高中数学单元教学设计

时间:2023-01-17 18:35:18 教学设计 我要投稿
  • 相关推荐

高中数学单元教学设计(精选7篇)

  高中数学课基本是按照单元课时的教学顺序展开的,下面就是小编为您收集整理的高中数学单元教学设计的相关文章,希望可以帮到您,如果你觉得不错的话可以分享给更多小伙伴哦!

高中数学单元教学设计(精选7篇)

  高中数学单元教学设计 篇1

  一、单元教学内容

  (1)算法的基本概念

  (2)算法的基本结构:顺序、条件、循环结构

  (3)算法的基本语句:输入、输出、赋值、条件、循环语句

  二、单元教学内容分析

  算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。在本模块中,学生将在中学教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力

  三、单元教学课时安排:

  1、算法的基本概念 3课时

  2、程序框图与算法的基本结构 5课时

  3、算法的基本语句 2课时

  四、单元教学目标分析

  1、通过对解决具体问题过程与步骤的分析体会算法的思想,了解算法的含义

  2、通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中理解程序框图的三种基本逻辑结构:顺序、条件、循环结构。

  3、经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句:输入、输出、斌值、条件、循环语句,进一步体会算法的基本思想。

  4、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

  五、单元教学重点与难点分析

  1、重点

  (1)理解算法的含义

  (2)掌握算法的基本结构

  (3)会用算法语句解决简单的`实际问题

  2、难点

  (1)程序框图

  (2)变量与赋值

  (3)循环结构

  (4)算法设计

  六、单元总体教学方法

  本章教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。采用这些方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。

  七、单元展开方式与特点

  1、展开方式

  自然语言→程序框图→算法语句

  2、特点

  (1)螺旋上升 分层递进

  (2)整合渗透 前呼后应

  (3)三线合一 横向贯通

  (4)弹性处理 多样选择

  八、单元教学过程分析

  1. 算法基本概念教学过程分析

  对生活中的实际问题通过对解决具体问题过程与步骤的分析(喝茶,如二元一次方程组求解问题),体会算法的思想,了解算法的含义,能用自然语言描述算法。

  2.算法的流程图教学过程分析

  对生活中的实际问题通过模仿、操作、探索,经历通过设计流程图表达解决问题的过程,了解算法和程序语言的区别;在具体问题的解决过程中,理解流程图的三种基本逻辑结构:顺序、条件分支、循环,会用流程图表示算法。

  3. 基本算法语句教学过程分析

  经历将具体生活中问题的流程图转化为程序语言的过程,理解表示的几种基本算法语句:赋值语句、输入语句、输出语句、条件语句、循环语句,进一步体会算法的基本思想。能用自然语言、流程图和基本算法语句表达算法,

  4. 通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

  九、单元评价设想

  1、重视对学生数学学习过程的评价

  关注学生在数学语言的学习过程中,是否对用集合语言描述数学和现实生活中的问题充满兴趣;在学习过程中,能否体会集合语言准确、简洁的特征;是否能积极、主动地发展自己运用数学语言进行交流的能力。

  2、正确评价学生的数学基础知识和基本技能

  关注学生在本章(节)及今后学习中,让学生集中学习算法的初步知识,主要包括算法的基本结构、基本语句、基本思想等。算法思想将贯穿高中数学课程的相关部分,在其他相关部分还将进一步学习算法

  高中数学单元教学设计 篇2

  重点难点教学:

  1.正确理解映射的概念;

  2.函数相等的两个条件;

  3.求函数的定义域和值域。

  教学过程:

  1.使学生熟练掌握函数的概念和映射的定义;

  2.使学生能够根据已知条件求出函数的定义域和值域; 3.使学生掌握函数的三种表示方法。

  教学内容:

  1.函数的定义

  设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数fx和它对应,那么称:fAB?为从集合A到集合B的一个函数(function),记作:,yf A其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的'集合{|}f A?叫值域(range)。显然,值域是集合B的子集。

