《鸡兔同笼》优秀教学设计(精选10篇)
作为一名专为他人授业解惑的人民教师,总归要编写教学设计,借助教学设计可以提高教学效率和教学质量。那么应当如何写教学设计呢?以下是小编为大家收集的《鸡兔同笼》优秀教学设计,希望对大家有所帮助。
《鸡兔同笼》优秀教学设计 篇1
一、教学内容:
北师版五年级数学上册80——81页。
二、教材分析:
设计意图:本教材向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,应用假设的数学思想,从多角度思考,运用多种方法解题,学生可以应用列表法(逐一列表法、跳跃式列表法、取中列表法)。学生根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。
三、教学目标:
1 、培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。
2、应用假设的数学思想,在解题中数形结合,提高学生分析问题和解决问题的能力。
3、在解决“鸡兔同笼”的活动中,通过列表举例、画图分析、尝试计算等方法解决鸡兔的数量问题。
四、教学设计:
(一)创设情境。
1、出示课题,引出问题:今天我们共同研究鸡兔同笼问题。(板书:)
问:鸡兔同笼是什么意思?
出示图。师问:请你猜一猜图中有几只兔子几只鸡?
(二)探求新知。
1. 独立学习。
师:如果告诉你:鸡兔同笼,有20个头,54条脚,鸡、兔各多少?能求出几只兔子,几只鸡吗?(出示题目)
师:你打算用什么方法解决这个问题?请同学们思考一下,想好了,写出。
2. 小组交流: 请同学们把自己的想法在小组内交流一下,看哪个小组方法又快又好。
3. 集体讨论并汇报
师:哪个小组说说你们的想法?
小组1:我们采用列表法得出的答案。先假设有1只鸡,19只兔子,脚就有78条。脚太多,然后又假设有2只鸡,18只兔子,脚还是太多了。这样试下去就得到了有13只鸡,7只兔子。
师小结:采用“逐一列表法”,还有哪些小组采用不同的列表法?
小组2:我们也采用列表法得出的答案,我们发现鸡增加1只,兔子减少1只,腿就减少2条,所以我们没有一个一个的试,那样太麻烦,而是从2只鸡,18只兔直接跳到10只鸡,10只兔。最后也得到了13只鸡,7只兔。
师小结:这是“跳跃式列表法”。
小组3:我们小组也是列表法。我们是先假设鸡有10只,兔子也有10只。这样比较简便。
师小结:这是“取中列表法”
(三)解决问题:
1. 将题目改成:鸡兔同笼,有17个头,42条腿,鸡、兔各几只?请你列表的方法解决。(练一练1)
2.老师带51名学生到公园划船。一条大船坐6人,一条小船坐4人,他们租了大船、小船各几条?请同学们用列表方法解决。
(四)学习总结。
通过今天的学习,你有哪些收获?
《鸡兔同笼》优秀教学设计 篇2
教学过程:
一、游戏体验
师:这节课我们来做个鸡兔同笼的游戏好吗?
师:谁来介绍鸡和兔的特征?
生1:鸡一个头,两条腿
生2:兔一个头,四条腿
师:现在你们可以自己选择当鸡或当兔,同一排同学算同一个笼子,当鸡的同学站着,当兔的同学坐着,互相说说你们这一笼子小动物有几个头,几条腿?
(学生游戏,体验鸡兔同笼)
二、建立模型
师:谁来说说你们刚才是怎样数出有多少只脚的?
生:用鸡数乘以2,用兔数乘以4。
板书:鸡数2+兔数4
师:通过刚才的游戏你有什么发现?
生:当头数相同,而鸡和兔的只数不同,脚数就会发生变化。
师:如果头数和脚数都不变,鸡兔同笼,数头20个,数脚54只,你能猜出有多少只鸡和兔吗?现在请同学们大胆地猜测,并在小组内说一说。
(小组讨论)
师;可以用什么办法把你们刚才猜测的过程记录下来。
生发言:可以用画图或制成统计表的方法。
师:今天我们主要来学习用统计表的方法解决鸡兔同笼的问题。
师:谁来说说,统计表中每栏要表示什么?
师:现在请同学们独立地把你们猜测的过程记录下来,然后在小组内交流不同的方法。
(小组活动)
师:谁来说说你是怎样记录的?
反馈总结:同学们记录的方法大致可纳成三种情况;逐一列举法、跳跃列举法、取中列举法。谁能说说这三种方法各自的特点?(学生发言)
生:我们可以采用取中列表法,再结合跳跃列表法进行调整。
师:如何调整?
生:当发现在尝试过程中所算出的腿数比已知的腿数多,那么腿多的小动物要减少,当尝试过程中所算出的腿数比已知的腿数少,腿多的小动物要增加。
板书:猜测列举调整
三、巩固提升
师:刚才我们通过了猜测列举调整等过程,解决了鸡兔同笼的问题,你们学会了吗?
