余弦定理优秀教学设计(通用10篇)
作为一位优秀的人民教师,可能需要进行教学设计编写工作,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。你知道什么样的教学设计才能切实有效地帮助到我们吗?以下是小编为大家收集的余弦定理优秀教学设计(通用10篇),欢迎阅读,希望大家能够喜欢。
余弦定理优秀教学设计 篇1
一、教学设计
1、教学背景
在近几年教学实践中我们发现这样的怪现象:绝大多数学生认为数学很重要,但很难;学得很苦、太抽象、太枯燥,要不是升学,我们才不会去理会,况且将来用数学的机会很少;许多学生完全依赖于教师的讲解,不会自学,不敢提问题,也不知如何提问题,这说明了学生一是不会学数学,二是对数学有恐惧感,没有信心,这样的心态怎能对数学有所创新呢?即使有所创新那与学生们所花代价也不成比例,其间扼杀了他们太多的快乐和个性特长。建构主义提倡情境式教学,认为多数学习应与具体情境有关,只有在解决与现实世界相关联的问题中,所建构的知识才将更丰富、更有效和易于迁移。我们在2009级进行了“创设数学情境与提出数学问题”的以学生为主的“生本课堂”教学实验,通过一段时间的教学实验,多数同学已能适应这种学习方式,平时能主动思考,敢于提出自己关心的问题和想法,从过去被动的接受知识逐步过渡到主动探究、索取知识,增强了学习数学的兴趣。
2、教材分析
“余弦定理”是高中数学的主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中“勾股定理”内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。本节课是“正弦定理、余弦定理”教学的第二节课,其主要任务是引入并证明余弦定理。布鲁纳指出,学生不是被动的、消极的知识的接受者,而是主动的、积极的知识的探究者。教师的作用是创设学生能够独立探究的情境,引导学生去思考,参与知识获得的过程。因此,做好“余弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力。
3、设计思路
建构主义强调,学生并不是空着脑袋走进教室的。在日常生活中,在以往的学习中,他们已经形成了丰富的经验,小到身边的衣食住行,大到宇宙、星体的运行,从自然现象到社会生活,他们几乎都有一些自己的看法。而且,有些问题即使他们还没有接触过,没有现成的经验,但当问题一旦呈现在面前时,他们往往也可以基于相关的经验,依靠他们的认知能力,形成对问题的某种解释。而且,这种解释并不都是胡乱猜测,而是从他们的经验背景出发而推出的合乎逻辑的假设。所以,教学不能无视学生的这些经验,另起炉灶,从外部装进新知识,而是要把学生现有的知识经验作为新知识的生长点,引导学生从原有的知识经验中“生长”出新的知识经验。
为此我们根据“情境—问题”教学模式,沿着“设置情境—提出问题—解决问题—反思应用”这条主线,把从情境中探索和提出数学问题作为教学的出发点,以“问题”为红线组织教学,形成以提出问题与解决问题相互引发携手并进的“情境—问题”学习链,使学生真正成为提出问题和解决问题的主体,成为知识的“发现者”和“创造者”,使教学过程成为学生主动获取知识、发展能力、体验数学的过程。根据上述精神,做出了如下设计:
①创设一个现实问题情境作为提出问题的背景;
②启发、引导学生提出自己关心的现实问题,逐步将现实问题转化、抽象成过渡性数学问题,解决问题时需要使用余弦定理,借此引发学生的认知冲突,揭示解斜三角形的必要性,并使学生产生进一步探索解决问题的动机。然后引导学生抓住问题的数学实质,引伸成一般的数学问题:已知三角形的两条边和他们的夹角,求第三边。
③为了解决提出的问题,引导学生从原有的知识经验中“生长”出新的知识经验,通过作边BC的垂线得到两个直角三角形,然后利用勾股定理和锐角三角函数得出余弦定理的表达式,进而引导学生进行严格的逻辑证明。证明时,关键在于启发、引导学生明确以下两点:一是证明的起点 ;二是如何将向量关系转化成数量关系。
④由学生独立使用已证明的结论去解决中所提出的问题。
二、教学反思
本课中,教师立足于所创设的情境,通过学生自主探索、合作交流,亲身经历了提出问题、解决问题、应用反思的过程,学生成为余弦定理的“发现者”和“创造者”,切身感受了创造的苦和乐,知识目标、能力目标、情感目标均得到了较好的落实,为今后的“定理教学”提供了一些有用的借鉴。
例如,新课的引入,我引导学生从向量的模下手思考:
生:利用向量的模并借助向量的数量积. .
教师:正确!由于向量 的模长,夹角已知,只需将向量 用向量 来表示即可.易知 ,接下来只要把这个向量等式数量化即可.如何实现呢?
学生8:通过向量数量积的运算.
通过教师的引导,学生不难发现 还可以写成 , 不共线,这是平面向量基本定理的一个运用.因此在一些解三角形问题中,我们还可以利用平面向量基本定理寻找向量等式,再把向量等式化成数量等式,从而解决问题.
(从学生的“最近发展区”出发,证明方法层层递进,激发学生探求新知的欲望,从而感受成功的喜悦.)
