个方法大家都会了,我们就不研究了。你们想挑战用圆规画圆吗?

  (生在纸上画圆,师巡视,仔细观察学生画圆时出现的问题)

  师:老师发现大部分同学画的圆很漂亮,但有小部分同学画的圆不是很好喔!你猜猜,他们可能在什么地方出现了问题?大家愿不愿意帮帮他们呢?

  ……

  师:其实大家所说到的就是用圆规画圆的步骤和应注意的'地方。谁说说?师根据生说相机归纳与板书,并示范画圆。

  (1)确定圆规两脚间的距离

  (2)把针尖固定在一个点上

  (3)把另一只脚旋转一周

  3、画定长为2厘米的圆

  师:同学们学会画圆了吧?想再画一个吗?不过这次老师有一个小小的要求喔,就是要使咱班同学画的圆一样大,怎么办?(圆规两脚间的距离定的一样长)

  【设计意图】

  把静态的图片变为动态的操作,从学生的真实点出发,以练习作为贯穿用圆规画圆的教学过程的始终,并以观察、讨论、谈话等教学方法加以辅助,让学生在亲身经历知识的过程中掌握画圆的方法及注意点。

  4、剪一剪、折一折

  (1)认识圆心。师:把这些折痕都相交于圆中心的一点,我们把它叫做什么?用字母怎样表示?

  小结:我们把圆中心的这一点叫做圆心,用字母“O”表示。请同学们用彩笔在圆上标出圆心。

  (2)认识直径。师:我们任取一条折痕,观察它有什么特点?

  小结:通过圆心,两端都在圆上,是一条线段。(揭示概念像这样通过圆心并两端都在圆上的线段就是圆的直径)用字母d表示,并在圆上标出。

  (4)认识半径。师:画面中的线段有什么特点?

  小结:一端在圆心上,另一端在圆上任意一点。揭示概念(连接圆心与圆上任意一点的线段叫做半径)用字母“r”表示。

  (5)半径与直径的关系。师:我们认识了圆心、直径与半径,想想它们的特征及其关系?

  a在剪成的圆里你能画多少条半径?它们的关系有什么关系?

  b在剪成的圆里你能画多少条直径?

  c直径与半径有什么关系?

  小组讨论交流

  小结、板书

  【设计意图】

  在这里先让学生掌握画圆的方法,再让他们认识圆的各部分名称及其特征,既优化了教材的编排,又符合学生的认知结构,达到了教学目标的要求。

  三、自练反馈,巩固练习

  (1)填一填:

  ①同一圆里有()条直径,有()条半径。

  ②在同一圆里,直径与半径的比是()。

  ③把一个圆规的两脚张开2厘米,画一个圆,它的直径是()。

  (2)判一判,对的打“√”错的打“×”。

  ①两端都在圆上的线段叫圆的直径。()

  ②圆心到圆上任意一点的距离都相等。()

  ③直径是半径的2倍。()

  (3)三题中选一题做:

  ①请你当裁判员:我们班举行迎“元旦”套圈比赛,参赛的同学应站成什么形状合理、又省时?请根据你的创意画出相应的示意图。

  ②请你当设计师:绿岛公园计划在圆形人工湖里建一个观影亭,请你拟定一个选择建设位置的方案并简要说明理由。

  ③体育老师想在操场上画一个10厘米的圆圈做游戏,可圆规太小,你能帮她想一个办法吗?

  【设计意图】

  《课标》提倡:学生的数学学习内容应是现实的、有意义的、富有挑战性的,强调数学知识的来源与应用。这一环节将枯燥的练习,融入到当设计师、裁判员中来,促使学生以饱满的热情参与学习,又在活动中巩固所学的知识,在交流中开阔思维,培养学生的创新意识及实践能力。而且练习的设计富有层次性,体现了实践性、应用性、开放性。

  四、回顾总结

  师:在这节课里,我们学到了什么?我们生活中有些东西为什么要做成圆形的呢?感兴趣的话课后我们可以用今天所学的知识解释一下。

圆的认识教学设计2

  设计说明

  圆的认识是学生对长方形、正方形、三角形等平面图形的扩展。由直线发展到曲线,是知识的一个升华,一个质的飞跃,对新接触圆的学生来说有一定的难度。本教学设计遵循知识的形成过程和学生的认知特点,具体突出以下两点:

  1.重视学生的实践操作。

  实践操作是学生学习数学的主要方式之一,它能加深学生对抽象数学知识的理解。在本节课的教学设计中,为学生提供充分的实践操作机会,学生通过摸一摸、折一折、画一画、量一量等活动,获取圆的有关知识,掌握圆的基本特征,实现自主学习。

  2.在合作交流中提升学生的理解能力。

  学生积累的知识、经验及个性差异会导致对知识理解的侧重点不同,通过小组合作学习、互相交流,能够使学生实现优势互补,从而实现知识的建构。本节课的教学设计重视让学生在小组合作中发现圆的基本特征,以及同一个圆中直径与半径之间的关系。在不断地交流、讨论、探究中明确圆心确定圆的.位置,半径决定圆的大小。这样的设计能让学生积极思考,激发学生的学习兴趣,提高数学知识的趣味性,建立学好数学的信心。

  课前准备

  教师准备:

  PPT课件

  各种平面图形卡片

  圆规

  学生准备:

  圆形实物

  平面图形卡片

  圆规

  直尺

  教学过程

  ⊙创设情境,激趣导入

  师:同学们,老师手里拿的是什么?(圆)关于圆,同学们一定不会感到陌生,请你们想一想,生活中你们在哪里见到过圆?(生自由回答)

  师:圆在生活中随处可见,让我们一起来欣赏一下吧。(课件出示教材57页主题图)

  师:圆把我们的世界点缀得如此美丽、神奇。今天就让我们一起走进圆的世界,去探寻其中的奥秘,好吗?(板书课题:圆的认识)

  设计意图:让学生感受到身边各种圆形图案带来了美的享受,体会到数学与生活的密切联系,自然而然地引出课题,激发学生主动探究圆的欲望。

  ⊙探究感悟,掌握特征

  1.直观感受圆的曲线特征。

  师:老师给每个小组都发了一个布袋,里面放了一些以前学过的平面图形卡片,闭上眼睛,你能很快摸出圆吗?把你的想法和小组内的成员说一说。

  活动后汇报:你为什么一下就能说出摸到的是不是圆?圆和我们学过的其他的平面图形有什么区别?

  师:(结合学生的回答)圆是由一条曲线围成的封闭图形。

  师:请同学们再次闭上眼睛摸一摸圆的边,想象一下圆的形状。

  设计意图:通过摸圆的活动让学生认识圆,通过想象、验证、动手操作,亲身体验圆是由一条曲线围成的封闭图形,初步感知圆的基本特征。

  2.交流反馈,形成概念。

  (1)自学画圆。

  师:刚才同学们已经认识了圆,那么,想不想把它画出来呢?

  老师引导学生每四人一组尝试画圆,看谁的方法多。

  (学生用手画,借助圆形物体画,用圆规画……)

  (2)尝试用圆规画圆。

  学生操作,每个学生用圆规在白纸上画一个圆。

  学生完成后,教师让学生每四人一组,把四个人画的圆放在一起,相互欣赏。

  师:欣赏完刚才四个同学画的圆以后,你们发现四个人的作品有什么不一样吗?

  (四个圆的大小不一样,画在纸上的位置也不一样)

  师小结:画圆时,圆规两脚间的距离不能改变,有针尖的一脚不能移动,旋转时要把重心放在有针尖的一脚上。

  (学生练习用圆规画圆)

  3.探索圆心。

  (1)明确圆心:老师示范画一个完整的圆,然后对照圆讲解:用圆规画圆时,针尖所在的点叫做圆心。

  (2)开展活动:请同学们拿出你们的圆形学具,上下对折、打开,出现一条折痕;左右对折、打开,又出现一条折痕;换个方向再对折、打开,如此做几次,你们发现了什么?

  (这几条折痕相交于一点)

  师:这几条折痕相交的这一点在圆的中心,圆中心的这点叫做圆心,圆心一般用字母O表示。

  引导学生在学具圆上标注圆心。

  (3)明确作用:同学们刚才画的圆的位置不一样,你们认为这是由什么决定的?