1、一只蜘蛛8条腿,一只蜻蜓6条腿 ,现在共有蜘蛛、蜻蜓12只,共有腿80条。你能猜出蜘蛛、蜻蜓各有多少只吗?
2、王大富买来65只鸡和兔,分别把他们安排在15个笼子里。现鸡兔不同笼,如果每个鸡笼住5只鸡,每个兔笼住4只兔,你知道需要几个鸡笼和兔笼吗?
四、思想教育与总结
师:鸡兔同笼的问题很有意思吧。早在1500年前我国古代的《孙子算经》里这记载着这样问题,后来传到日本,演变成龟鹤算。古代人真值得我们骄傲,可是今天你们是老师的骄傲,你们想出这么多解决鸡兔同笼的问题的方法,甚至有的同学还会自己设计问题,实在是了不起,希望同学们要把这种善于发现问题的精神发扬下去,将来成为一个了不起的人。
五、教学反思
对于我班多数的学生来说,学习《鸡兔同笼》可能会有一定的难度。本人本想以游戏为开端想去激发学生的学习兴趣,但由于本班学生学习基础差,参与意识不强,因此本人对本堂课不是很满意
我认为我做的比较成功的地方是,在这节课当中我主要借助教材上的列表法,再让学生进行大胆的尝试与猜测,去弄懂鸡兔同笼问题的基本解题思路。师生共同经历了和得出三种不同的列表方法:逐一列表法、、跳跃式列表法、取中列表法。
就本堂课而言,还存在以下问题;
1 、在创设完情景引导学生用什么方法解这个问题时,学生的参与意思被动,是我没有预想到的。如果把前一部分改成让学生动手画图,可能效果会更好。情景创设上有漏洞,需进一步完善。
2 、我在假设之后怎么验证结果是否正确分析得较细,但对怎么假设觉得没有引导好,过程中出现了学生只假设了鸡的只数,然后根据腿的数量去推算出兔的只数,误解了题意。
3 、在总结规律是我如果能让学生自己多动嘴说一说,也许课堂效果会更好。
4 、由于时间练习量不多,最后一个练习题应有多种结果,也没有一一罗列。今后教学中要紧凑课堂结构,要少讲,留更多的时间给学生于练习。
《鸡兔同笼》优秀教学设计 篇3
教学目标:
1、在解决鸡兔同笼的活动中,通过列表枚举解决鸡兔的数量问题。
2、在解决鸡兔同笼的活动中,通过列表尝试和不断调整的过程从中体会解决问题的一般策略——列表,让学生学会从不同角度分析,掌握解题的策略与方法。
3、运用学到的解题策略——列表解决生活中的实际问题。
4、培养学生分析问题的能力,渗透假设的数学思想。
教学重点
让学生经历列表、尝试和不断调整的过程,体会解决问题的一般策略—列表。
教学难点
运用学到的解题策略解决生活中的实际问题。
教学过程:
一、情境引入,激发兴趣
今天老师给同学们带来一本书《孙子算经》,其中有这样一道题目
今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
谁来读一读,你见过这类题吗?
今天我们就来研究这类问题(板书鸡兔同笼)
二、探索问题
1、课件出示:(教材中的情景图)鸡兔同笼,有20个头,54条腿,鸡、兔各有多少只?
从图中你能知道哪些数学信息:(有鸡、有兔、20个头、54只腿,鸡有2条腿、兔有4条腿)
现在同学们就来猜一猜鸡、兔各有多少只?
把你猜想的结果跟你的同桌同学交流交流。
学生交流后:请学生汇报猜想的情况
教师随机板书
看到这么多种猜测,你知道哪种答案是正确的吗?你又想说什么
生:可以按照一定的顺序把他们排列起来看就很清楚
师:对,按照一定的顺序把他们排列在表格里那会看得更清楚
那么列表先做什么
生:(1)画表
(2)填写第一行
师:请你们把猜测的结果按一定的顺序填在表格中,并验证,哪种猜测正确。
出示学习要求1、先独立尝试猜测
2、把尝试的数据在表格中表达出来
3、在小组内交流自己的想法
生:尝试列表
展示学生的表格请学生说一说是怎样做的
师:一共尝试了几次
生:13次,尝试出了这道题的答案
师:我发现刚才同学们在写腿的只数时特别快,观察这张表格,你发现了什么
生:在头数相同的情况下,增加一只鸡,减少一只兔,腿就少2只。
师:给这种列表法起个名字
生:起名字
师:在数学上也有一个名字逐一列表
师:观察这张表格,你有什么发现
生:一一列出,肯定能找出答案,但有些麻烦
师:那还有什么列表方法
展示学生第二种列表方法出示表格
生:说这种列表的方法
师:观察这个表格,你又发现了什么
生:这种列表,先几个几个的数,再逐渐调整
师:先几个几个数,再往回调,在数学上也有个名字跳跃式列表
展示学生第三种列表方法出示表格
生:说这种列表的方法
师:观察这个表格,你又发现了什么
生:这种列表,先假设鸡兔各占一半,再调整
师:这种列表有直接特点,我们称这种列表方法为取中列表
想一想,为什么用列表法解决这个问题
生:简单,能准确计算结果
师:你更喜欢哪种列表方法,你们在不知不觉中找到解决问题策略,是什么
生:列表
师:首先根据信息尝试猜测,再计算验证,最后合理调整。
师:还可以用什么方法计算
生:计算
师:想知道古人是怎样解决这道题吗
课件出示资料
师:看了这个资料你想说什么
三、实践运用,巩固深化
1、小明的储蓄罐里有1角和5角的硬币共27枚,价值5。1元,1角和5角的硬币各有多少枚?