  注意:

  ① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

  ②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

  2.构成函数的三要素定义域、对应关系和值域。

  3、映射的定义

  设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

  4.区间及写法:

  设a、b是两个实数,且a

  (1)满足不等式axb的实数x的集合叫做闭区间,表示为[a,b];

  (2)满足不等式axb的实数x的集合叫做开区间,表示为(a,b);

  5.函数的三种表示方法

  ①解析法

  ②列表法

  ③图像法

  高中数学单元教学设计 篇3

  一、概述

  教材内容:等比数列的概念和通项公式的推导及简单应用 教材难点:灵活应用等比数列及通项公式解决一般问题 教材重点:等比数列的概念和通项公式

  二、教学目标分析

  1、知识目标

  1)

  2) 掌握等比数列的定义 理解等比数列的`通项公式及其推导

  2、能力目标

  1)学会通过实例归纳概念

  2)通过学习等比数列的通项公式及其推导学会归纳假设

  3)提高数学建模的能力

  3、情感目标:

  1)充分感受数列是反映现实生活的模型

  2)体会数学是来源于现实生活并应用于现实生活

  3)数学是丰富多彩的而不是枯燥无味的

  三、教学对象及学习需要分析

  1、 教学对象分析:

  1)高中生已经有一定的学习能力,对各方面的知识有一定的基础,理解能力较强。并掌握了函数及个别特殊函数的性质及图像,如指数函数。之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。

  2)对归纳假设较弱,应加强这方面教学

  2、学习需要分析:

  四. 教学策略选择与设计

  1.课前复习

  1)复习等差数列的概念及通向公式

  2)复习指数函数及其图像和性质

  2.情景导入

  高中数学单元教学设计 篇4

  教学目标

  (1)理解四种命题的概念;

  (2)理解四种命题之间的相互关系,能由原命题写出其他三种形式;

  (3)理解一个命题的真假与其他三个命题真假间的关系;

  (4)初步掌握反证法的概念及反证法证题的基本步骤;

  (5)通过对四种命题之间关系的学习,培养学生逻辑推理能力;

  (6)通过对四种命题的存在性和相对性的认识,进行辩证唯物主义观点教育;

  (7)培养学生用反证法简单推理的技能,从而发展学生的思维能力。

  教学重点和难点

  重点:四种命题之间的关系;难点:反证法的运用。

  教学过程设计

  第一课时:四种命题

  一、导入新课

  【练习】

  1.把下列命题改写成“若p则q”的形式:

  (l)同位角相等,两直线平行;

  (2)正方形的四条边相等。

  2.什么叫互逆命题?上述命题的逆命题是什么?

  将命题写成“若p则q”的形式,关键是找到命题的条件p与q结论。

  如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的'条件,那么这两个命题叫做互道命题。

  上述命题的道命题是“若一个四边形的四条边相等,则它是正方形”和“若两条直线平行,则同位角相等”。

  值得指出的是原命题和逆命题是相对的。我们也可以把逆命题当成原命题,去求它的逆命题。

  3.原命题真,逆命题一定真吗?

  “同位角相等,两直线平行”这个原命题真,逆命题也真。但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真。

  学生活动:

  口答:

  (1)若同位角相等,则两直线平行;

  (2)若一个四边形是正方形,则它的四条边相等。

  设计意图:

  通过复习旧知识,打下学习否命题、逆否命题的基础。

  二、新课

  【设问】命题“同位角相等,两条直线平行”除了能构成它的逆命题外,是否还可以构成其它形式的命题?

  【讲述】可以将原命题的条件和结论分别否定,构成“同位角不相等,则两直线不平行”,这个命题叫原命题的否命题。

  【提问】你能由原命题“正方形的四条边相等”构成它的否命题吗?