  同桌之间讨论后汇报。

圆的认识教学设计3

  教学目的:

  1、通过折一折、数一数、量一量等活动,观察、体会圆的特征,认识圆的各部分名称,理解在同圆或等圆中直径与半径之间的关系。

  2、了解、掌握多种画圆的方法,并初步学会用圆规画圆。

  3、借助动手操作活动,培养学生运用所学知识解决实际问题的能力。

  4、渗透知识来源于实践、学习的目的在于应用的思想。

  教学重、难点:

  掌握圆各部分的名称及圆的特征。圆的画法的掌握。

  教具准备:

  多媒体课件、圆形纸片、圆规、直尺等。

  学具准备:

  直尺、圆规、圆形纸片等。

  教学主要过程:

  一、创设情景,激发学习兴趣。

  师:孩子们,见过平静的水面吗?生:见过。

  师:丢进一块石头,你发现有什么变化?生:荡起一个个波纹。

  师:这些波纹是什么形状的呢?生:圆形的。

  师:这样的现象在大自然中随处可见。生活中,你在哪些地方见到过这些图圆形呢?

  生:……

  师:对了,生活中的很多地方都能看到圆形,老师这里也收集了一些,请看!(课件播放)盛开的向日葵,被切开的橙子……)师:同学们,在上面你同样找到圆形了吗?生:找到了。

  师:有人说,因为有了圆,我们的生活才变得多姿多彩。这节课就让我们一起走进圆的世界探寻其中的奥秘吧

  二、圆与平面图形的区别。

  师:老师的信封里也有一个圆,想看一看吗?生:想。

  师:可是除了圆还有一些其他的平面图形,也想看一看吗?(老师一一拿出来,生说名称)师:(课件)好样的,如果要从这一些平面图形把它给摸出来,觉得有没有难度?生:没有。

  师:怎么会没有难度呢?

  生:其他的有棱角,直直的,而圆是圆圆的。摸起来很光滑。师:这些图形都是由什么围成的?(课件)生:线段围成的。

  师:而圆的边事弯曲的,所以我们说圆是由一条曲线围成的图形。(课件)师:找到他们的区别后有没有信心把圆从里面摸出来?生:有。

  师:可是事情还是没那么简单,里面除了圆还有其它曲线图形。(拿出)生:(惊讶)

  师:同学们瞧。这个图形它也是由曲线围成的。同学们会不会把它当成圆形摸出来呢?

  生:不会。这个曲线图形表面凹凸不平,而圆是很光滑的。

  师:(拿出椭圆)还有呢。这个够光滑吧?你待会儿该不会把它当成圆形给掏出来吧?

  生:不会,因为椭圆看起来扁扁的。而圆很匀称,怎么看都一样。师:说的好,椭圆这样看矮矮的、胖胖的。这样看呢?生:高高的瘦瘦的。

  师:而圆看起来很匀称,怎么看都一样。

  师:通过我们刚才的比较,谁能从这些平面图形中摸出圆?

  师:好,你来吧。闭上眼睛,把手往前伸着,我把这些图形一个个放在你手中,你只需回答是圆不是圆就可以了。下面同学不能提示,根据他的回答作出判断。(动手感知)

  师:真厉害,最热烈的掌声送给他。

  师:刚才我们已经知道,圆是由一条曲线围成的封闭图形。(课件)围成圆的这一周,我们把它叫做圆上。在圆上的这一点A,我们就说A点在圆上。那外面的呢?我们把它叫做什么?生:圆外。

  师:这里的一点B,外面就说B点在?(圆外)师:里面呢?叫什么?生:圆内。

  三、合作探究认识圆心、半径和直径。这是圆与其他图形的区别,那么圆到底还有哪些特征呢?现在拿出准备的圆形纸片,我们来做个试验。把你的圆对折再对折,多折几次。打开。结合大屏上的三个提示小组内合作探究。看看圆到底还有哪些特征。(课件出示)

  师:相信大家一定会有不少新的发现。(学生合作交流)

  师:你们讨论完了吗?经过数次对折,你发现了什么?生:我发现纸上留下许多折痕。

  生:我还发现这些折痕相交于圆中心一点。师:是这样的吗?一起来看。

  师(课件):经过几次对折打开,纸上留下了这些折痕。你们发现了吗?(板书:长折痕)

  师:(课件)这些折痕相交于圆中心一点,找到这一点了吗?用笔把它点出来。(板书:一点)

  师:我们把相交于圆中心的这一点,叫做圆心,圆心用字母O表示(板书:圆心O)

  师:把你们的也标上字母。

  师:这些折痕,它们有什么共同的特点?生:都通过了圆心。

  师:对了,还有呢?生:两端都在圆上。师:既然两端都在圆上,说明它是一条什么?生:线段

  师:(课件)对了,我们就把通过圆心,并且两端都在圆上的线段叫做直径。直径一般用字母d来表示。

  师:通过刚才的观察,你还发现了什么?

  生:我还发现圆心把这些长折痕平均分成了许多短折痕。

  师:圆心将这些长折痕等分成了很多短折痕。是吗?(板书:短折痕)师:这些短折痕又有什么共同的特点呢?

  生:我发现它们的一端都在圆心,另一端都在圆上。

  师:(课件)像这些连接圆心到圆上任意一点的线段,我们就把它叫做半径。半径用字母r来表示。(板书:半径r)

  师:好,我们来看看,这上面哪些线段是半径呢?(课件)

  师:很好,你能在自己的圆片上画一条半径和直径吗?别忘了表示字母,写上长度。

  师:通过折一折,我们认识了圆心、半径和直径。通过数一数,你又发现了什么呢?

  生:我发现半径有无数条。

  师:半径有无数条,同意的举手。(板书:无数条)光这样说是不够的,你能说出理由吗?生:折无数次

  生:圆上有无数个点。

  师:还有呢?还有理由吗?生(沉默)

  师:不问不知道,一问才知道,原来你们都是懵的啊?你们是懵的吗?生:不是。

  师:哪些不是?(有人举手)有的同学为了捍卫自己的尊严,再次举起了手。好,你怎么想的?

  生:可以自己去画。师:可以去画。现在我们来想象一下,如果给你们足够多的时间,你能画出几条?生:无数条。师:(摇头)前几天唐老师在另一个班上这个内容也探讨了这个问题,最后大家一致认为圆有无数条半径。可是就有一个同学他不相信。回家以后他自己剪了一个圆,在上面密密麻麻画满了半径,一直画的看不到任何空隙了。他数了数一共是三百多条。第二天跑来就问我:唐老师你看!明明才三百多条,你怎么就说有无数条呢?

  生:(举手)换个大点的圆。

  师:他的意思是说:小伙子,你的圆太小了,换个大点的。是吗?

  师:可带来了问题,难道说大圆半径多,小圆半径少吗?或者我们干脆就把结论改为大圆半径有无数条?师:还有不同意见吗?

  生:我认为画半径的笔细一些。

  师:同学们,别小看了刚才同学的想法,他其实一下子就告诉了我们数学最基本的地方。那就是线段它可以无限的细下去。一直细到看不见为止,那这样的话我们就可以说圆有多少条半径?生:无数条。

  师:听听你们的声音,中气都比原来足了。对不对?

  师:圆有无数条半径的特征我们已经探讨的比较清楚了。通过量一量,你还发现了什么呢?

  生:我发现直径是半径的两倍。

  师:你想说的是:直径长度是半径长度的两倍对不对?你的直径长多少?半径呢?

  师:那么你们的直径与半径长度也有这样的关系吗?师:谁能用字母表示直径与半径的关系?生:d=2r

  师:也可以说?生:R=d/2

  (板书:d=2r r=d/2)

  师:除了直径与半径的关系,还有别的发现吗?生:我发现所有的直径长度相等。生:我还发现所有的半径长度相等。

  师:你们呢?所有的直径长度相等吗?所有的半径长度也相等吗?(板书:长度相等)

  师:通过量一量,大家又发现了所有直径长度相等,所有半径长度也相等。师:(收集大小不同的两个圆)好,我们来看,半径相等吗?生:不相等。

  师:刚才你们不是说所有半径长度相等吗?这是为什么呢?生:因为它们不再同一圆内。师:现在你能得出什么结论?

  生:在同一圆内所有的直径长度相等,所有的半径长度也相等。

  师:看来,要使所有的半径长度相等这一特征成立,它必须得有一个很重要的条件,那就是:在同一圆内。(板书:在同一圆内)

  师:(收集一样的两个圆)现在它们在同一个圆内吗?生:没有。

  师:它们的半径长度相等吗?生:相等。

  师:现在你又能得出什么结论?