2、赛场上12张乒乓球台上同时有34人进行比赛,正在进行单打、双打比赛的球台各有几张?
3、小红参加数学知识竞赛,共10道题,每做对一道题得10分,做错一道题扣2分。小红每道题都做了,共得64分。她做对了几道题?
四、总结
通过这堂课的学习你学会了什么?
《鸡兔同笼》优秀教学设计 篇4
教学内容:
数学北师大版五年级上册第五单元尝试与猜测第一课时《鸡兔同笼》教材80~81页
教学目标:
1、了解鸡兔同笼问题,掌握用尝试法、假设法解决问题,初步形成解决此类问题的一般性策略。
2、通过自主探究、合作交流,让学生经历用不同的列表方法解决“鸡兔同笼”问题的过程,明确数量关系。
教学重点:
明确鸡兔同笼问题数量关系。
教学难点:
初步形成解决此类问题的一般性。
教学过程
一、历史激趣,导入新课
1、导语:老师知道我们班的同学非常喜欢读书,今天老师给同学们带来一部1500年前的数学名著《孙子算经》(课件出示古书动画打开书出现原题),里面记载着许多有趣的数学名题,其中有这样一道题请看:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(师读,课件中标注出题目中的“雉”:(读成“zhì”)野鸡;几何:多少。) 师:谁知道,这道题目是什么意思?
师:是呀,这道题目是说,现在有一些野鸡和兔子,关在同一只笼子里,从上面看,共有35个头;从下面看,共有94只脚。问有多少只野鸡、多少只兔子。
师:古代人对这样的题目有着自己独到的见解,我们把类似于这样的问题,统统称为:“鸡兔同笼”。今天,我们就来研究中国历史上著名的.数学趣题 “鸡兔同笼问题”。板书课题。(板书:鸡兔同笼)
2、我们先从简单一些的问题入手,来探讨解决这类问题的方法,好吗?大家请看屏幕。出示题目: (鸡兔同笼问题,课件出示鸡兔同笼情境图)
二、主动探究、合作交流、学习新知:
1.师:请大家自由读题,你们都知道了什么信息?
生:鸡和兔一共有20个头。鸡兔一共有54条腿。求分别有几只?
师:还有补充吗?有两个隐藏条件看谁细心发现了?。
生:鸡有2条腿,兔子有4条腿。鸡和兔一共有20个头。鸡兔一共有54条腿。求分别有几只?
师评:他还发现了隐藏条件,审题真细心。
2.先猜一猜,鸡兔可能有几只?可能只有一种动物吗,为什么?
学生猜测,汇报。不可能都是鸡,因为如果都是鸡就会有40条腿,而题目中是54条腿。也不可能都是兔,因为如果都是兔就会有80条腿。
3.独立思考:
(1)你想怎样解决这个问题?生举手,师:不着急说,先自己想一想!学生静想10秒。
(2)师:你们愿意自己独立解决这个问题,还是我教给你们方法你们做?好,那就请你们小组合作交流,在小组长的带领下,用自己喜欢的方法来解决这个问题。比一比,看看那个组想出的办法多,方法巧。 学生合作,教师巡视指导。
4、汇报:(汇报时,师生、生生质疑,评价)
A、师:谁愿意展示你的方法?
(1)列表法: ①逐一列表法
小组1:我们采用列表法得出的答案。(实物投影展示小组的成果)
师:学生说出“1只鸡,19只兔子”,问“怎样计算出的腿数?”1×2+19×4=2+76=78 问“结果就是13只鸡,7只兔子吗?怎样可以知道这个结果是正确的?” 是的,可以用算式来验证:13×2+7×4=26+28=54(条)
师:谁和他的方法一样?能再讲讲吗?