  学生活动:

  口答:若一个四边形不是正方形,则它的四条边不相等。

  教师活动:

  【讲述】一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题。把其中一个命题叫做原命题,另一个命题叫做原命题的否命题。

  若用p和q分别表示原命题的条件和结论,用┐p和┐q分别表示p和q的否定。

  【板书】原命题:若p则q;

  否命题:若┐p则q┐。

  【提问】原命题真,否命题一定真吗?举例说明?

  学生活动:

  讲论后回答:

  原命题“同位角相等,两直线平行”真,它的否命题“同位角不相等,两直线不平行”不真。

  原命题“正方形的四条边相等”真,它的否命题“若一个四边形不是正方形,则它的四条边不相等”不真。

  由此可以得原命题真,它的否命题不一定真。

  设计意图:

  通过设问和讨论,让学生在自己举例中研究如何由原命题构成否命题及判断它们的真假,调动学生学习的积极性。

  教师活动:

  【提问】命题“同位角相等,两条直线平行”除了能构成它的逆命题和否命题外,还可以不可以构成别的命题?

  学生活动:

  讨论后回答

  【总结】可以将这个命题的条件和结论互换后再分别将新的条件和结论分别否定构成命题“两条直线不平行,则同位角不相等”,这个命题叫原命题的逆否命题。

  教师活动:

  【提问】原命题“正方形的四条边相等”的逆否命题是什么?

  学生活动:

  口答:若一个四边形的四条边不相等,则不是正方形。

  教师活动:

  【讲述】一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题。把其中一个命题叫做原命题,另一个命题就叫做原命题的逆否命题。

  原命题是“若 p则 q ”,则逆否命题为“若┐q 则┐p 。

  【提问】“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?

  学生活动:

  讨论后回答

  这两个逆否命题都真。

  原命题真,逆否命题也真。

  教师活动:

  【提问】原命题的真假与其他三种命题的真

  假有什么关系?举例加以说明?

  【总结】

  1.原命题为真,它的逆命题不一定为真。

  2.原命题为真,它的否命题不一定为真。

  3.原命题为真,它的逆否命题一定为真。

  设计意图:

  通过设问和讨论,让学生在自己举例中研究如何由原命题构成逆否命题及判断它们的真假,调动学生学的积极性。

  教师活动:

  三、课堂练习

  1.若原命题是“若p则q”,其它三种命题的形式怎样表示?请写在方框内?

  学生活动:笔答

  教师活动:

  2.根据上图所给出的箭头,写出箭头两头命题之间的关系?举例加以说明?

  学生活动:讨论后回答

  设计意图:

  通过学生自己填图,使学生掌握四种命题的形式和它们之间的关系。

  教师活动:

  高中数学单元教学设计 篇5

  一、目标

  1.知识与技能

  (1)理解流程图的顺序结构和选择结构。

  (2)能用字语言表示算法,并能将算法用顺序结构和选择结构表示简单的流程图

  2.过程与方法

  学生通过模仿、操作、探索、经历设计流程图表达解决问题的过程,理解流程图的结构。

  3情感、态度与价值观

  学生通过动手作图,.用自然语言表示算法,用图表示算法。进一步体会算法的基本思想——程序化思想,在归纳概括中培养学生的逻辑思维能力。

  二、重点、难点

  重点:算法的顺序结构与选择结构。

  难点:用含有选择结构的流程图表示算法。

  三、学法与教学用具

  学法:学生通过动手作图,.用自然语言表示算法,用图表示算法,体会到用流程图表示算法,简洁、清晰、直观、便于检查,经历设计流程图表达解决问题的过程。进而学习顺序结构和选择结构表示简单的流程图。

  教学用具:尺规作图工具,多媒体。

  四、教学思路

  (一)、问题引入 揭示题

  例1 尺规作图,确定线段的一个5等分点。

  要求:同桌一人作图,一人写算法,并请学生说出答案。

  提问:用字语言写出算法有何感受?