  生:在一样大的圆里,所有的半径长度相等,所有的直径长度也相等。

  师:说的好不好?除了在同一个圆内,所有的半径长度相等所有的直径长度也相等。在相等的圆里,也是这样。(板书:等圆)

  师:同学们,通过折一折、数一数、量一量,你们都有了哪些发现呢?生:发现了圆心、半径和直径。

  生:也发现了在同一个圆或等圆里直径与半径的关系。师:它们是什么关系?生:d=2r,r=d/2

  生:还发现了圆有无数条直径和半径。生:以及在同一个圆或等圆里所有的半径长度相等,所有的直径长度也相等的特征。师:(课件)孩子们,其实我们的这些发现早在两千多年前就被我国古代思想家——墨子所发现。在他的著作中这样描述了:圆一中同长也。所谓的一中,指的就是一个?(圆心)同长呢?又指什么?生:半径一样长,直径一样长。

  师:这一发现和我们刚才的发现?(完全一致)他的这一发现比西方国家整整早了一千多年。听到这里我想大家都有一个共同的感受,那就是?生:(激动的)自豪!!四、合作探讨圆的画法。

  师:发现了圆那么多的特征,想不想自己动手画一个圆呢?师:那么怎样才能既准确又方便的画出一个圆?生:可以用圆规来画。

  师:对了,古人就曾说过:没有规矩不成方圆。这里的规就是手中的圆规。用来画圆。圆规有两只脚,一只是针尖,用来固定圆心;另一只是画圆用的笔。两只脚可以随意的叉开。你能试着用圆规画一个圆吗?师:(巡视中)老师发现大部分同学都画的比较好,但也有的同学画的不够理想。师:画好了吗?谁来说说画的不够理想的这些同学可能出现了什么问题?生:圆心没固定好。

  生:画的时候没拿手柄,拿到下面了。

  师;你们刚才说到的问题,老师在你们中间找到了证据。一起来看,这张什么问题?(投影展示)

  生:太偏了。应该往中间画。

  师:往中间画?怎样才能画到中间去?生:将圆心固定到纸的中间。

  师:圆心固定在纸的中间,画的圆就在哪里?生:本子中间。

  师:也就是说,圆心觉定了圆的什么?生:圆的位置。

  师:说的非常正确。圆心决定了圆的位置。再来看看这幅有什么问题?生:没连上。师:能连上吗?生:不能。

  师:猜猜看,估计是什么原因导致的?

  生:肯定在画的'时候改变了两脚直间的距离。师:同意他的看法吗?生:同意。

  师:圆规两脚之间的距离也就是圆的什么?生:圆的半径。

  师:再接着画下去,是越大还是越小?生:越小。

  师:所以我们说,圆的大小取决于什么?生:半径的长短。

  师:对了,圆的大小是由半径的长短决定的。与圆心的位置无关。师:到底应该怎样使用圆规画圆呢?现在我们一起来看黑板。师:(展示画圆方法)师:孩子们,根据老师刚才的画圆步骤和方法,你能再画一个半径5厘米的圆吗?(学生再次操作画圆)

  师:画好了吗?举起来互相欣赏一下我们的劳动成果吧。五、圆在生活中的运用。

  师:(课件)画好了圆,我们再来看看,这是什么?生:篮球场。

  师:中间是个什么?生:圆。师:中间为什么是个圆而不是个正方形或长方形呢?不知道篮球怎么开赛,回答这个问题还真是有点难。一起来了解一下。(播放开赛录像)

  师:从这段录像我们看见,裁判拿着球在圆心,队员在圆上,比赛一开始,队员就尽量将球传到自己的场地。现在你能解释球场的中间为什么是个圆了吗?生:因为圆心到圆上任意一点的距离都相等。

  师:说的真好。这样大的一个圆,怎么画出来的呢?有这么大的圆规吗?生:没有。

  师:那该怎么画呢?生:……

  师:大家听明白了吗?

  师:不是说,没有规矩不成方圆吗?怎么没有用圆规也能画出一个圆呢?生:规矩不应该特指圆规,而应该指的是画圆的工具。师:看来古人说的没有规矩不成方圆这句话还是对的。六、数学知识解释生活中的现象。师:现在你们能从数学的角度解释平静的水面丢进石子荡起的波纹为什么是一个个圆这一现象了吗?生:……

  师:解释的太棒了。这实际就是在一个圆内,所有的半径长度相等的道理。师:看来简单的自然现象,有时也蕴含了丰富的数学规律。

  师:其实在我们的生活中,除了这些能够用眼看到的圆,还有许多肉眼所看不到的圆。一起来了解一下。

  (课件)太阳美妙的光环、特殊仪器拍摄到的无线电波、说话时声音的传播。师:孩子们,圆在我们的生活中无处不在,因为有了圆,我们的世界才变得如此美妙而神奇。

圆的认识教学设计4

  教学内容:

  人教版六年级上册教材第57-58页内容和“做一做”及第60页的第1—5题。

  教学目标:

  1、认识圆,掌握圆的特征,理解直径与半径的关系。

  2、会使使用工具画圆。

  3、3、培养观察、分析、综合、概括及动手操作能力。

  教学重点:

  通过动手操作,理解直径与半径的关系,认识圆.。

  教学难点:

  画圆的方法,认识圆的特征。

  教学准备:

  投影仪、课件等

  教学过程:

  一、创设情境,引入复习

  《圆的认识》教学设计清小花朝珺1、我们以前学过的平面图形有哪些?这些图形都是用什么线围成的?

  简单说说下面这些图形的特征?

  长方形正方形平行四边形三角形梯形

  2、圆是用什么线围成的?举例:生活中有哪些圆形的物体?

  3、出示圆片图形:(1)圆是用什么线围成的?(圆是一种曲线图形)

  (2)举例:生活中有哪些圆形的物体?(钟面、车轮、水杯、碗口等)

  【设计意图:通过复习旧知,找出生活中的圆形物体,让学生进一步感受数学来源于生活,提高其学习的兴趣。】

  二、探索新知

  (一)认识圆心、直径和半径。

  1、教师课件出示自学提纲,自学课本p56-57

  (1)生拿出准备好的一个圆纸片。

  (2)课本第58页动手折一折。

  折过2次后,你发现了什么?再折出另外两条折痕呢?

  (3)指出纸片的圆心、直径和半径。并在剪下的圆中分别标出。

  2、自学,教师巡回指点,发现难点。

  3、教师在黑板上画一个圆,让个别学生上台指出。

  4、小组讨论:

  (1)什么叫半径?圆上是什么意思?画一画两条半径,量一量它们的长短,发现了什么?

  (2)什么叫直径?过圆心是什么意思?量一量手上的圆的直径的长短,你发现了什么?

  (3)想一想:在同一个圆中有多少半径、多少直径?直径和半径的.长度有什么关系?

  不在同一个圆中呢?

  (4)小结:在同一个圆里,有无数条直径,且所有的直径都相等。

  在同一个圆里,有无数条半径,且所有的半径都相等。

  5、直径与半径的关系。

  (1)学生独立量出自己手中圆的直径与半径的长度,看它们之间有什么关系?然后讨论测量结果,找出直径与半径的关系。得出结论:在同一个圆里,直径是半径的2倍,半径是直径的一半。

  板书:

  ①在同一个圆里,有无数条直径,且所有的直径都相等。

  ②在同一个圆里,有无数条半径,且所有的半径都相等。

  ③在同一个圆里,d=2r;《圆的认识》教学设计清小花朝珺

  (2)第58页“做一做”第1题。

  【设计意图:学生在老师的精心安排下积极参与到学习的活动中,通过学生折一折、量一量、议一议等活动,让学生自己认识了圆的各部分名称,掌握了圆的特征。体现了学生的自主学习的能力。】

  (二)画圆。

  1、介绍圆规的各部分名称及使用方法。

  2、让个别学生说出老师刚才是如何画圆的。

  学生自学课本第57页并小结出画圆的步骤和方法。

  3、小组内画r=3cm的圆。组长检查评比,然后全班评比。

  4、完成第58页“做一做”第2题。

  【设计意图:让学生仍然采用自学为主,让他们自己动手探索画圆的方法,充分尊重其

  主动性,让他们自己在相互的交流中学会了画圆,掌握了画圆的技巧。】

  三、巩固练习

  1、判断,并说明理由。

  (1)半径的长短决定圆的大小。()

  (2)圆心决定圆的位置。()

  (3)直径是半径的2倍。()

  (4)圆的半径都相等。()

  2、请试着用圆规画几个大小不同的圆。你能发现什么?说一说画圆的步骤和方法。

  画一个半径是2厘米的圆。再画一个直径是5厘米的圆。

  3、完成第60页的第2、3题。

  生独立完成后,再由学生自己讲评。

  4、思考题:在操场如何画半径是5米的大圆?(即第60页的第4题)

  学生独立完成教师巡回查看,发现疑难。

  小组内评比,纠错。组长组织解决存在问题

  5、思考:圆和以前学过的平面图形有什么不同?