创设数学情境是“情境·问题·反思·应用”教学的基础环节,教师必须对学生的身心特点、知识水平、教学内容、教学目标等因素进行综合考虑,对可用的情境进行比较,选择具有较好的教育功能的情境。
从应用需要出发,创设认知冲突型数学情境,是创设情境的常用方法之一。“余弦定理”具有广泛的应用价值,故本课中从应用需要出发创设了教学中所使用的数学情境。该情境源于教材解三角形应用举例的例1。实践说明,这种将教材中的例题、习题作为素材改造加工成情境,是创设情境的一条有效途径。只要教师能对教材进行深入、细致、全面的研究,便不难发现教材中有不少可用的素材。
“情境·问题·反思·应用”教学模式主张以问题为“红线”组织教学活动,以学生作为提出问题的主体,如何引导学生提出问题是教学成败的关键,教学实验表明,学生能否提出数学问题,不仅受其数学基础、生活经历、学习方式等自身因素的影响,还受其所处的环境、教师对提问的态度等外在因素的制约。因此,教师不仅要注重创设适宜的数学情境(不仅具有丰富的内涵,而且还具有“问题”的诱导性、启发性和探索性),而且要真正转变对学生提问的态度,提高引导水平,一方面要鼓励学生大胆地提出问题,另一方面要妥善处理学生提出的问题。关注学生学习的结果,更关注学生学习的过程;关注学生数学学习的水平,更关注学生在数学活动中所表现出来的情感与态度;关注是否给学生创设了一种情境,使学生亲身经历了数学活动过程.把“质疑提问”,培养学生的数学问题意识,提高学生提出数学问题的能力作为教与学活动的起点与归宿。
余弦定理优秀教学设计 篇2
一. 教学目标:
1、知识与技能:认识正弦、余弦定理,了解三角形中的边与角的关系
2、过程与方法:通过具体的探究活动,了解正弦、余弦定理的内容,并从具体的实例掌握正弦、余弦定理的应用
情感态度与价值观:通过对实例的探究,体会到三角形的和谐美,学会稳定性的重要
二. 教学重、难点:
1. 重点:
正弦、余弦定理应用以及公式的变形
2. 难点:
运用正、余弦定理解决有关斜三角形问题。
知 识 梳 理
1.正弦定理和余弦定理
在△ABC中,若角A,B,C所对的边分别是a,b,c,则
(1)S=2ah(h表示边a上的高). 111
(2)S=2bcsin A=2sin C=2acsin B. 1
(3)S=2r(a+b+c)(r为△ABC内切圆半径)
问题1:在△ABC中,a=3,b2,A=60°求c及B C 问题2在△ABC中,c=6 A=30° B=120°求a b及C
问题3在△ABC中,a=5,c=4,cos A=16,则b=
通过对上述三个较简单问题的解答指导学生总结正余弦定理的应用; 正弦定理可以解决
(1)已知两角和任一边,求其他两边和一角;
(2)已知两边和其中一边的对角,求另一边和其他两角
余弦定理可以解决
(1)已知三边,求三个角;
(2)已知两边和它们的夹角,求第三边和其他两角
我们不难发现利用正余弦定理可以解决三角形中“知三求三” 知三中必须要有一边 应用举例 【例1】
(1)(2013·湖南卷)在锐角△ABC中,角A,B所对的边长分别为a,b.若2asin B3b,则角A等于 ( ).ππππA.3B.4 C.6 12
(2)(2014·杭州模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,c=2,B=45°,则sin C=______.
解析 (1)在△ABC中,由正弦定理及已知得2sin A·sin B=3sin B, ∵B为△ABC的内角,∴sin B≠0. 3
∴sin A=2又∵△ABC为锐角三角形, π?π?
∴A∈?02?,∴A=3??
(2)由余弦定理,得b2=a2+c2-2accos B=1+32-2×2=25,即b=5. c·sin B
所以sin Cb4
答案 (1)A (2)5【训练1】 (1)在△ABC中,a=3,c=2,A=60°,则C=
A.30°B.45° C.45°或135°
D.60°
(2)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=3bc,sin C=3sin B,则A= A.30°
B.60° C.120°
D.150°
232解析
(1)由正弦定理,得sin 60°sin C,解得:sin C=2,又c<a,所以C<60°,所以C=45°.
(2)∵sin C=23sin B,由正弦定理,得c=23b, b2+c2-a2-3bc+c2-3bc+3bc3∴cos A=2bc==2bc2bc2, 又A为三角形的内角,∴A=30°. 答案 (1)B (2)A
规律方法 已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的'有界性和大边对大角定理进行判断.
【例2】 (2014·临沂一模)在△ABC中,a,b,c分别为内角A,B,C的对边,且2asin A=(2b-c)sin B+(2c-b)sin C. (1)求角A的大小;
(2)若sin B+sin C=3,试判断△ABC的形状. 解 (1)由2asin A=(2b-c)sin B+(2c-b)sin C, 得2a2=(2b-c)b+(2c-b)c,即bc=b2+c2-a2, b2+c2-a21
∴cos A=2bc=2,∴A=60°.
(2)∵A+B+C=180°,∴B+C=180°-60°=120°. 由sin B+sin C=3,得sin B+sin(120°-B)=3, ∴sin B+sin 120°cos B-cos 120°sin B=3. 33
∴2sin B+2B=3,即sin(B+30°)=1. ∵0°<B<120°,∴30°<B+30°<150°.
∴B+30°=90°,B=60°.
∴A=B=C=60°,△ABC为等边三角形。
规律方法 解决判断三角形的形状问题,一般将条件化为只含角的三角函数的关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.另外,在变形过程中要注意A,B,C的范围对三角函数值的影响.