  引导学生体验到:显得冗长,不方便、不简洁。

  教师说明:为了使算法的表述简洁、清晰、直观、便于检查,我们今天学习用一些通用图型符号构成一张图即流程图表示算法。

  本节要学习的是顺序结构与选择结构。

  右图即是同流程图表示的算法。

  (二)、观察类比 理解题

  1、 投影介绍流程图的符号、名称及功能说明。

  符号 符号名称 功能说明

  终端框 算法开始与结束

  处理框 算法的各种处理操作

  判断框 算法的各种转移

  输入输出框 输入输出操作

  指向线 指向另一操作

  2、讲授顺序结构及选择结构的概念及流程图

  (1)顺序结构

  依照步骤依次执行的一个算法

  流程图:

  (2)选择结构

  对条进行判断决定后面的步骤的结构

  流程图:

  3.用自然语言表示算法与用流程图表示算法的比较

  (1)半径为r的圆的面积公式 当r=10时写出计算圆的面积的算法,并画出流程图。

  解:

  算法(自然语言)

  ①把10赋与r

  ②用公式 求s

  ③输出s

  流程图

  (2) 已知函数 对于每输入一个X值都得到相应的`函数值,写出算法并画流程图。

  算法:(语言表示)

  ① 输入X值

  ②判断X的范围,若 ,用函数Y=x+1求函数值;否则用Y=2-x求函数值

  ③输出Y的值

  流程图

  小结:含有数学中需要分类讨论的或与分段函数有关的问题,均要用到选择结构。

  学生观察、类比、说出流程图与自然语言对比有何特点?(直观、清楚、便于检查和交流)

  (三)模仿操作 经历题

  1.用流程图表示确定线段A.B的一个16等分点

  2.分析讲解例2;

  分析:

  思考:有多少个选择结构?相应的流程图应如何表示?

  流程图:

  (四)归纳小结 巩固题

  1.顺序结构和选择结构的模式是怎样的?

  2.怎样用流程图表示算法。

  (五)练习P99 2

  (六)作业P99 1

  高中数学单元教学设计 篇6

  【教学目标】

  1、 知识与技能:

  (1)掌握圆的标准方程。

  (2)会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程。

  (3)会判断点与圆的位置关系。

  2、 过程与方法:

  (1)进一步培养学生用代数方法研究几何问题的能力。

  (2)加深对数形结合思想的理解和加强待定系数法的运用。

  3.情感、态度与价值观:

  (1)培养学生主动探究知识、合作交流的意识。

  (2)让学生感受数学,体验数学;从走入数学到走出数学,生活处处有数学,数学就在我身边,体会到数学知识、思想方法和精神来源于生活,还要服务于生活;寓思想教育于教学。让学生体会到数学的美以及数学的价值与魅力。

  【学情分析】

  对圆的方程有个初步的认识以及在上章学习了直线与方程的基础上,学习圆的方程,学生还是可以接受。在教学过程中,主要采用启发性原则,并且与已经学过的直线方程进行类比,发挥学生的思维能力、想象能力,由易到难,逐步加深。

  【重点难点】

  重点:圆的标准方程和圆的标准方程特点的明确。

  难点:会根据不同的条件写出圆的标准方程。

  【教学过程】

  第一学时 评论(0) 教学目标

  教学活动 活动1【导入】新闻联播片段

  全党同志与全国各族人民紧密团结在以同志为圆心的党中央周围。

  请结合数学中圆知识,谈谈你对这句话的理解?

  活动2【讲授】问题1.

  在直角坐标系中,以A (a,b)为圆心,r为半径的圆上的动点M(x,y) 满足怎样的关系式?

  活动3【活动】想一想!

  圆心在坐标原点,半径长为r的圆的方程是什么?

  活动4【导入】试试你的眼力!判断下列方程是否为圆的标准方程:

  (x-2)2 +y=8;

  (x-2)2-y2=8;

  (2x-2)2+y2=8;

  (x-2)2+y2=0;

  (x-2)2+y2=a;

  (2x-2)2+(2y-4)2=8。

  答案:都不是,第6个可以化为圆的标准方程。

  活动5【活动】再试一下!