师:追问“有些同学在填表时写出的腿数特别快,让我们采访一下有什么秘诀?” (因为鸡和兔的只数是固定的,每增加一只兔子减少一只鸡,腿的总只数就增加2。反之依然,所以列表列得特别快。)
师:评价“像你们这样,采用列表的方法,不重复、不遗漏的写出所有可能的答案。这种逐一列举的方法在数学中也称为“枚举法”(板书)
小结:逐一列表法虽然比较麻烦,但是不重复不遗漏;
师:除了像他们这样逐一列举,还有不同的列表方法吗?
②跳跃列表
请小幅度跳跃列表的同学汇报;(汇报,说出是如何确定第一组数据的?计算验证后发现了什么问题?如何调整的谁还有不同的调整策略?) 问:你们觉得这种方法怎么样?(简便、快捷)
请大幅度跳跃列表同学汇报(你是怎样想到把鸡或兔的只数从 只一下调整到 只的) 请大或小幅度调整与逐一相结合的汇报(重点追问:你每一步是怎样进行调整的?根据什么进行调整的?)
小结:列表过程中根据需要我们可以有规律的小幅度跳跃,也可以根据自己的发现大幅度的跳跃;(板书跳跃) ③取中列表法
请选用取中列举法的同学汇报?追问:你是怎样想到这种列表法的(说出理由)
还有那些同学与他的方法相同或类似,你们认为这种方法有什么优势?
小结:取中列举法在逐一和跳跃的基础上直取中间数,验证后调整幅度缩小更为简便快捷(板书取中)
(2)、回顾一下我们的解题思路和方法,首先根据已知信息进行尝试猜测,然后进行计算验证,分析后进行合理调整。(相机板书:猜测、验证、调整)
(3)你最喜欢那种列表方法?理由呢?
(4)、同学们还有其他的方法解决这道题吗?
直观画图法:大家明白了吗?你觉得这种解法怎么样?
小结:画图的方法非常直观便于观察、非常容易理解。
(5)、同学们还有具有独特个性的解法吗?可以用自己的名字命名汇报。
过渡:你们在这么短的时间内就想出了这么多解决鸡兔同笼问题的方法,你们很了不起。
三、方法应用,巩固新知
师:同学们,能用你喜欢的列表方法来解决一些问题吗?
1、鸡兔同笼,有17个头,42条腿,鸡、兔各多少只? 抓住数学的本质,这里的鸡不仅仅代表鸡,这里的兔也不仅仅代表兔,运用我们所学的方法来解决一些生活中的鸡兔同笼问题,
2、在我们的生活中所遇到的一些问题,与鸡兔同笼问题有什么联系呢? 小明的储蓄罐里有1角和5角的硬币共27枚,价值元,1角和5角的硬币各有多少枚?
3、运输中的鸡兔同笼问题
用大小卡车往城市运29吨蔬菜,大卡车每辆每次运5吨,小卡车每辆每次运3吨,大小卡车各用几辆能一次运完?
尝试运用你喜欢的方法独立完成此题 学生汇报:
你采用的是那种列表方法 为什么要选用这种列表方法?
谁有不同的列表方法?
1)(如分别出现两种不同的正确答案)两种答案都正确吗?那么用什么方法能使所有的正确答案都不遗漏呢?师生集体尝试逐一列表的方法。
就这道题而言,你认为它与鸡兔同笼问题有什么联系?不同之处呢?(没有限定大小卡车的总辆数)
哪种方法解决最好? 或
2)(如出现一名同学有两个正确答案和分别一个正确答案)你认为谁的方法更好?
过渡语:老师相信同学们一定会耐心细致的做每一件事请。
四、总结全课交流收获
生活中随处可见鸡兔同笼问题,愿意告诉老师这节课你的学习收获吗 结束语:数学自古以来是中国历史上的璀璨明珠,在我们的生活中更是无处不在,我相信同学们只要敢于猜测尝试、并且不断的实践验证、调整创新,任何问题都能迎刃而解。
五、板书设计:
鸡兔同笼
列表法 思路
逐一 猜测
跳跃 验证
取中 调整
《鸡兔同笼》优秀教学设计 篇5
一、揭示课题
1、师:同学们今天老师将和大家一起来学习一道我国古代非常有名的数学趣题,“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”(PPT投影展示原题)这四句话是什么意思呢?抽生回答。(笼子里有若干只鸡和兔,从上面数,有35个头;从下面数,有94只脚。鸡和兔各有几只?(PPT展示今意))
2、有谁知道这类题我们把它叫做什么问题吗?(鸡兔同笼)板书。鸡兔同笼问题是我国古代三大趣题之一,记载于《孙子算经》一书中,距今已有1500多年,
3、听说过“鸡兔同笼”吗?在那听说的?(奥数班上)会做的我们今天进一步来学习,不会的也没关系,通过这节课的学习你老师相信今后你一定会做了。那同学们有没有信心把这节课的内容学好呢?