课堂小结
1.在解三角形的问题中,三角形内角和定理起着重要作用,在解题时要注意根据这个定理确定角的范围及三角函数值的符号,防止出现增解或漏解。
2.正、余弦定理在应用时,应注意灵活性,尤其是其变形应用时可相互转化.如a2=b2+c2-2bccos A可以转化为sin2 A=sin2 B+sin2 C-2sin Bsin Ccos A,利用这些变形可进行等式的化简与证明
余弦定理优秀教学设计 篇3
教材分析这是高三一轮复习,内容是必修5第一章解三角形。本章内容准备复习两课时。本节课是第一课时。标要求本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后应落实在解三角形的应用上。通过本节学习,学生应当达到以下学习目标:
(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理解三角形。
(2)能够运用正弦定理、余弦定理等知识和方法判断三角形形状的问题。本章内容与三角函数、向量联系密切。
作为复习课一方面将本章知识作一个梳理,另一方面通过整理归纳帮助学生进一步达到相应的学习目标。
学情分析学生通过必修5的学习,对正弦定理、余弦定理的内容已经了解,但对于如何灵活运用定理解决实际问题,怎样合理选择定理进行边角关系转化从而解决三角形综合问题,学生还需通过复习提点有待进一步理解和掌握。
教学目标知识目标:
(1)学生通过对任意三角形边长和角度关系的探索,掌握正弦、余弦定理的内容及其证明方法;会运用正、余弦定理与三角形内角和定理,面积公式解斜三角形的两类基本问题。
(2)学生学会分析问题,合理选用定理解决三角形综合问题。
能力目标:
培养学生提出问题、正确分析问题、独立解决问题的能力,培养学生在方程思想指导下处理解三角形问题的运算能力,培养学生合情推理探索数学规律的数学思维能力。
情感目标:
通过生活实例探究回顾三角函数、正余弦定理,体现数学来源于生活,并应用于生活,激发学生学习数学的兴趣,并体会数学的应用价值,在教学过程中激发学生的探索精神。
教学方法探究式教学、讲练结合
重点难点
1、正、余弦定理的对于解解三角形的合理选择;
2、正、余弦定理与三角形的有关性质的综合运用。
教学策略
1、重视多种教学方法有效整合;
2、重视提出问题、解决问题策略的指导。
3、重视加强前后知识的密切联系。
4、重视加强数学实践能力的培养。
5、注意避免过于繁琐的形式化训练
6、教学过程体现“实践→认识→实践”。
设计意图:
学生通过必修5的学习,对正弦定理、余弦定理的内容已经了解,但对于如何灵活运用定理解决实际问题,怎样合理选择定理进行边角关系转化从而解决三角形综合问题,学生还需通过复习提点有待进一步理解和掌握。作为复习课一方面要将本章知识作一个梳理,另一方面要通过整理归纳帮助学生学会分析问题,合理选用并熟练运用正弦定理、余弦定理等知识和方法解决三角形综合问题和实际应用问题。
数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。虽然是复习课,但我们不能一味的讲题,在教学中应体现以下教学思想:
⑴重视教学各环节的合理安排:
在生活实践中提出问题,再引导学生带着问题对新知进行探究,然后引导学生回顾旧知识与方法,引出课题。激发学生继续学习新知的欲望,使学生的知识结构呈一个螺旋上升的状态,符合学生的认知规律。
⑵重视多种教学方法有效整合,以讲练结合法、分析引导法、变式训练法等多种方法贯穿整个教学过程。
⑶重视提出问题、解决问题策略的指导。
余弦定理优秀教学设计 篇4
一、教材分析
《余弦定理》选自人教A版高中数学必修五第一章第一节第一课时。本节课的主要教学内容是余弦定理的内容及证明,以及运用余弦定理解决“两边一夹角”“三边”的解三角形问题。
余弦定理的学习有充分的基础,初中的勾股定理、必修一中的向量知识、上一课时的正弦定理都是本节课内容学习的知识基础,同时又对本节课的学习提供了一定的方法指导。其次,余弦定理在高中解三角形问题中有着重要的地位,是解决各种解三角形问题的常用方法,余弦定理也经常运用于空间几何中,所以余弦定理是高中数学学习的一个十分重要的内容。
二、教学目标
知识与技能:
1、理解并掌握余弦定理和余弦定理的推论。
2、掌握余弦定理的推导、证明过程。
3、能运用余弦定理及其推论解决“两边一夹角”“三边”问题。
过程与方法:
1、通过从实际问题中抽象出数学问题,培养学生知识的迁移能力。
2、通过直角三角形到一般三角形的过渡,培养学生归纳总结能力。
3、通过余弦定理推导证明的过程,培养学生运用所学知识解决实际问题的能力。
情感态度与价值观:
1、在交流合作的过程中增强合作探究、团结协作精神,体验 解决问题的成功喜悦。
2、感受数学一般规律的美感,培养数学学习的兴趣。
三、教学重难点
重点:余弦定理及其推论和余弦定理的运用。
难点:余弦定理的发现和推导过程以及多解情况的判断。
四、教学用具
普通教学工具、多媒体工具 (以上均为命题教学的准备)
余弦定理优秀教学设计 篇5
一、单元教学内容
运算定律P——P
二、单元教学目标
1、探索和理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便计算。
2、理解和掌握减法和除法的运算性质,并能应用这些运算性质进行简便计算。
3、会应用运算律进行一些简便运算,掌握运算技巧,提高计算能力。
4、在经历运算定律和运算性质的发现过程中,体验归纳、总结和抽象的数学思维方法。
5、在经历运算定律的字母公式形成过程中,能进行有条理地思考,并表达自己的思考结果。
6、经历简便计算过程,感受数的运算与日常生活的密切联系,并在活动中学会与他人合作。
7、在经历解决问题的过程中,体验运算律的价值,增强应用数学的意识。
三、单元教学重、难点
1、理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便计算。
2、理解和掌握减法和除法的运算性质,并能应用这些运算性质进行简便计算。
四、单元教学安排
运算定律10课时
第1课时 加法交换律和结合律
一、教学内容:
加法交换律和结合律P17——P18
二、教学目标:
1、在解决实际问题的过程中,发现并掌握加法交换律和结合律,学会用字母表示加法交换律和结合律。
2、在探索运算律的过程中,发展分析、比较、抽象、概括能力,培养学生的符号感。
3、培养学生的观察能力和概括能力。
三、教学重难点
重点:发现并掌握加法交换律、结合律。
难点:由具体上升到抽象,概括出加法交换律和加法结合律。
四、教学准备
多媒体课件
五、教学过程
(一)导入新授
1、出示教材第17页情境图。
师:在我们班里,有多少同学会骑自行车?你最远骑到什么地方? 师生交流后,课件出示李叔叔骑车旅行的场景:骑车是一项有益健康的运动,你看,这位李叔叔正在骑车旅行呢!