  圆(x1)2+(ay2)2=1a 的圆心坐标和半径分别是什么?

  答案:圆心坐标为(1,—2),半径是 √2

  活动6【活动】问题2.

  要写出圆的标准方程,只需知道圆的哪些量?

  怎样判断一点是否在一个圆上?

  学生回答,教师点评.

  活动7【活动】例1

  写出圆心为A(2, -3),半径长为5的圆的方程,并判断点M1(5,7),M2((√5,1) 是否在这个圆上。

  学生回答,教师点评后,学生阅读教科书上本题解法.

  活动8【活动】探究

  你能判断点M2在圆内还是在圆外吗?

  学生回答,教师点评。

  点与圆心距离比半径大等价于点在圆外。

  点与圆心距离比半径小等价于点在圆内。

  点与圆心距离等于半径等价于点在圆外等价于点的坐标满足方程。

  活动9【讲授】解题收获

  1.从确定圆的两个要素即圆心和半径入手,直接写出圆的标准方程——直接法。

  2.类似于点与直线方程的关系:点在圆上等价于点坐标满足圆方程活动10【活动】试一试!

  例2 △ABC的`三个顶点的坐标分别是A(5,1),B(7,-3),C(2, -8),求它的外接圆的方程.

  师:△ABC的外接圆的圆心简称什么?

  学生回答

  师:△ABC的外心是什么的交点?

  学生回答

  师:求圆的标准方程,只需知道圆心坐标和圆的半径。这三点都在圆上,其坐标一定是满足所求圆的方程。这样就可以设出圆的标准方程。

  学生阅读教材例2解法。

  师:提示:方程组中

  (1) (2)得到什么?

  (1) (3)得到什么?

  然后,怎样就可以求出圆心坐标和半径。

  活动11【讲授】解题收获

  先设出圆的标准方程,再根据已知条件建立方程组,从而求出圆心坐标和半径的方法——待定系数法。

  活动12【活动】动手折一折

  请同学们准备一个锐角三角形纸片,能否用手工的方法找到此三角形外接圆的圆心?

  学生回答过程.

  把三角形的任意两个顶点重合进行对折,就可以得到边的垂直平分线,垂直平分线的交点即是三角形的外心。

  师:把圆的弦对折,折线一定经过圆心。即圆心一定在弦的垂直平分线上。

  活动13【活动】Let’s try

  例3 已知圆心为C的圆经过点A(1,1)和B(2, -2),且圆心C在直线m:x - y+1=0 上,求圆心为C的圆的标准方程。

  由学生阅读例3,学生总结解题步骤。

  活动14【讲授】解题收获

  由圆的几何性质直接求出圆心坐标和半径,然后写出标准方程——几何性质法。

  活动15【活动】小结

  一个方程

  三种方法

  一种思想

  活动16【讲授】作业布置

  作业:教材P124习题A组第2题和第3题.

  课下探究:

  (1)平面内到一定点的距离等于定长的点轨迹是圆。点的轨迹是圆的方法很多, 请试着找出来,并和其他同学交流。

  (2)直线方程有五种形式,圆除了标准方程,还有其它形式吗?

  活动17【导入】结束语

  圆心半径确定圆,

  待定系数很普遍;

  大家站在同一圆,

  彰和谐平等友善;

  半径就像无形线,

  把大家心聚一点;

  垂直平分折中线,

  就能折出同心愿;

  中国腾飞之梦圆。

  活动18【测试】课堂测试

  1.圆C:(x2)2+(y+1)2=3 的圆心坐标为( )

  A(2,1) B(2,—1) C(—2,1) D(—2,—1)

  2.以原点为圆心,2为半径的圆的标准方程是( )

  A x2+y2=2 B x2+y2=4

  C (x2)2+(y2)2=8 D x2+y2=√2

  3 圆心为(1,1)且与直线x+y=4 相切的圆的方程是( )

  A (x1)2+(y1)2=2 B (x1)2+(y1)2=4

  C (x+1)2+(y+1)2=2 D (x+1)2+(y+1)2=4

  4 圆A:(ax+2)2+y2=a+3 ,则此圆的半径为______________。

  5 已知一个圆的圆心在点C(—3,—4),且经过原点。

  (1)求该圆的标准方程;

  (2)判断点M(—1,0),N(1,—1),P(3,—4)和圆的位置关系。

  6. 已知△AOB的顶点坐标分别是A(8,0), B(0,6),O(0,0),求△AOB外接圆的方程.