  四、总结梳理

  这节课你学到了什么,对自己的课堂表现还有什么提议吗?觉得在哪些地方还需改进。

  作业:完成第60页的第1、5题。

  板书设计:

  圆的认识

  ①在同一个圆里,有无数条直径,且所有的直径都相等。

  ②在同一个圆里,有无数条半径,且所有的半径都相等。

  ③在同一个圆里,d=2r;

圆的认识教学设计5

  教学目标:

  1.使学生认识圆,掌握圆的各部分名称。

  2.通过动手操作、实验观察探索出圆的特征及同一个圆里半径和直径的关系。

  3.初步学会用圆规画圆,培养学生的作图能力。

  4.培养学生观察、分析、抽象、概括等思维能力。

  教学重点:

  在动手操作中掌握圆的特征,学会用圆规画圆的方法。

  教学难点:

  理解圆上的概念,归纳圆的特征。

  教材分析:

  教材首先说明什么是圆,并结合周围物体说一说,这样调动了学生已有的生活经验,再通过画圆、折圆、测量等活动,展现圆的特征,其目的在于让学生通过观察、操作理解圆中的各部分关系,从而掌握圆的特征并解释生活中相关问题。

  学情分析:

  圆是在学生学过了直线图形以及圆的初步认识的基础上进行教学的。圆这一平面上的曲线图形,学生在生活中经常看到,它到底有什么特征呢?是本节课学生学习的重点,在学习圆的认识时,学生通过观察、操作,自己获取一些有关圆的特征的知识,这样回大大提高学生的学习兴趣,发挥学生的主体性。

  教学过程:

  活动一:演示操作,揭示课题

  师:一个小球,小球上还系着一段绳子,老师用手拽着绳子的一端,将小球甩起来。

  1.教师提问:你们看小球画出了一个什么图形?(小球画出了一个圆)

  2.小结引入:(出示铁丝围成的圆)这就是一个圆.圆也是一种平面图形,这节课我们就来学习圆的认识。(板书课题:圆的认识)

  活动二、动手操作,探究新知

  (一)教师让学生举例说明周围哪些物体上有圆。

  (二)认识圆的各部分名称和圆的特征。

  1.学生拿出圆的学具。

  2.教师:你们摸一摸圆的边缘,是直的还是弯的?(弯曲的)

  教师说明:圆是平面上的一种曲线图形。

  3.通过具体操作,来认识一下圆的各部分名称和圆的特征。

  (1)先把圆对折、打开,换个方向,再对折,再打开??这样反复折几次。教师提问:折过若干次后,你发现了什么?(在圆内出现了许多折痕)

  仔细观察一下,这些折痕总在圆的什么地方相交?(圆的中心一点)

  教师指出:我们把圆中心的这一点叫做圆心。圆心一般用字母o表示。

  教师板书:圆心

  (2)用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么?(圆心到圆上任意一点的距离都相等)

  教师指出:我们把连接圆心和圆上任意一点的线段叫做半径,半径一般用字母r表示。(教师在圆内画出一条半径,并板书:半径)

  教师提问:根据半径的概念同学们想一想,半径应具备哪些条件?

  在同一个圆里可以画多少条半径?

  所有半径的长度都相等吗?

  教师板书:在同一个圆里有无数条半径,所有半径的长度都相等。

  (3)同学继续观察:刚才把圆对折时,每条折痕都从圆的什么地方通过?两端都在圆的什么地方?

  教师指出:我们把通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d来表示。(教师在圆内画出一条直径,并板书:直径)

  教师提问:根据直径的概念同学们想一想,直径应具备什么条件?

  在同一个圆里可以画出多少条直径?

  自己用尺子量一量同一

  个圆里的几条直径,看一看,所有直径的长度都相等吗?

  教师板书:在同一个圆里有无数条直径,所有直径的长度都相等。

  (4)教师小结:通过刚才的`学习我们知道,在同一个圆里有无数条半径,所有半径的长度都相等;有无数条直径,所有直径的长度也都相等。

  (5)讨论:在同一个圆里,直径的长度与半径的长度又有什么关系呢?

  如何用字母表示这种关系?

  反过来,在同一个圆里,半径的长度是直径的几分之几?

  教师板书:在同一个圆里,直径的长度是半径的2倍。

  (三)反馈练习。

  1.P58 1

  2.填表

  (四)圆的画法。

  1.学生自学,看书57页。

  2.学生试画。

  3.学生通过试画小结用圆规画圆的方法,注意的问题。

  4.教师归纳板书:1.定半径;2.定圆心;3.旋转一周。

  教师强调:画圆时,圆规两脚间的距离不能改变,有针尖的一脚不能移动,旋转时要把重心放在有针尖的一脚。

  5.学生练习

  (五)教师提问

  为什么同学们画的圆不一样呢?什么决定圆的大小?什么决定圆的位置?

  教师板书:半径决定圆的大小,圆心决定圆的位置。

  (六)思考:体育课上,老师想在操场画一个大圆圈做游戏,没有这么大的圆规怎么办?

  活动三、实践与应用

  (一)判断

  1.画圆时,圆规两脚间的距离是半径的长度。()

  2.两端都在圆上的线段,叫做直径。()

  3.圆心到圆上任意一点的距离都相等。()

  4.半径2厘米的圆比直径3厘米的圆大。()

  5.所有圆的半径都相等。()

  6.在同一个圆里,半径是直径的。()

  7.在同一个圆里,所有直径的长度都相等。()

  8.两条半径可以组成一条直径。()

  (二)按下面的要求,用圆规画圆。

  1.半径2厘米。

  2.半径2.5厘米。

  3.直径8厘米。

  (三)怎样测量没有圆心的圆的直径?

  活动四、全课小结

  这节课我们学习了什么?通过这节课的学习你有什么收获?

  板书设计

  在同一个圆里有无数条半径,所有半径的长度都相等。

  在同一个圆里,直径的长度是半径的2倍。半径决定圆的大小,圆心决定圆的位置。

圆的认识教学设计6

  一、教学目标

  1.引导学生在观察、画圆、测量等活动中感受并发现圆的有关特点,知道什么是圆心、半径和直径,能用圆规画指定大小的圆。

  2.在活动中,感受圆与其它图形的区别,沟通它们的联系,获得对数学美的丰富体验,提升学生对数学文化的认同。

  二、教学线索

  (一)在活动中整体感知

  1.思考:如何从各种平面图形中摸出圆?

  2.操作并体会:圆与其它图形有怎样的区别?在交流中整体感知圆的特征。

  (二)在操作中丰富感受

  1.交流:圆规的构造。

  2.操作:学生尝试画圆,交流中归纳用圆规画圆的一般方法。

  3.体会(学生第二次画圆):如果方法正确,为什么用圆规画不出其它的曲线图形?

  4.引导(教师示范画圆):使学生将思维聚焦于圆规两脚之间的距离,体会到圆规两脚距离的恒等,恰是“圆之所以为圆”的内在原因。

  (三)在交流中建构认识

  1.引导:引导学生将上述距离画下来,由此揭示圆心及半径,进而介绍各自的字母表示。

  2.思考:半径有多少条、长度怎样,你是怎么发现的?

  3.概括:介绍古代数学家的相关发现,并与学生的`发现作比较。

  4.类比:学生尝试猜直径,进而引导学生借助类比展开思考,发现直径的特征,并提出同一圆中直径与半径的关系。

  5.沟通:圆的内部特征与外部形象之间具有怎样的有机联系?

  (四)在比较中深化认识

  1.比较:正三角形、正方形、正五边形……中类似等长的“径”各有多少条?圆的半径又有多少条?

  2.沟通:这些正多边形与圆这一曲线图形之间又有着怎样的内在联系?

  (五)在练习中形成结构

  1.寻找:给定的圆中没有标出圆心,半径是多少厘米?

  2.想象:半径不同,圆的大小会怎样?圆的大小与什么有关?

  3.猜测:不用圆规,还可能怎样画出一个圆?在交流中进一步丰富学生对半径、直径之间关系的认识。

  4.沟通:用圆规如何画出指定大小的圆?

  (六)在拓展中深化体验

  1.渗透:在与直线图形的对比中,揭示圆的旋转不变性。

  2.介绍:呈现直线图形旋转后的情形,再一次引导学生感受圆与直线图形的联系,体会圆与旋转的内在关联,丰富对圆这一曲线图形内在美感的认识。

圆的认识教学设计7

  教学内容:九年义务教育人教版六年制小学数学第十一册第106---109页,圆的认识和圆的画法,完成练习二十五。

  教学目标:

  1.进一步认识圆,知道并理解圆的各部分名称;了解圆的特征,理解直径和半径的关系;学习用圆规画圆,初步能按要求画圆。

  2.在数学活动中让学生经历知识再发现、再创造的过程,完成知识的意义赋予,从中培养探究意识、发现能力和解决简单实际问题的能力。

  3.体验圆的美,享受成功的喜悦。

  教学具准备:圆规、剪刀、水彩笔、白纸、直尺、一副三角尺、绳子、羊的头饰、一元硬币。

  教学过程

  一、揭题

  1.直线图形

  师:(出示三角形、长方形、正方形、平行四边形、梯形的平面图)三角形、四边形都是由线段围成的平面图形,线段有什么特点?