2、获取信息。
师:从中你知道了哪些数学信息?(学生回答)
3、师小结信息,引出课题:加法交换律和结合律。
(二)探索发现
第一环节 探索加法交换律
1、课件继续出示:“李叔叔今天上午骑了40km,下午骑了56km,一共骑了多少千米?”
学生口头列式,教师板书出示: 40+56=96(千米) 56+40=96(千米) 你能用等号把这两道算式写成一个等式吗? 40+56=56+40 你还能再写出几个这样的等式吗?
学生独自写出几个这样的等式,并在小组内交流各自写出的等式,互相检验
写出的等式是否符合要求。
2、观察写出的这些算式,你有什么发现?并用自己喜欢的方式表示出来。 全班交流。从这些算式可以发现:两个数相加,交换加数的位置,和不变。可以用符号来表示:?+☆=☆+?;
可以用文字来表示:甲数十乙数=乙数十甲数。
3、如果用字母a、b分别表示两个加数,又可以怎样来表示发现的这个规律呢? a+b=b+a
教师指出:这就是加法交换律。
4、初步应用:在( )里填上合适的数。
37+36=36+( )305+49=( )+305b+100=( )+b 47+( )=126+( ) m+( )=n+( ) 13+24=( )+( )第二环节 探索加法结合律
1、课件出示教材第18页例2情境图。
师:从例2的情境图中,你获得了哪些信息?
师生交流后提出问题:要求“李叔叔三天一共骑了多少千米”可以怎样列式? 学生独立列式,指名汇报。 汇报预设:
方法一:先算出“第一天和第二天共骑了多少千米”: (88+104)+96=192+96 =288(千米)
方法二:先算出“第二天和第三天共骑了多少千米”: 88+(104+96)=88+200=288(千米)
把这两道算式写成一道等式:
(88+104)+96=88+(104+96)
2、算一算,下面的○里能填上等号吗?
(45+25)+13○45+(25+13)(36+18)+22○36+(18+22)
小组讨论。先比较每组的两个算式,再比较这三组算式,在小组里说说你有什么发现。
集体交流,使学生明确:三个算式加数没变,加数的位置也没变,运算的顺序变了,它们的和不变。也就是:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
3、如果用字母a、b、c分别表示三个加数,可以怎样用字母来表示这个规律呢? (a+b)+c=a+(b+c)
教师指出:这就是加法结合律。
4、初步应用。
在横线上填上合适的数。 (45+36)+64=45+(36+) (560+)+ =560+(140+70) (360+)+108=360+(92+) (57+c)+d=57+(+)
(三)巩固发散
1、完成教材第18页“做一做”。
学生独立填写,组织汇报时,让学生说说是根据什么运算律填写的。
2、下面各等式哪些符合加法交换律,哪些符合加法结合律? (1)470+320=320+470 (2)a+55+45=55+45+a (3)(27+65)+35=27+(65+35) (4)70+80+40=70+40+80 (5)60+(a+50)=(60+a)+50 (6)b+900=900+b
(四)评价反馈
通过今天这节课的学习,你有哪些收获?
师生交流后总结:学习了加法交换律和结合律,并知道了如何用符号和字母来表示发现的规律。
(五)板书设计
加法交换律和结合律
加法交换律加法结合律
例1:李叔叔今天一共骑了多少千米? 例2:李叔叔三天一共骑了多少千米? 40+56=96(千米) (88+104) +96 88+(104+96) 56+40=96(千米)=192+96 =88+200=288(千米) =288(千米) 40+56=56+40 (88+104)+96=88+(104+96) a+b=b+a (a+b)+c=a+(b+c)
两个数相加,交换加数的位置,和不变。
六、教学后记
三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
余弦定理优秀教学设计 篇6
一、教材分析
1.地位及作用
"余弦定理"是人教A版数学必修5主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中"勾股定理"内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具具有广泛的应用价值,起到承上启下的作用。
2.教学重、难点
重点:余弦定理的证明过程和定理的简单应用。
难点:利用向量的数量积证余弦定理的思路。
二、 教学目标
知识目标:能推导余弦定理及其推论,能运用余弦定理解已知"边,角,边"和"边,边,边"两类三角形。
能力目标:培养学生知识的迁移能力;归纳总结的能力;运用所学知识解决实际问题的能力。
情感目标:从实际问题出发运用数学知识解决问题这个过程体验数学在实际生活中的运用,激发学生学习数学的兴趣。通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。
三、教学方法
数学课堂上首先要重视知识的发生过程,既能展现知识的获取,又能暴露解决问题的思维。在本节教学中,我将遵循"提出问题、分析问题、解决问题 "的步骤逐步推进,以课堂教学的组织者、引导者、合作者的身份,组织学生探究、归纳、推导,引导学生逐个突破难点,师生共同解决问题,使学生在各种数学活动中掌握各种数学基本技能,初步学会从数学角度去观察事物和思考问题,产生学习数学的愿望和兴趣。
四、 教学过程
本节教学中通过创设情境,充分调动学生已有的学习经验,让学生经历"现实问题转化为数学问题"的过程,发现新的知识,把学生的潜意识状态的好奇心变为自觉求知的创新意识。又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质。
帮助学生从平面几何、三角函数、向量知识等方面进行分析讨论,选择简洁的处理工具,引发学生的积极讨论。你能够有更好的具体的量化方法吗?问题可转化为已知三角形两边长和夹角求第三边的问题,即:在 中已知AC=b,AB=c和A,求a.