  7 求过点A(1,—1)B(—1,1)且圆心在直线x+y2=0 上的圆方程

  参考答案:1 B 2 B 3 A 4 2或√2

  5 (1) (x+3)2+(y+4)2=25

  (2)M在圆内,N在圆上,P在圆外。

  6 (x4)2+(y3)2=25 。

  7 (x1)2+(y1)2=4

  高中数学单元教学设计 篇7

  学习目标

  明确排列与组合的联系与区别,能判断一个问题是排列问题还是组合问题;能运用所学的排列组合知识,正确地解决的实际问题.

  学习过程

  一、学前准备

  复习:

  1.(课本P28A13)填空:

  (1)有三张参观卷,要在5人中确定3人去参观,不同方法的种数是 ;

  (2)要从5件不同的礼物中选出3件分送3为同学,不同方法的种数是 ;

  (3)5名工人要在3天中各自选择1天休息,不同方法的种数是 ;

  (4)集合A有个 元素,集合B有 个元素,从两个集合中各取1个元素,不同方法的种数是 ;

  二、新课导学

  ◆探究新知(复习教材P14~P25,找出疑惑之处)

  问题1:判断下列问题哪个是排列问题,哪个是组合问题:

  (1)从4个风景点中选出2个安排游览,有多少种不同的方法?

  (2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?

  ◆应用示例

  例1.从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?

  例2.7位同学站成一排,分别求出符合下列要求的不同排法的种数.

  (1) 甲站在中间;

  (2)甲、乙必须相邻;

  (3)甲在乙的左边(但不一定相邻);

  (4)甲、乙必须相邻,且丙不能站在排头和排尾;

  (5)甲、乙、丙相邻;

  (6)甲、乙不相邻;

  (7)甲、乙、丙两两不相邻。

  ◆反馈练习

  1. (课本P40A4)某学生邀请10位同学中的.6位参加一项活动,其中两位同学要么都请,要么都不请,共有多少种邀请方法?

  2.5男5女排成一排,按下列要求各有多少种排法:

  (1)男女相间;

  (2)女生按指定顺序排列

  3.马路上有12盏灯,为了节约用电,可以熄灭其中3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,那么熄灯方法共有______种.

  当堂检测

  1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为( )

  A.42 B.30 C.20 D.12

  2.(课本P40A7)书架上有4本不同的数学书,5本不同的物理书,3本不同的化学书,全部排在同一层,如果不使同类的书分开,一共有多少种排法?

  课后作业

  1.(课本P41B2)用数字0,1,2,3,4,5组成没有重复数字的数,问:

  (1)能够组成多少个六位奇数?

  (2)能够组成多少个大于201345的正整数?

  2.(课本P41B4)某种产品的加工需要经过5道工序,问:

  (1)如果其中某一工序不能放在最后,有多少种排列加工顺序的方法?

  (2)如果其中两道工序既不能放在最前,也不能放在最后,有多少种排列加工顺序的方法?

【高中数学单元教学设计】相关文章:

高中数学教学设计12-02

单元整体教学设计(精选8篇)10-27

单元教学设计心得体会02-07

“美丽的校园——认识方向”单元教学设计(精选10篇)08-09

高中数学教学心得03-06

单元同步课堂作文写作训练设计10-03

九年级化学第七单元燃料及其利用教学设计03-29

设计的分类教学设计04-17

高中数学《子集、全集、补集》教案设计10-10

课程设计教学设计12-28