二、合作探索,主动构建。
1.出示例1
为便于研究,我们可先从简单问题入手,把题中的“35个头”和“94只脚”分别换成“8个头”和“26只脚”,就变成了例1:笼子里有若干只鸡兔。从上面数,有8个头,从下面数,有26只脚,鸡和兔各有几只?
2.理解题意
师:“从上面数,有8个头;从下面数,有26只脚”分别是什么意思?
3.探索策略
(1)猜想法
学生通过猜想、验证,知道了在这个笼子里一共有3只鸡、5只兔,师:猜想法也是咱们数学解决问题时常用的一种解题方法,但是在几次猜想中,只有1次猜对了,你们觉得用猜想法解决鸡兔同笼问题好不好?
(2)列表法
师:刚才,我们是在随意猜,其实还可以有顺序的来猜。(课件出示书上的空白表格)
师:如果先猜有8只鸡和0只兔,就有多少只脚?再猜有7只鸡和1只兔,就有多少只脚?如果有6只鸡呢?下面该写有几只鸡了?很好,按照这样的顺序猜下去就可以猜出来。请同学们完成书上的表格。(生独立完成)
师:看,我们用按顺序列表的方法,一眼就可以看出一共有3只鸡、5只兔,也就是用列表法解决了这个问题。(板书)请仔细观察表格,你能发现什么?把你的发现和同座交流。谁愿意把你的发现跟大伙说说?
生:在鸡和兔的总只数不变的情况下,每增加1只兔、减少1只鸡,脚的总只数增加2只。
师:是这样的吗?我们一起来看看。为什么会这样呢?(因为1只鸡有2只脚,1只兔有4只脚,把1只鸡换成1只兔后就多出了2只脚)还有什么发现?(每减少1只兔,增加1只鸡,脚的总只数减少2只。)
师:刚才我们用列表法解决了这个问题,你们觉得用列表法解决鸡兔同笼问题好吗?(当头和脚的只数较多时,用列表法还是不容易找出答案,我们还有研究新方法的必要。) (3)假设法 ①假设全是鸡
师:我们先观察表格中左起的第一列,8和0是什么意思?得到的16又是什么呢?
哦,也就是假设笼子里全是鸡(板书:假设笼子里都是鸡),那么就只有16只脚,对不对?可是实际脚的只数是26只,比16只要多10只,为什么会多10只呢?那会有几只兔子呢?(5只)为什么?有没有同学能用画图的方法把这个过程演示出来呀?在咱们数学的学习过程中,许多抽象的、难以理解的问题,一旦转化为直观的图形之后,就要容易理解多了,对不对?恩,希望同学们在今后的学习中能灵活地运用这种画图的方法来解决问题。
刚才我们用语言所表述的过程、用画图的方法所展示的过程,你能用算式表示出来吗?(生说师写:2×8=16只,26-16=10只,4-2=2(只),10÷2=5只,8-5=3只)很好,请你给大家解释一下这五个算式的意思好吗?
②假设全是兔刚才我们用假设全是鸡的办法解决了这个问题,那么如果假设全是兔又应该怎么分析和解决这个问题呢?请同学们自己试着做一做。(关注学生画图和列式的情况)请一生画图、一生列式,并叙述想法。
小结:刚才我们在列表的基础上,想到了两种算术方法。回头看看这两种方法的第一步,一个假设全是鸡,另一个假设全是兔,我们给这两种方法起个名字吧。(板书:假设法)我们都认为猜想法和列表法有局限性,假设法还有局限性吗?(没有)
(4)代数法
师:在解决鸡兔同笼问题时,除了假设法没有局限性外,你还能想到别的也没有局限性的一般方法吗?(方程的方法)那么就请同学们用列方程的方法试一试。(全班尝试,一名学生板演。)我们来听听这个同学的想法。
师:列方程的解法还有个名字也就叫代数法(板书)。
4.小结方法
师:请同学们回忆一下,在解决鸡兔同笼问题时,用到了哪些方法?(猜想法,列表法,假设法和代数法)要你们解决《孙子算经》中原题,你现在会选用哪种方法呢?为什么?(假设法比较简便,代数法也好理解)恩,两种方法都可以,下面同学们就用自己喜欢的方法解决这个问题。
三、延伸、应用
1.鸡兔同笼问题在我国1500年前就出现在《孙子算经》中了,现在我们也可以顺利地解决出这样的传统名题了,这个问题传到日本时就变成了“龟鹤问题”,你认为“龟鹤问题”与“鸡兔同笼”有什么相似之处?课件出示(龟相当于兔,鹤相当于鸡)展示学生作业,并抽生说说思路。
2.看来这类问题我们不只局限在鸡兔问题上,我们学习数学不光会做一些数学题,还应该帮我们解决生活中遇到的一些问题。那请同学们用“鸡兔同笼”的解题方法来解决生活中遇到的问题吧。
3、猜硬币游戏。
每个小组桌上信封里都有2角和5角的硬币共7个,共有的钱数写在信封上。请大家猜一猜,有几个2角的,有几个5角的。
4、课件出示“做一做”第二题。问这道题与“鸡兔同笼”问题有相似的地方吗?有哪些地方相似?(大船相当于“兔”,小船相当于“鸡”)那请同学说说鸡兔共多少只?共有多少只脚?鸡有几只脚?兔有几只脚?