  生:线段有两个端点,是直的,可以度量。

  师:所以我们称三角形、四边形是平面上的直线图形。(板书:直线图形)

  2.曲线图形

  师:(出示圆的平面图)这是我们学过的……

  生:齐说“圆”(板书:圆)

  师:相对于线段围成的直线图形,圆是由曲线围成的,所以我们称圆是平面上的一种曲线图形。(板书:曲线图形)

  3.引入圆的特征讨论

  师:想一想:你周围的物体上哪里有圆?

  生:(举例略)

  师:同学们一年级时就初步认识过圆,现在都六年级了,你现在知道多少有关圆的知识?

  生①:圆是一种优美的图形,建筑设计中应用广泛,如:圆形花坛,圆形装饰图案。生②:圆形便于滚动,所以车轮都是圆的。

  生③:一张白纸经折叠后可以剪出一个近似的圆。

  生④:(举起自己的圆规)这是圆规,用它可以画圆。

  师:车轮为什么是圆的?为什么用圆规可以画出圆来呢?这就需要认识圆有什么特征,下面就来学习“圆的认识”。(板书:圆的认识)

  二、新课

  1.圆的画法

  (1)自由画

  师:拿出自己的圆规,在白纸上画一个圆。(师板书:画圆)

  生:独立画

  师:谁能说说你是怎样画出来的?

  生:……(用自己的话描述)

  师:谁能用老师的教具圆规上黑板上画圆?(让两名同学上黑板画,提醒其余同学仔细观察他们是怎样画的?)

  反馈①:一只手摁住圆规固定的脚,另一只手使圆规的另一只脚旋转,顺利画出圆。

  反馈②:教具圆规不好使唤,想固定的那只脚不停移动,用力过猛又使圆规两脚的距离发生变化,无法画出圆。

  师:为什么这位同学用圆规能轻巧地画出圆,而另一位同学却画不出圆呢?

  (点拨总结出画圆的步骤:“分开”、“固定”、“旋转”。分别板书)

  2.认识圆心

  师:(以黑板上学生画的圆为例)用圆规画圆时针尖固定的这一点(用彩色粉笔点出)叫圆心(板书“圆心”)一般用字母O来表示(标出:O)。请同学们在自己画的圆上点出圆心,标出字母O。

  生:独立完成。

  3.认识半径

  师:举起你们刚才画的圆,互相看一下,都一样大吗?

  生:不一样大。

  师:为什么大的大,小的小,与什么有关?

  生:与圆规两脚分开的大小有关。

  师:你们的意思是圆规两脚间的距离长时,画出的圆大,两脚间的距离短时,画出的圆就小。请在你的圆上画出一条表示两脚间距离的线段。

  生:独立画。

  师:(以黑板上学生画的圆为例)请同学们仔细看,圆规的一只脚固定在圆心O,当另一只脚旋转到A点时,圆规两脚间的距离是OA(画出线段OA);当另一只脚旋转到B点时,两脚间的距离是OB(再画出线段OB)

  问:线段OA和OB相等吗?

  生:相等。

  师:你是凭观察得出的,那怎样验证呢?

  生:测量。

  师:指名上黑板测量OA与OB的长并报告测量结果。

  生:确实一样长。

  师:在这个圆的曲线上,像A、B这样的点可以找出多少个?

  生:无数个。

  师:表示两脚间的距离的线段可以画多少条?设想一下它们的长度如何?

  生:无数条且长度都相等(板书)

  师:我们刚才研究的画圆时圆规两脚间的距离就叫做圆的半径(板书:半径)一般用字母r来表示。给你们刚才画的半径标上r。

  师;半径这条线段的一个端点在哪里,另一个呢?

  生:一个端点在圆心,另一个端点在圆的曲线上。(板书:圆心圆的曲线上)

  师:那什么叫半径呢?

  生:用自己的话说(师完成半径定义的板书)

  师:同一个圆里,半径有什么特点?

  生:无数条且长度都相等。

  4.认识直径

  师:把自己画的圆剪下来

  生:独立剪

  师:示范对折,打开,出现一条折痕,用食指摸折痕;换个方向再重复一次。

  生:在教师示范下同步进行。

  师:像这样再重复折几次

  生:独立对折、打开、摸折痕。

  师:你折了好多次,可以发现什么?

  反馈①:每折一次出现一条折痕。

  追问:你折了几次,出现了几条折痕,与他不一样的.呢?像这样的折痕在你的圆里能再折出来吗?

  反馈②:对折后圆的两边能完全重合,圆被平均折成两份。

  反馈③:每折一次出现一条折痕,每条折痕都是圆上的线段。

  反馈④:这些折痕相交于圆心。

  追问:你对折出几条折痕,谁折出的折痕比他多,他说的结论正确吗?在你的圆里,这样的折痕可以折出多少条?这个结论正确吗?

  反馈⑤:这些折痕都一样长。

  追问:怎样验证?

  生:测量

  师:量出你圆里每条折痕的长度

  生:汇报结果。(指导学生说:“在我的圆里,……”)

  师:刚才说了这样的折痕有无数条,所以可以怎样下结论?

  生:同一个圆里,所有的折痕长度都相等。

  师:谁能给“折痕”起个名字?

  生:直径(板书:直径)

  师:直径一般用字母d来表示,在自己的圆里给折痕画出一条直径,标上字母d。

  生:完成

  师:同一个圆里,直径有多少条,长度有什么特点?

  生:略

  师:直径这条线段,它通过了…?它的两个端点分别在哪里?

  生:通过圆心,两个端点都在圆的曲线上。(完成直径定义的相应板书)

  反馈⑥:这些折痕的长度是半径长度的2倍或直径的长度是半径的2倍。

  师追问:你是怎样得出这个结论的,说说道理。

  生①:直径通过圆心,以圆心为界,可以把直径分成两条半径。

  生②:在我的圆里,经过测量可以验证这个发现,我的圆里直径的长度都是□厘米,半径的长度都是□厘米,所以说直径是半径长度的2倍。

  师:换过来说,半径的长度就是直径的……。生:略师:写出字母公式:d=2rr=d2,注意强调“同一个圆里”。

  (以上6点反馈,学生说出多少就处理多少,先说出哪一点,就先处理那一点。)

  三、巩固

  1.第108页“做一做”。用彩色笔标出下面各圆的半径和直径。

  2.第109页练习二十五第3题。已知半径长求直径;已知直径长求半径。

  (此项练习放在直径与半径长度关系揭示后进行)

  3.学习按要求画圆。完成第108页“做一做”(画半径是3厘米的圆)。

  教师示范,引导学生逐步完成。

  (1)在作业本适当的地方点一个点做圆心,要考虑上、下、左、右的间距。

  (2)以圆心为起点,向右水平方向画一条3厘米长的线段。

  (3)圆规一脚固定在圆心,另一只脚在3厘米长线段的终点处,然后绕圆心旋转。

  (4)标出字母o、r、d。

  4.第109页练习二十五第2题。为什么车轮都要做成圆的,车轴装在哪里?

  与圆的特征有关。因为圆曲线上的每一点到圆心的距离相等,车轴装在圆心,车轴到地面的距离永远是半径,这样车轮行驶平稳。(配图:如果车轮在水平的路面上行驶,车轮运行时车轴移动形成的直线(轨迹)与地面平行)

  5.阅读第109页第5题,独立填书。

  想:怎样测量1元硬币的直径?