学生对向量知识可能遗忘,注意复习;在利用数量积时,角度可能出现错误,出现不同的表示形式,让学生从错误中发现问题,巩固向量知识,明确向量工具的作用。同时,让学生明确数学中的转化思想:化未知为已知。将实际问题转化成数学问题,引导学生分析问题。在 中已知a=5,b=7,c=8,求B。
学生思考或者讨论,若有同学答则顺势引出推论,若不能作答则由老师引导推出推论,然后返回解决该问题。
让学生观察推论的特征,讨论该推论有什么用。
余弦定理优秀教学设计 篇7
大家好,今天我向大家说课的题目是《余弦定理》。下面我将从以下几个方面介绍我这堂课的教学设计。
一、教材分析
本节知识是职业高中数学教材第五章第九节《解三角形》的内容,与初中学习的勾股定理有密切的联系,在日常生活和工业生产中也时常有解三角形的问题,在实际测量问题及航海问题中都有着广泛的用,而且解三角形和三角函数联系在高考当中也时常考一些解答题。并且在探索建立余弦定理时还用到向量法,坐标法等数学方法,同时还用到了数形结合,方程等数学思想。因此,余弦定理的知识非常重要。特别是在三角形中的求角问题中作用更大。做为职业高中的学生必须学好学透这节知识
根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:
①理解掌握余弦定理,能正确使用定理
②培养学生教形结合分析问题的能力
③培养学生严谨的推理思维和良好的审美能力。
教学重点:定理的探究及应用
教学难点:定理的探究及理解
二、学情分析
对于职业高中的高一学生,虽然知识经验并不丰富,但他们的智利发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。
三、教法分析
根据教材的内容和编排的特点,为更有效地突出重点,突破难点,以学生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想,采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“余弦定理的发现”为基本探究内容,让学生的思维由问题开始,到发想、探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的能力线,联系方法与技能使学生较易证明余弦定理,另外通过例题和练习来突破难点,注重知识的形成过程,突出教学理念的创新。
四、学法指导:
指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。
五、教学过程
第一:创设情景,大概用2分钟
第二:实践探究,形成定理,大约用25分钟
第三:应用定理,拓展反思,大约用13分钟
(一)创设情境,布疑激趣
“兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,从用正弦定理可解的两类三角形出发,揭示勾股定理特点,说明正弦定理解三角形不完备,还有用正弦定理不能直接求解的三角形,应怎样解决呢?需要我们继续探究,引出课题。
(二)逻辑推理,证明猜想
提出问题,探究问题,形成定理,回顾分析,形成结论,再认识结论,总结用途。变形延伸,培养发散,对比特殊,认知推广。落实定理,构建定理应用体系。
(三)归纳总结,简单应用
1.让学生用文字叙述余弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。
2.回顾余弦定理的内容,讨论可以解决哪几类有关三角形的问题。
(四)讲解例题,巩固定理
1、审题确定条件。
2、明确求解任务。
3、确定使用公式。
4、科学求解过程。
(五)课堂练习,提高巩固
1.在△ABC中,已知下列条件,解三角形.
(1)A=45°,C=30°,c=10cm
(2)A=60°,B=45°,c=20cm
2.在△ABC中,已知下列条件,解三角形.
(1)a=20cm,b=11cm,B=30°
(2)c=54cm,b=39cm,C=115°
学生板演,老师巡视,及时发现问题,并解答。
(六)小结反思,提高认识
通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?