反思:《鸡兔同笼》是人教版六年级上册第七单元“数学广角”中的内容。教材在这一单元安排“鸡兔同笼”问题,主要让学生了解“鸡兔同笼”问题,让学生尝试用不同的方法解决“鸡兔同笼”问题,这样一方面可以培养学生的逻辑推理能力,另一方面使学生体会代数方法的一般性,以此来让学生感受古代数学问题的趣味性,受到祖国优秀数学文化的熏陶和感染.
这节课在设计时主要想体现以下特色:
一、注重解题策略的多样
这节课的教学目标就是要突出解决问题策略的多样化。教学中,我注意引导学生从多角度思考问题,运用了猜测、列表、假设、代数等多种方法分析解题。这样,通过多种解题方法的探索和对比,使学生充分体会到解题策略的多样性,让学生积累了解决问题的经验,掌握了解决问题的不同方法,同时也促进学生数学思维能力的发展。
二、注重数学思想的渗透
“数学广角”人教版教材新增设的一个内容,主要是介绍和渗透一些数学思想方法,其目的是把一些重要的数学思想方法通过学生日常生活中最简单的事例呈现出来,在教学过程中,我在运用多种方法解决问题所采用的策略中,有意识的渗透了数学思想。如:把《孙子算经》中的原题数据改小,变为例1的过程中渗透化繁为简的思想;“列表”的策略中便渗透了变化和函数思想,“算术法”的策略中渗透了假设思想,“方程”的策略中渗透了代数思想等等。这些无疑给我们今后在数学课上灵活渗透数学思想是一个启迪。
三、注重学生思维的培养
对于鸡兔问题,在数据不大的情况下,都能用猜测、画图或列表解决,但对于六年级的学生来说,当数据较大时,猜测、画图和列表就有它们各自的局限性,所以真正能够适应于此类问题的具有普遍意义的一般方法还是假设法和代数法。在教学中,我注重了这些方法之间的联系和层次,有意识的对学生进行了思维培养。如:课始让学生经历无序猜想——有序尝试的思维历练过程。学生一开始接触到这个问题肯定是摸不到头绪,首先是猜想到底是几只鸡,几只兔?接着尝试列表解决,从8只鸡、0只兔开始于是就觉得依次尝试能得到答案有些麻烦,有没有更好的方法呢?这样就让学生自然而然的结合表格进入到假设法的深层次思维与探究之中。学生的学习过程步步深入,思维也层层拔高,这样学生不仅掌握了知识,更为重要的是学到了一种探索、学习的普遍思维方式和方法。
四、注重数学文化的培养
鸡兔同笼问题是《孙子算经》中一个较为出名的问题。教学中,我把《孙子算经》的原题和特殊解法搬到课堂中来,这都是一种数学文化在现代课堂当中的一种深刻地体现!无论是课的导入到数学模型的建立到后期的练习,都注重了这种数学文化的渗透和对数学文化的一种关注。
在今天的实际操作中,一节课下来,感觉容量偏大,学生学得很累,而且可能还有一部份学生掌握得并不好,虽然数学广角重点在渗透思想方法,但如果做不起题,那算不算方法渗透好呢?对于把曾经的少数尖子生学习的奥赛内容,拿来面对全体学生,如何教?如何掌握度?这些都是我下来之后还要思考的问题,也请各位同行们多指教!
《鸡兔同笼》优秀教学设计 篇6
一、古语鸡兔同笼题,揭示课题。
1、今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
生模仿古人读题,说说自己的理解。
2、揭示课题
二、自主探索,解决问题
1、简化鸡兔同笼。
笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?
2、探究方法
(1)列表法
鸡876543210兔012345678
(2)画图假设
用圆圈来表示鸡兔的头。那么,不管鸡兔具体有几只,我们首先要画几个圆圈?
现在,我想请一位同学来说说看,接下来该怎么办了?