  让学生在实物投影上边演示边说。

圆的认识教学设计8

  教材简析:

  圆是小学数学阶段最后教学的一个平面图形,也是教学的唯一一个曲线图形。从认识直线图形到曲线图形,不仅能拓宽学生的知识面,丰富学生“空间与图形”的学习经验,而且也能给学生探索学习的方法注入一些新的内容,并使学生的空间观念得到进一步的发展。在教学圆的基础知识的同时,还通过化曲为直、等积变形这些方法与手段,进一步发展转化的策略和推理能力。整个单元的教学内容分成四部分编排,本节课教学圆的认识一部分。教学中将数学学习与生活紧密结合,注意由表及里,逐步深入。例1安排了三个层次的学习活动,通过说圆、画圆、比较圆与以前学过的其它平面图形的不同来充分地感知圆。例2结合学生尝试用圆规画圆的过程,分别了解关于圆的几个重要名称,进一步认识圆。例3安排学生通过画、量、折等活动,深入体验圆的特征。练习十七在练习基础知识的同时,让学生进一步体会圆,展开数学思考,发展空间观念。

  学情分析:

  本课内容教学前,学生已经初步掌握长方形、正方形、平行四边形、三角形和梯形的基本特征及其周长、面积公式的计算,对圆也已有了一定程度的直观认识,部分学生已经能用圆规画圆,少数个别同学甚至已经知道了圆的各部分名称,具备了一定的知识基础。而心理学研究也表明,小学高年级阶段的学生思维形式主要以形象思维为主,但抽象思维也有了一定的发展,具有了一定的逻辑思维能力,故也同时具备了一定的思维基础。

  教学目标:

  使学生认识圆,知道圆各部分的名称,掌握圆的特征,理解直径和半径的相互关系。初步学会用圆规画圆。

  通过操作、探索、发现、交流等活动,初步培养学生合作意识和创新意识,进一步发展学生的空间观念和交流能力。

  通过学习,提高学生对数学的好奇心和求知欲,学会从数学角度认识世界、解释生活,初步感受圆的魅力。

  教学重点:

  认识圆及其特征,让学生初步学会用圆规画圆。

  教学重点:

  认识圆及其特征,让学生初步学会用圆规画圆。

  教学难点:

  画圆,用圆的知识来解释和解决有关实际问题。

  教学准备:生:圆规、直尺。

  师:圆形纸片、系着吸铁石的线、大圆规、硬币、小圆镜、长尺。

  教学流程:

  一、导圆。

  师:知道今天要学习什么内容吗?

  生:圆的认识。(看着大屏幕说。)

  1、师:(出示圆形纸片)这张纸就是圆形的。(贴在黑板上)

  你在哪些物体上见到过圆,见到过圆形?

  生:举例说圆形。(说到身边的圆让学生指给大家看看。)

  2、师:老师也带来了一些与圆相关的图片,一起看看。(幻灯片播放。)

  师:漂亮吗?难怪有人曾经说过,我们的世界是因为有了圆才如此美丽、神奇!今天这节课我们就来走进圆的世界,去探索其中的奥秘。

  媒体运用说明:运用媒体第一次播放一组比较简单、且具有明显圆的特征图片,还与学生实际生活相关的情景和材料,如:CD包、光碟、箭耙、奥运五环、圆形标志、光环等,使学生能清晰地从图片的物体上找到比较鲜明的圆,为学生对圆建立外观上的感性认识提供了标准,使学生在初次感知圆的基本特征的同时感受到圆就存在于我们的`身边,初步沟通数学与生活的紧密联系,并借这些图片激发学生求知的兴趣,为接下来的学习活动作好知识与情感的铺垫。

  二、画圆。

  1、用圆规画圆。

  (1)导入。

  师:学习圆,首先要会画圆。俗话说,“没有规矩,不成~”这里的规是指什么?

  生:圆规。

  师:会用圆规画圆吗?画一个试试。

  (2)生用圆规尝试画圆。

  师:大家都画好了,我们来看看电脑动画是怎么画圆的?(课件演示。)

  师:假如现在规定圆规两脚间的距离是20厘米,谁能到上面来把这个圆画出来?

  师生合作,边介绍方法边在黑板上画出圆。

  师:这个有粉笔的一脚画出来的就是一个圆。(生指一指哪些是老师画出来的。)

  2、不用圆规形成圆。

  (1)导入:如果没有圆规,就不能形成圆了吗?

  (2)生:说说可用什么方法画圆。

  如:瓶盖(扣在纸上,沿着边画),胶布,尺子、量角器……

  师:你是利用一个圆形物体来画的,还有别的方法吗?

  出示:绳子一端连着环形磁铁。

  问:看,这个能形成圆吗?

  生:通过甩形成圆。

  (3)师:刚才我们用圆规画了圆,用其它方法形成了圆,现在在你心目中的圆的是怎样的?闭上眼睛,用手指在空中比划比划。

  生:闭上眼,在空中画圈。

  师:对啊,就像大家比划的那样(指着黑板上的圆),圆是一条曲线围成的。

  师:圆是一种曲线图形。(板书:曲线图形。)

  (4)再举例。

  师:(出示镜子)这面镜子上也有圆,你能指出来吗?(生上前指:外边一圈就是圆。)

  小结:这条曲线就是我们常常所说的圆,这条曲线围成的图形是圆形。

圆的认识教学设计9

  教学目标:

  (1)掌握圆的特征以及圆的各部分名称;初步学会用圆规画圆。

  (2)初步体会通过观察事物获得猜想,通过验证得出结论这样一种研究问题的方法。

  教具:

  圆规、直尺、小球、圆形纸片、磁铁、双面胶。

  学具:

  圆形物体、白纸、水彩笔、直尺、圆形纸片。

  教学过程:

  一、初步感受。

  (1)自然界中的圆

  同学们,我们已经初步学习了圆。今天我们进一步认识圆。(板书:圆的认识)你知道吗?自然现象中也有很多圆,你们看这是光环,这是水纹,这是向日葵。这些都很美。

  (2)生活中的圆。

  在日常生活中你见过哪些圆形的物体呢?你能举几个例子吗?

  (圆形的钟面。)

  (圆形的光盘。)

  (圆形的瓶盖、圆形的茶叶桶盖等)

  注意纠正学生的语言(篮球不是圆,它是球,不过它的切面是圆形的。)车轮是圆的。这是车轴,这是钢丝。(电脑演示)

  小结:似乎圆在生活中随处可见。有的物体做成圆的是为了美观,而有的做成圆的,就有一定的道理,象这种自行车的车轮就一定要做成圆的,这是为什么呢?其中有什么道理呢?下面我们就用自行车车轮为对象来研究、探索圆的特征。

  二、探索圆的特征。

  1、画车轮简图。

  (1)抽象

  为了便于研究,我们把车轮进行简化。(电脑演示抽象化处理)

  (2)画图。

  这是一个车轮简图,你能很快地画一个车轮简图吗

  拿出一张长方形纸用桌面上的一些工具或物体(圆形物体、圆规、水彩笔和尺),很快地画一个车轮的简图。(展示4-6个。)

  你是怎么画车轮上的圆的呢?

  (依靠圆形物体画圆)

  (直接用手画圆)

  (用圆规画圆)

  (3)介绍圆规画圆。

  圆规是我们常用的画圆工具,用它来画圆,比较正确和方便。那我们先来认识圆规,它有两只脚,一只脚有针尖,另一脚可装铅笔尖。怎样用圆规规范地画圆呢?

  (1)先把圆规的两脚分开,定好两脚间的长度。

  (2)把有针尖的一只脚固定在一点上。

  (3)把另一只脚旋转一周,就画出了一个圆。

  如果圆规的两脚之间的距离大一点,那画出来的'圆就(大),那这样画出来的圆就(小)。

  你会了吗?请你拿出另外一张纸,用圆规画一个大小合适的圆。

  2、原型启发,进行猜想。

  (1)观察、比较。

  同学们画出了大小不同,颜色各异的车轮简图,请你仔细观察,这些图形有些什么共同点?你能根据这些共同点,猜想一下:圆可能会有哪些特征呢?

  请把你的猜想和同桌交流一下。

  (2)交流、汇报。

  你有哪些猜想呢?

  (圆形物体可以滚动,没有角)

  (圆都有一个中心)

  (圆的中心到圆的边缘的距离相等)

  (3)小结:

  刚才我们猜想圆可能有这样一些特征,但这只是猜想,到底对不对呢?我们还要通过进一步思考和验证啊。

  3、验证

  (1)下面我们来验证一下。

  先来验证第一个猜想。

  你感觉圆会有中心吗?

  会有有几个中心呢?

  会有两个中心吗?

  圆的中心在哪儿呢?

  你能准确地找到这个圆形纸片的中心吗?

  请大家拿出事先剪好的圆片。自己想办法来找一找。

  找到了吗?你是怎样找到的呢?

  (用尺量的。)

  (用圆规找的。)

  (用对折的方法找的。)的确,把这个圆反复对折几次,获得了一些折痕,这些折痕的交点就是圆的中心。

  圆中心的这一点就是我们用圆规画圆时针尖的位置,也叫做圆心,用小写字母o表示。(圆的中心改成圆心)。

  (3)下面我们来验证第二个猜想。(圆的中心到曲线上的距离相等)

  因为圆的中心叫圆心,所以这个猜想也可以说成圆心到曲线上的距离相等。

  这里的曲线上我们给它个名称叫圆上。(改成圆上)

  圆心到圆上的距离相等。

  这点在圆上吗?(在圆上);这点在(圆上),这点在圆上吗?(在圆外);这点在圆上吗?(在圆内);这点在(圆上),这点在(圆上),圆上到底有多少个点?(无数个)。

  那我们要验证这个猜想,不就是要验证圆心到圆上任意一点的距离都相等吗?(板书加任意一点)

  真的都相等吗?