1.用向量证明了余弦定理,体现了数形结合的数学思想。
2.两种表达。
3.两类问题。
(七)思维拓展,自主探究
利用余弦定理判断三角形形状,即余弦定理的推论。
余弦定理优秀教学设计 篇8
一、教材分析:(说教材)
《余弦定理》是全日制中等教育国家规划教材(人教版)数学第一册中第六章平面向量第六部分。余弦定理是欧氏空间度量几何的最重要定理,是解斜三角形的重要定理,是整个测量学的基础。余弦定理是勾股定理的推广,可用解析法、向量法等方法证明。余弦定理主要能解决有关三角形的三类问题:
1)、已知两边及其夹角,求第三边和其他两个角。
2)、已知三边求三个内角;
3)、判断三角形的形状。以及相关的证明题。
二、说教学思路
本着数学与专业有机结合的指导思想,让数学服务于专业的需要。以及最大限度的提高学生的学习兴趣,在本节课,我不是将余弦定理简单呈现给学生,而是创造设情境,设计了与机械相关联并具有爱国主题的二个任务,通过任务驱动法教学,极大提高了学生的学习兴趣,激发学生探索新知识的强烈求知欲望,在完成数学教学任务的同时,强化了数学与专业的有机结合,培养了学生将数学知识运用于自身专业中的能力。同时通过任务驱动,培养了学生自主探究式学习的能力;提升解决实际实际问题的能力。因为所设计的两个任务具有爱国主义题材,学生在完成知识学习的同时,也极大的激发了爱国主义精神。
三、说教法
在确定教学方法前,首先要求教师吃透教材,选择恰当的教学方法和教学手段把知识传授给学生。本节课主要采用任务驱动法、引导发现法、观察法、归纳总结法、讲练结合法。并采用电教手段使用多媒体辅助教学。
1. 任务驱动法
教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,提高学生学习的兴趣,激发求知欲,启发学生对问题进行思考。在研究过程中,激发学生探索新知识的强烈欲望。提升解决实际总是的能力,并极大的激发了爱国主义精神。
2. 引导发现法、观察法
通过对勾股定理的观察和三角形直角的相关变形,学生从中受启发,发现余弦定理,并证明它。
3. 归纳总结法
学生通过前期的探索研究,自主归纳总结出余弦定理及其推论及判断三角形形状的相关规律。
4. 讲练结合法
讲授充分发挥教师主导作用,引导学生自主学习。练习让学生从多角度对所学定理进行认知,及时巩固所学的知识,锻炼了解决实际问题的能力,发挥出学生的主观能动性,成为学习的主体。
四、说学法
学生学法主要有观察、分析、发现、自主探究、小组协作等方法。经教师启发、诱导,学生通过观察与分析去发现并证明余弦定理,培养归纳与猜想、抽象与概括等逻辑思维能力,训练思维品质。
五、教学目标
(一)知识目标
1、使学生掌握余弦定理及其证明。
2、使学生初步掌握应用余弦定理解斜三角形。
(二)能力目标
1、培养学生在本专业范围内熟练运用余弦定理解决实际问题的能力。
2、通过启发、诱导学生发现和证明余弦定理的过程,培养学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。
3、通过对余弦定理的推导,培养学生的知识迁移能力和建模意识,及合作学习的意识。
(三)德育目标
1、培养学生的爱国主义精神、及团结、协作精神。
2、通过三角函数、余弦定理、向量的数量积等知识的联系理解事物之间普遍联系与辩证统一。
六、教学重点
教学重点是余弦定理及应用余弦定理解斜三角形;
七、教学难点
分析勾股定理的结构特征,从而突破发现余弦定理,应用余弦定理解斜三角形。
八、教学过程
教学中注重突出重点、突破难点,从五个层次进行教学。
创设情境、任务驱动;
引导探究、发现定理;
完成任务、应用迁移;
拓展升华、交流反思;
小结归纳、布置作业。
(一)、导入
1、教师创设情境设置二个任务,做为贯穿本课的主线和数学与专业有机结合的钮带,通过完成这二个任务,达到掌握余弦定理并学会应用的目标。
2、通过与直角三角形勾股定理引出余弦定理(快乐起点) 经教师启发、诱导,学生通过探索研究,合理猜想来发现余弦定理。
(二)、新课
1.证明猜想,导出余弦定理及余弦定理的变形
经过严密逻辑推理证明得出余弦定理,这一过程中,锻炼了学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。
2. 解决二个任务
3. 操作演练,巩固提高。
4.小结:
通过学生口答方式小结,让学生强化记忆,分清重点,深化对余弦定理的理解。
5.作业:
分层布置作业,根据不同层次学生将作业分为必做题和选做题。使不同程度的学生都有所提高
九、板书设计
板书是课堂教学重要部分,为再现知识体系,突出重点,将余弦定理知识体系展示在板书中,利于学生加深印象,理清思路。
十、课后反思
在教学设计上,采用任务驱动,教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,即提高学生学习的兴趣,又激发求知欲;知识点学习则循序渐进,符合学生的认知特点。经教师启发、诱导,学生通过观察、分析、发现、自主探究、小组协作等方法在获取新知的同时,培养了归纳与猜想、抽象与概括等逻辑思维能力。
余弦定理优秀教学设计 篇9
各位老师大家好!