师根据学生的述说添画脚,并适时地提问、板书:
少了几只脚?
2只2只地添,得添几个这样的2只?
94-70=24
24÷2=12
35-12=23
小结:看来,画图确实挺形象、直观的,同学们也容易理解。
三、推广应用,形成技能
“鸡兔同笼”问题不仅在中国非常有名,还流传到许多其他的国家。比方说
我们的邻国日本,有一种“龟鹤算”的数学问题,就是从“鸡兔同笼”演变过去的。
出示:有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、鹤各有几只?
师:请你们用今天这节课学到的方法来解决这道题。
四、全总课总结
今天这节课,我们跨越了1500多年的历史,探讨了中国古代的数学名题。其实,像“鸡兔同笼”这样有趣的数学问题,在中国古代还有很多,有兴趣的同学可以多了解这方面的资料,我想,对你们的学习是很有帮助的。
本节亮点:
1、本节课,杨老师主要介绍的是”表格法“和”画图假设法“,让学生一一列举出来或者画图,化抽象为具体。
2、杨老师在处理”画图假设法“中,借助画图,把每一步列式所求的什么,引导学生说清楚。
《鸡兔同笼》优秀教学设计 篇7
教学内容:
教科书数学六年级上册P112-115。
教学目标:
1、了解“鸡兔同笼”问题的结构特点,尝试用不同的策略解决“鸡兔同笼”问题,使学生体会用假设法和代数法的一般性。
2、在解决问题的过程中,培养学生的思维能力,并向学生渗透化繁为简、转化、函数等数学思想和方法。
3、使学生感受古代数学问题的趣味性,体会“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。
教学重点:
让学生经历用不同的方法解决“鸡兔同笼”问题的策略,体会其中所蕴涵的数学思想方法。
教学难点:
理解假设法中各步的算理
教具准备:
多媒体课件
教学过程:
一、解读原题,直奔主题。
1、谈话,激情导入
师:同学们,我们的祖国有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中的一部,大约产生于一千五百年前,“鸡兔同笼”问题就是《孙子算经》中的一道古老的数学趣题。
(1)课件出示古趣题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
(2)揭示课题
(3)原题解读
师:这是一道古代的数学题,同学们读完题,能不能用现代的教学语言叙述一遍?
课件出示:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚,鸡和兔各有几只?
[设计意图:从我国古代数学趣题直接导入,让学生感受到我国数学文化历史的悠久与美丽,增强民族自豪感,激发学生探究的欲望。]
二、合作探究,寻找策略。
1、改变原题
师:同学们,题目中的数据较大,为了便于研究,我们可先从简单问题入手,老师把题目中的数据变小。
(1)出示例1:笼子里有若干只鸡和兔。从上面数,有8个头,从下面数有26只脚。鸡和兔各有几只?
(2) 理解题意:从题中你获得哪些信息?
让学生找出隐藏的两条信息:一只鸡2只脚,一只兔4只脚。
探索策略
2、列表尝试法
①猜一猜:笼子里可能有几只鸡?几只兔?
②说一说:他猜的对吗?要怎么知道他猜的对不对?
③试一试:在答题卡上自主尝试,如果答案不对,想一想怎样调整能更快找到答案,最后数一数一共试了几次。
④ 展示答题卡:我试了( )次得出答案。鸡有( )只,兔有( )只。
⑤ 反馈交流
A、按顺序尝试,数一数试了几次?从表中你发现了什么规律?
B、取中或跳跃尝试,数一数试了几次?有什么秘诀?
⑥ 小结:用列表法解答不一定要一只一只地尝试,也可以2只或3只跳着尝试,这样尝试的次数就更少,就能更快地找到答案。
[设计意图:列表尝试法虽然繁琐,但它是解决问题一种重要的策略和方法。让学生通过列表尝试的方法初步体验在总只数不变的情况下,随着鸡(或兔)只数的调整,脚的总数也发生变化,为下面学习假设法和代数法做好铺垫。]
3、假设法
①. 学生独立尝试列式解答
②. 小组讨论,说一说用假设法解答的算理
③. 汇报反馈
④. 课件动态展示假设法的两种思路,老师边演示边提问题让学生回答。
A. 假设笼子里都是鸡,一共有几只脚?
条件告诉我们几只脚,这样就少了几只脚呢?
为什么会少了10只脚呢?一只兔看成一只鸡,少了几只脚?
那么几只兔看成鸡一共少了10只脚呢?
B. 假设笼子里都是兔,一共有几只脚?与条件比多了几只脚?
为什么会多了6只脚?一只鸡看成一只兔,多了几只脚?
那么几只鸡看成兔一共多了6只脚呢?
⑤. 让学生对照课件说一说算式表示的意义
⑥. 思考:为什么假设全是鸡,先求出的是兔的只数?为什么假设全是兔,先求出的是鸡的只数?