  你能验证吗?(请同学拿出刚才的圆片,自己想办法来验证一下。)

  巡视(你是用量的办法,那你多量几条,增强点信心,把每条的长度记下来。)

  学生介绍验证的方法。

  量的方法;

  折的方法。

  你折了几次?

  折了4次,现在有八条线段等相等了,那我再折一次呢?(16条)再折一次呢?(32条)我再折一次,再折一次,再折一次,折无数次呢?(无数条从圆心到圆上任意一点的线段都相等了)这样,我们就能确定这个猜想是对的了。

  (4)小结:刚才我们通过试验验证了猜想是正确的,这样我们通过对车轮这个具体事物的仔细观察,获得一些猜想,再通过验证,从而证实圆确实有这些特征(板书:验证),得出了结论,这是一种重要的研究方法,同学们要仔细地体会掌握。

  4、进一步体会圆的本质。

  下面我们来做个游戏,进一步感受一下圆的特征。

  (1)线上的小球转动。

  我这儿有一个小球,系在一根线上,如果我捏住线的一端进行转动,假设手的位置不动,小球划出的图形是什么?

  我们用电脑模拟。

  (2)橡皮筋上的小球转动。

  我这儿还有一个同样的小球,系在一根橡皮筋上,同样来转动,看看这时小球划出的图形是什么?

  我们用电脑模拟一下;

  小球划出的是什么图形?

  (电脑演示)是圆吗?

  为什么第一小球划出的是圆,第二个小球划出的就不是圆呢?

  (因为第一个小球在转动时,手和小球的距离是始终保持不变的,所以划出的是圆。而第二个小球在转动时,手和小球的距离是在变化的,所以小球划出就的不是圆。)

  小结:通过这个小球游戏,我们进一步感受了,在一个圆中,圆心到圆上任意一点的距离都相等,如果距离在变化,那小球划出的就不是一个圆。

  5、认识半径、直径。

  刚才我们认识了圆的特征,那数学家又是用哪些概念来描述圆的呢?请同学拿出教材,自学书本p116页到117页。看书的时候,你可以把重要的概念划一划、圈一圈、书后的问题可以试着想一想,答一答,有不懂的还可以问一问。

  有哪些概念啊?

  什么是半径?半径的两个端点在什么地方啊?那你在圆片上画一条半径,用小写字母r表示。

  有几条半径呢?为什么?这无数条都相等吗?

  什么直径?那你在圆片上画一条半径,用小写字母d表示。

  有几条半径呢?为什么?这无数条都相等吗?

  直径和半径之间有什么样的关系呢?

  判断直径(电脑演示)

  5.判断题:

  (1)从圆心到圆上任意一点的距离都相等。

  (2)所有半径都相等,所有的直径也相等。

  (3)半径3厘米的圆比直径5厘米的圆要小。

  (4)直径的两个端点在圆上,那么两个端点在圆上的线段就是一条直径。

  三、解释与运用。

  大家学得很好,你能用今天学到的知识来解释:自行车车轮为什么做成圆的吗?

  为了更好地解释这一现象,我们来做一个对比实验。

  现在有两种自行车,一种车轮做成圆的,另一种车轮做成椭圆的,来看他们的运动情况。

  请大家想象一下,你坐在这两种不同的车上,会有什么不同的感觉?为什么?

  (因为第一种车上,车轴到地面的距离不变)

  (在第二种车上,车轴到地面的距离在变化。)

  为什么在圆形车轮中,车轴到地面的距离始终不变化?

  (因为在同一个圆里,所有的半径都相等。)

  看来生活中的很多现象,都蕴含着丰富的道理,需要我们不断地探索,来认识它,解释它、运用它。

  请你能运用今天学到的知识用圆规画一个直径4厘米的圆,并标上圆心,直径和半径。

圆的认识教学设计10

  教学内容

  义务教育课程标准实验教科书青岛版小学数学六年级上册52———54页,《圆的初步认识》教学设计。课时:3课时(预习指导课、展示课、反馈课)

  教学目标知识目标:

  1、结合具体情境,学习圆的认识

  能力目标:2、培养学生的动手能力和通过多种方法解决问题的能力。

  情感目标:3、激发学生探求知识的兴趣,提高合作探索知识的能力。

  教材简介

  这个信息窗呈现的是各种各样的轮子。拟通过引导学生观察让学生发现各种各样的轮子都是圆的,引发学生提出轮子为什么设计成圆形的疑问,自然而然的引出对画圆以及圆的特点的`研究,明确怎样画圆、直径与半径的关系,从而明白轮子为什么设计成圆形的。

  教学重、难点:

  重点:圆的特征及各部分名称

  难点:同圆或等圆中半径和直径的关系

  教学过程(预习指导课)

  第一课时

  一、创设情境

  谈话:同学们,你认识这些交通工具吗?仔细观察他们有什么共同点?

  出示情境图,学生观察。

  谈话:这些轮子都是圆形的。根据这些信息,能提出什么数学问题?

  学生可能提出:轮子为什么设计成圆形的呢?…

  二、探索新知

  1、谈话:轮子为什么设计成圆形的呢?今天,我们就来解决这个问题。下面,请大家画一个圆,研究一下。

  学生独立画圆。

  谈话:同学们得到圆了吗?谁能说说你是怎样画出圆的呢?

  小组内进行交流。

  学生可能会出现不同的方法;

  找有代表性的到黑板上来画一下。可能会出现以下几种情况:

  ①用图钉、细线和铅笔画图,画时图钉要固定好,细线要拉紧,就可以画出一个圆。

  ②用圆形的瓶子盖可以画出一个圆。

  谈话:我们来看这几个同学画的,有什么问题吗?(不圆)为什么会不圆呢?你们画的时候有问题吗?

  学生阐述自己的想法,师生予以评价。

  谈话:怎样才能画出一个规范的圆呢?给大家介绍一种画圆的仪器——圆规。请大家用圆规画圆试一试。谁来说说你是怎样画的?

  小组内交流:用圆规画圆时,先把圆规的两脚分开,定好两脚之间的距离,再把有针尖的一脚固定在一点上,把有铅笔的一脚旋转一周。

  谈话:有针尖的一脚固定的这一点,叫做圆心,用字母O表示。连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示。通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。(教师边讲边板书在黑板上)

  请同学们打开书,看自主练习第2题:找出下面圆的直径和半径。(生答)

  2、谈话:直径和半径是圆中不同的线段,它们之间有什么关系呢?请同学们小组合作研究一下试试?

  学生小组合作。

  谈话:哪个小组说一说你们是怎研究的?有什么发现?

  学生可能会出现下列情况:

  ①通过对折,发现圆有无数条直径。

  ②通过画一画,我发现圆有无数条半径。

  ③通过测量发现同一个圆里所有的直径都相等,所有的半径都相等。

  ④通过对折或测量发现这个圆中,直径是半径的两倍,半径是直径的一半。用字母可以表示为:r=1/2d;d=2r。

  3、谈话:谁能用今天学习的内容解释轮子为什么设计成圆形的?

  三、巩固应用

  1、想一想,填一填。

  自主练习的第3题,让学生独立完成,然后集体交流,让学生说一说计算的方法。

  2、按要求画圆。

  自主练习第4题,画在练习本上,同桌互相检查。然后请学生交流一下,是怎样画的?

  谈话:把有针尖的一脚固定在一点上,就是圆心,两脚分开的距离是半径。

  四、全课小结

  谈话:这节课你有什么收获?你对自己的表现满意吗?