今天我说课的内容是余弦定理,本节内容共分3课时,今天我将就第1课时的余弦定理的证明与简单应用进行说课。下面我分别从教材分析。教学目标的确定。教学方法的选择和教学过程的设计这四个方面来阐述我对这节课的教学设想。
一、教材分析
本节内容是江苏教育出版社出版的普通高中课程标准实验教科书《数学》必修五的第一章第2节,在此之前学生已经学习过了勾股定理。平面向量、正弦定理等相关知识,这为过渡到本节内容的学习起着铺垫作用。本节内容实质是学生已经学习的勾股定理的延伸和推广,它描述了三角形重要的边角关系,将三角形的“边”与“角”有机的联系起来,实现边角关系的互化,为解决斜三角形中的边角求解问题提供了一个重要的工具,同时也为在日后学习中判断三角形形状,证明三角形有关的等式与不等式提供了重要的依据。
在本节课中教学重点是余弦定理的内容和公式的掌握,余弦定理在三角形边角计算中的运用;教学难点是余弦定理的发现及证明;教学关键是余弦定理在三角形边角计算中的运用。
二、教学目标的确定
基于以上对教材的认识,根据数学课程标准的“学生是数学学习的主人,教师是数学学习的组织者。引导者与合作者”这一基本理念,考虑到学生已有的认知结构和心理特征,我认为本节课的教学目标有:
1、知识与技能:熟练掌握余弦定理的内容及公式,能初步应用余弦定理解决一些有关三角形边角计算的问题;
2、过程与方法:掌握余弦定理的两种证明方法,通过探究余弦定理的过程学会分析问题从特殊到一般的过程与方法,提高运用已有知识分析、解决问题的能力;
3、情感态度与价值观:在探究余弦定理的过程中培养学生探索精神和创新意识,形成严谨的数学思维方式,培养用数学观点解决问题的能力和意识、
三、教学方法的选择
基于本节课是属于新授课中的数学命题教学,根据《学记》中启发诱导的思想和布鲁纳的发现学习理论,我将主要采用“启发式教学”和“探究性教学”的教学方法即从一个实际问题出发,发现无法使用刚学习的正弦定理解决,造成学生在认知上的冲突,产生疑惑,从而激发学生的探索新知的欲望,之后进一步启发诱导学生分析,综合,概括从而得出原理解决问题,最终形成概念,获得方法,培养能力。
在教学中利用计算机多媒体来辅助教学,充分发挥其快捷、生动、形象的特点。
四、教学过程的设计
为达到本节课的教学目标、突出重点、突破难点,在教材分析、确定教学目标和合理选择教法与学法的基础上,我把教学过程设计为以下四个阶段:创设情境、引入课题;探索研究、构建新知;例题讲解、巩固练习;课堂小结,布置作业。具体过程如下:
1、创设情境,引入课题
利用多媒体引出如下问题:
A地和B地之间隔着一个水塘现选择一地点C,可以测得的大小及,求A、B两地之间的距离c。
【设计意图】由于学生刚学过正弦定理,一定会采用刚学的知识解题,但由于无法找到一组已知的边及其所对角,从而产生疑惑,激发学生探索欲望。
2、探索研究、构建新知
(1)由于初中接触的是解直角三角形的问题,所以我将先带领学生从特殊情况为直角三角形( )时考虑。此时使用勾股定理,得。
(2)从直角三角形这一特殊情况出发,引导学生在一般三角形中构造直角即作边的高,从而在构造的直角三角形中利用勾股定理列出边之间的等式关系、
(3)考虑到我们所作的图为锐角三角形,讨论上述结论能否推广到在为钝角三角形( )中。
通过解决问题可以得到在任意三角形中都有,之后让同学们类比出……这样我就完成了对余弦定理的引入,之后总结给出余弦定理的内容及公式表示。
【设计意图】通过创设情景、引导学生探究出余弦定理这一数学体验,既可以培养学生分析问题的能力,也可以加深学生对余弦定理的认识、
在学生已学习了向量的基础上,考虑到新课改中要求使用新工具、新方法,我会引导同学类比向量法证明正弦定理的过程尝试使用向量的方法证明余弦定理、之后引导学生对余弦定理公式进行变形,用三边值来表示角的余弦值,给出余弦定理的第二种表示形式,这样就完成了新知的构建。
根据余弦定理的两种形式,我们可以利用余弦定理解决以下两类解斜三角形的问题:
(1)已知三边,求三个角;
(2)已知三角形两边及其夹角,求第三边和其他两个角。
3、例题讲解、巩固练习
本阶段的教学主要是通过对例题和练习的思考交流、分析讲解以及反思小结,使学生初步掌握使用余弦定理解决问题的方法。其中例题先以学生自己思考解题为主,教师点评后再规范解题步骤及板书,课堂练习请同学们自主完成,并请同学上黑板板书,从而巩固余弦定理的运用。
例题讲解:
例1在中,
(1)已知,求;
(2)已知,求。
【设计意图】例题1分别是通过已知三角形两边及其夹角求第三边,已知三角形三边求其夹角,这样余弦定理的两个形式分别得到了运用,进而巩固了学生对余弦定理的运用。
例2对于例题1(2),求的大小。
【设计意图】已经求出了的度数,学生可能会有两种解法:运用正弦定理或运用余弦定理,比较正弦定理和余弦定理,发现使用余弦定理求解角的问题可以避免解的取舍问题。
例3使用余弦定理证明:在中,当为锐角时;当为钝角时,
【设计意图】例3通过对和的比较,体现了“余弦定理是勾股定理的推广”这一思想,进一步加深了对余弦定理的认识和理解。
课堂练习:
练习1在中,
(1)已知,求;
(2)已知,求。
【设计意图】检验学生是否掌握余弦定理的两个形式,巩固学生对余弦定理的运用。
练习2若三条线段长分别为5,6,7,则用这三条线段()。
A、能组成直角三角形
B、能组成锐角三角形
C、能组成钝角三角形
D、不能组成三角形
【设计意图】与例题3相呼应。
练习3在中,已知,试求的大小。
【设计意图】要求灵活使用公式,对公式进行变形。
4、课堂小结,布置作业
先请同学对本节课所学内容进行小结,教师再对以下三个方面进行总结:
(1)余弦定理的内容和公式;
(2)余弦定理实质上是勾股定理的推广;
(3)余弦定理的可以解决的两类解斜三角形的问题。
通过师生的共同小结,发挥学生的主体作用,有利于学生巩固所学知识,也能培养学生的归纳和概括能力。
布置作业
必做题:习题1、2、1、2、3、5、6;
选做题:习题1、2、12、13。
【设计意图】
作业分为必做题和选做题、针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高。
各位老师,以上所说只是我预设的一种方案,但课堂是千变万化的,会随着学生和教师的临时发挥而随机生成。预设效果如何,最终还有待于课堂教学实践的检验。
本说课一定存在诸多不足,恳请老师提出宝贵意见,谢谢。
余弦定理优秀教学设计 篇10
各位评委老师,下午好!今天我说课的题目是余弦定理,说课的内容为余弦定理第二课时,下面我将从说教材、说学情、说教法和学法、说教学过程、说板书设计这四个方面来对本课进行详细说明:
一、说教材
(一)教材地位与作用
《余弦定理》是必修5第一章《解三角形》的第一节内容,前面已经学习了正弦定理以及必修4中的任意角、诱导公式以及恒等变换,为后面学习三角函数奠定了基础,因此本节课有承上启下的作用。本节课是解决有关斜三角形问题以及应用问题的一个重要定理,它将三角形的边和角有机地联系起来,实现了"边"与"角"的互化,从而使"三角"与"几何"产生联系,为求与三角形有关的量提供了理论依据,同时也为判断三角形形状,证明三角形中的有关等式提供了重要依据。
(二)教学目标
根据上述教材内容分析以及新课程标准,考虑到学生已有的认知结构,心理特征及原有知识水平,我将本课的教学目标定为:
⒈、知识与技能:
掌握余弦定理的内容及公式;能初步运用余弦定理解决一些斜三角形
⒉、过程与方法:
在探究学习的过程中,认识到余弦定理可以解决某些与测量和几何计算有关的实际问题,帮助学生提高运用有关知识解决实际问题的能力。
⒊、情感、态度与价值观:
培养学生的探索精神和创新意识;在运用余弦定理的过程中,让学生逐步养成实事求是,扎实严谨的科学态度,学习用数学的思维方式解决问题,认识世界;通过本节的运用实践,体会数学的科学价值,应用价值;
(三)本节课的重难点
教学重点是:运用余弦定理探求任意三角形的边角关系,解决与之有关的计算问题,运用余弦定理解决一些与测量以及几何计算有关的实际问题。
教学难点是:灵活运用余弦定理解决相关的实际问题。
教学关键是:熟练掌握并灵活应用余弦定理解决相关的实际问题。
下面为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:
二、说学情
从知识层面上看,高中学生通过前一节课的学习已经掌握了余弦定理及其推导过程;从能力层面上看,学生初步掌握运用余弦定理解决一些简单的斜三角形问题的技能;从情感层面上看,学生对教学新内容的学习有相当的兴趣和积极性,但在探究问题的能力以及合作交流等方面的发展不够均衡。
三、说教法和学法
贯彻的指导思想是把"学习的主动权还给学生",倡导"自主、合作、探究"的学习方式。让学生自主探索学会分析问题,解决问题。
四、说教学过程
下面为了完成教学目标,解决教学重点,突破教学难点,课堂教学我准备按以下五个环节展开:
环节⒈复习引入
由于本节课是余弦定理的第一课时,因此先领着学生回顾复习上节课所学的内容,采用提问的方式,找同学回答余弦定理的内容及公式,并且让学生回想公式推导的思路和方法,这样一来可以检验学生对所学知识的掌握情况,二来也为新课作准备。
环节⒉应用举例
在本环节中,我将给出两道典型例题
△ABC的顶点为A(6,5),B(-2,8)和C(4,1),求(精确到)。
已知三点A(1,3),B(-2,2),C(0,-3),求△ABC各内角的大小。
通过利用余弦定理解斜三角形的思想,来对这两道例题进行分析和讲解;本环节的目的在于通过典型例题的解答,巩固学生所学的知识,进一步深化对于余弦定理的认识和理解,提高学生的理解能力和解题计算能力。
环节⒊练习反馈
练习B组题,1、2、3;习题1-1A组,1、2、3
在本环节中,我将找学生到黑板做题,期间巡视下面同学的做题情况,加以纠正和讲解;通过解决书后练习题,巩固学生当堂所学知识,同时教师也可以及时了解学生的掌握情况,以便及时调整自己的教学步调。
环节⒋归纳小结
在本环节中,我将采用师生共同总结-交流-完善的方式,首先让学生自己总结出余弦定理可以解决哪些类型的问题,再由师生共同完善,总结出余弦定理可以解决的两类问题:
⑴已知三边,求各角;
⑵已知两边和它们的夹角,求第三边和其他两个角。本环节的目的在于引导学生学会自己总结;让学生进一步体会知识的形成、发展、完善的过程。
环节⒌课后作业
必做题:习题1-1A组,6、7;习题1-1B组,2、3、4、5
选做题:习题1-1B组7,8,9.
基于因材施教的原则,在根据不同层次的学生情况,把作业分为必做题和选做题,必做题要求所有学生全部完成,选做题要求学有余力的学生完成,使不同程度的学生都有所提高。本环节的目的是让学生进一步巩固和深化所学的知识,培养学生的自主探究能力。
五、说板书
在本节课中我将采用提纲式的板书设计,因为提纲式-条理清楚、从属关系分明,给人以清晰完整的印象,便于学生对教材内容和知识体系的理解和记忆。
【余弦定理优秀教学设计】相关文章:
高中正余弦定理教学设计02-11
荷花教学设计优秀教学设计02-06
《秋天》优秀教学设计03-24
《山寨》优秀教学设计03-22
英语优秀教学设计02-25
《观潮》优秀教学设计02-15
《理想》精选优秀教学设计01-18
山村优秀教学设计01-11