圆的认识教学设计11

  单元教材分析:

  这一单元的内容是圆,在这个单元中,教材安排了“圆的认识” 、“圆的周长和面积”三个具体的内容,这三个内容由易到难,层层深入。

  本单元内容是在学生学过了直线图形的认识和面积计算,以及圆的初步认识的基础上进行教学的。学生从学习直线图形的知识,到学习曲线图形的知识,不论是内容本身,还是研究问题的方法,都有所变化。教材通过对圆的研究,使学生初步认识到研究曲线图形的基本方法。同时,也渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念方面来说,进入了一个新的领域。因此,通过对圆的有关知识的学习,不仅加深学生对周围事物的理解,提高解决简单实际问题的能力,也为以后学习圆柱、圆锥等知识和绘制简单统计图打好基础。

  学生将在这个单元中,结合动手操作、比较、测量等多种数学活动,更深入的理解、掌握圆的特点,进一步发展空间观念。

  单元教学目标:

  1.学生认识圆,掌握圆的特征;理解直径半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。

  2.探索圆的周长与面积的计算方法中,获得探索问题成功的体验。

  3.亲历动手操作、实验观察等方法,探索圆的周长、面积的计算方法,并能运用计算方法解决生活中的一些实际问题。

  4.通过以上一系列的学习活动,激发学生的`学习兴趣,培养主动探索的欲望和创新精神。

  5.培养学生观察、比较、想象等能力,进一步发展学生的空间观念。

  单元教学重点:

  1.学生认识圆,知道圆的各部分名称。

  2.掌握圆的特征及在同一个圆里半径和直径的关系。

  3.初步学会用圆规画圆,培养学生的作图能力。

  4.亲历动手操作、实验观察等方法,探索圆的周长、面积的计算方法,并能运用计算方法解决生活中的一些实际问题。

圆的认识教学设计12

  一、教学目标的设计。

  1、教材分析

  本节课的教学内容是人教版数学第十一册第五单元《圆》的第一节内容。《圆的认识》主要内容有:用圆规画圆、了解圆各部分名称、掌握圆的特征等,它是在学生掌握了直线图形的周长和面积计算,并且对圆已有初步认识的基础上进行教学的。从学习直线图形到学习曲线图形,不论是内容本身,还是研究问题的方法,都有所变化,教材通过对圆的研究,使学生初步认识研究曲线图形的基本方法,同时也渗透了曲线图形与直线图形的内在联系。

  2、学情分析

  在小学阶段,学生的空间观念比较薄弱,动手操作能力比较低,小组合作意识不强,鉴于以前学习的长方形、正方形、三角形等是直线平面图形时,而圆是平面曲线图形,学生在动手操作、合作探究方面会存在一些困难。

  3、课标要求

  学生的学习过程是一个主动建构的过程,教学中力求发挥学生的主体作用,淡化教师的主观影响,激活学生的已有知识经验,激发学生学习热情,让学生自己在实践中产生问题,自己探究、尝试,修正错误、总结规律,从而使学生在经历、体验和运用中真正感悟知识,主动获取知识。

  本节课我以学生亲自动手制作的圆形纸片为主线,采用操作、探究、讨论、发现等教学方法,有目的、有意识地安排了让学生折一折、画一画、指一指、比一比、量一量、议议等数学实践活动,启发学生用眼观察、动脑思考、用耳辨析、小组讨论,让学生主动探索、主动交流、主动提问,并通过多媒体将演示、观察、操作、思维与语言表达结合在一起,使学生在动手中认识圆的各部分名称,理解圆的特征,以及教学圆的画法。

  4、教学目标

  基于以上的分析,我确定本节课的教学目标是:

  (1)通过引导学生观察、实验、猜想等数学活动,认识圆,知道圆的各部分名称。掌握圆的特征,理解直径与半径的关系。初步学会用圆规画圆。

  (2)通过创设情境,学生从生活中认识圆,借助动手操作活动,发现规律,培养学生的观察、分析、抽象、概括等思维能力和初步的空间观念。

  (3)渗透“理论来源于实践又服务于实践”唯物主义观念,通过操作、研讨,培养学生独立探索的能力和创新精神。

  【教学重点】认识圆,掌握圆的特征,了解画圆的步骤和方法。

  【教学难点】理解圆的半径与直径间的关系。

  【教学用具】学生:圆规、剪的圆形纸片、彩笔、直尺、三角板。老师:圆规、圆形纸、直尺、彩笔、课件。

  二、教学活动设计

  (一)、创设情境,观察积累。

  1.课件出示三种车轮不同的赛车:“猜一猜,哪辆赛车会胜出?”(课件演示)、如果让你选乘其中的一辆车,你会乘坐那一辆呢?为什么?除了快之外还有别的原因吗?是什么原因,第三辆车跑的又快又稳?课件显示车轮渐渐变为圆。其实圆在日常生活中有着广泛的应用,你在那儿见过圆?把车轮做成圆形,车子就跑的又快又稳,有什么科学根据吗?在圆形里会藏着那些秘密呢?这节课我们就来学习圆的初步认识。板书:圆的.初步认识

  2.其实在前面的学习中我们已经接触过圆这种图形,除了圆你还认识那此图形?

  生:长方形、正方形、三角形、平形四边形、、梯形、圆柱、长方体、正方体、球体……

  你你能给这些图形分分类吗?(课件演示)分成立体图形和平面图形,还有不同的分法吗?把平面图形再分成平面直线图形和平面曲线图形。板书:圆是平面上的曲线图形。

  【利用学生比较感兴趣的赛车游戏,让学生去观察,发现其中的数学知识,进而抽出——圆,目的在于激发学生探究新知的浓厚兴趣,并为学习新知积累学生的知识表象。生活中,你在那见过圆形的物品?使学生感受到生活中处处有数学。回顾以前所学的有关平面图形和立体图形,进行分类,为学习新知作铺垫】。

  (二)、组织学生,操作发现。

  1.教学圆各部分的名称及关系。

  (1)做圆的方法:昨天我给同学们布置了一个任务,让大家在纸上想办法画一个圆,然后把在纸上画好的圆剪下来,谁愿意告诉大家你是怎么做的?(用圆规或用圆形物印)

  (2)折纸:拿出你剪的圆形纸片,跟老师一起对折---打开---出现一条折痕,为了看得清楚,用直尺和彩笔画出折痕。换个方向再折再画一条。别停下来,继续折,继续画,比比谁折得快、画得多。

  师:还能折吗?画得完吗?你发现了什么?这样的折痕有无数条所有的折痕都相交于圆中心的一点。这一点叫做圆心,一般用字母O表示。什么是圆心?(老师帖圆形纸,板书—)

  (3)认识半径、直径及其关系

  其实在折痕里还藏有很多有关圆的知识,下面请大家以小组为单位,通过议一议、量一量、看看书、组内交流等办法来寻找圆的知识。比比看哪个小组发现得多。

  小组交流汇报有关直径、半径、直径与半径关系的知识。(配合学生汇报,教师进行动画演示。)

  小组:我们发现这些折痕都通过了圆心并且两端都在圆上,而且这此折痕长度都相等。你是怎么知道这些折痕都想等的?师:我们把圆里面象这样的线段叫直径,你能用自己的话说一说什么叫直径?直径都有什么特点?(老师课件演示)为什么要说在同一个圆里?(老师用学生中的大小不同的圆举例说明。)

  小组:我们组发现从圆心到圆上可以连接无数条线段,这些线段也都相等。师:我们把圆里象这样的线段就叫做半径。你能用自己的话说一说什么叫半径?半径都有什么特点?(老师课件演示)为什么要说在同一个圆里?(老师用学生中的大小不同的圆举例说明。)

  )在同一个圆里直径的长度和半径有什么关系呢?猜一猜?要想知道我们猜的对不对,怎么办?(检验)请大家检验自己的猜测是否正确。你是怎样检验的?(课件演示)你觉得这句话里那几个字非常重要?为什么?

  图中哪些是半径?哪些是直径?哪些不是?为什么?

  【用"情境激趣--自主探究--归纳总结--应用深化"的活动化教学模式,使学生在了解圆各部分名称的基础上,自己发现圆的各部分特征。教师把自己定位于数学学习的组织者、引导者、合作者的位置,通过创设情境、激励等手段,不断引导学生自己发现问题、提出问题、分析问题、解决问题。让学生在主动建构的过程中掌握数学的一些思想方法,发挥学生学习的主动性、独立性、合作性,培养了学生的实践能力和创新意识。】

  2.学习画圆的方法

  画一个3厘米的圆,并标出圆心、半径和直径。(如果你有困难,可以看课本57页中用圆规画圆的方法,也可以向组内的同学请教)

  1.自学并尝试画圆。

  2.交流画法。(定圆心、定半径、画圆)

  3.了解半径确定圆的大小,圆心确定圆的位置。

  4.画一个直径是10厘米的圆。

  (三)、引导学生,总结归纳

  同学们,这节课有什么收获?

  【评析:让学生回顾本堂课的收获,给学生提供了自我感悟、自我评价的时间与空间,有利于培养学生的反思意识。】

  三、布置作业

  完成课本练习二十的1、2题。

【圆的认识教学设计】相关文章:

《圆认识》教学设计03-06

人教版《圆的认识》教学设计与评析(精选12篇)10-26

小学数学《圆的认识》教学设计(通用10篇)06-07

圆的周长教学设计04-11

圆的面积教学设计04-11

《圆的面积》教学设计03-30

圆的周长教学设计03-31

《圆的周长》教学设计04-28

圆的周长优秀教学设计02-12