[设计意图:让学生认识、理解、运用假设法是本课的重点,也是教学的难点。老师以列表尝试法为基础,放手让学生在独立尝试的基础上合作探究,学生从自主尝试到讨论汇报、互动,结合课件的动态演示,巧妙地将学生个人或集体的认知经验、思维过程转化为数学语言,从而形成了解决问题的新策略,发展了学生的思维水平,获得了新的数学思想方法。]
4、方程解
解:设兔有 只,则鸡有 只。
也可以设:鸡为 只,则兔有 只。(略)
师:在列方程解答时碰到什么困难?该如何解决?
[设计意图:方程解是学生在五年级已经学过的解决问题的一种基本方法,运用它解决“鸡兔同笼”问题便于学生清楚地理解数量关系,不失为解决此类问题的一种好方法,也让学生体验、领悟解决“鸡兔同笼”问题策略的多样化。]
5、梳理小结,比较优化。
三、推广应用,建立模型。
1. 选择自己喜欢的方法解决《孙子算经》中的原题。
2. 解决生活中的“鸡兔同笼”的问题。
(1)动物园中的问题。
动物园有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、鹤各有几只?
(2)游乐园中的问题。
有38个同学去游乐园划船,共租了8条船,每条船都坐满了。大船每条各乘6人,小船每条各乘4人。大小船各租了几条?
3. 对比联系,建立模型。
4. 小结:今天我们研究这类“鸡兔同笼”问题,不仅仅只解决鸡和兔的问题,主要是要用今天学到的方法解决生活中类似的“鸡兔同笼”问题。
5.让学生举出生活中类似的“鸡兔同笼”问题。
[设计意图:放手让学生运用学到的“策略”解决生活中类似的“鸡兔同笼”问题,及巩固了新知,又使学生体会到“鸡兔同笼”问题在生活中的广泛存在,凸显了本节课的学习价值。在此基础上进一步引导学生观察、比较、总结,提炼出此类问题的结构特征和解决的一般性策略,为学生的学习奠定了可持续发展的坚实基础]
四、引导阅读,课外延伸。
1. 阅读并思考课本114页的“阅读材料”。
2. 完成练习二十六的1—3题。
[设计意图:“抬脚法”也叫“金鸡独立法”是一种特殊而巧妙的解法,学生不容易理解,课后的阅读给学生一个自主探究、交流的空间,又让学生进一步感受到我国古代数学的魅力。练习作业设计的层次性、挑战性,满足了学生个性化学习的需要,为学生的课外发展提供平台。]
《鸡兔同笼》优秀教学设计 篇8
教学目标:
1、通过学习使学生初步认识“鸡兔同笼”的数学趣题,能尝试用多种策略解答数目比较小的此类题目。
2、通过学习使学生在不断的试误中,运用“列表举例” “假设法”“解方程法”等方法解决鸡兔同笼问题,逐步形成良好的数学意识,体验尝试法解决数学问题的思想和方法。
3、在学习我国传统的数学文化的过程中,了解与此有关的数学史,对学生进行数学文化的熏陶和感染。
教学重点:
让学生经历用不同的方法解决“鸡兔同笼”问题的策略,体会其中所蕴涵的数学思想方法。
教学难点:
理解假设法中各步的算理
教具准备:
课件
教学过程:
一、创设情境,揭示课题。
1、(出示图片)谈话:同学们屏幕上的两个动物你们认识吗?你能用数学语言描述一下这两个动物吗?
2、如果把它们放在一个笼子里只告诉你头的个数与脚的只数,你能猜出笼子里各有多少只吗?
告诉学生头的个数和腿的条数让学生猜测笼子里面动物的只数,然后用电子笔移开笼子进行验证。
3、揭示课题并板书:鸡兔同笼
二、展示情境,尝试探究。
(一)出示情境,获取信息。
1、出示例1:笼子里有若干只鸡和兔,从上面数,有8个头,从下面数有26条腿,鸡和兔名有几只?
2、仔细读题,说说你了解了哪些信息?
(二)猜想验证
1、谈话:同学们,对于这道题,还能像刚才那样直接猜测吗?为了能把所有的猜测一一列出来,我为大家准备了一个表格(出示表格),与学生一起列出所有的可能。
3、怎样才能知道同学们的猜测对不对?
3、和同学们一起验证并完成表格最后一栏的填写,找出正确答案并圈起来。
4、小结:我们这种方法叫做列表法。
5、如果现在有更多的鸡和兔你们觉得用这种列表法还可以吗?为什么?
(三)尝试假设法
1、为了研究老师想请8位同学们配合老师。(请8位同学上台来扮演鸡和兔当老师下令所有的兔子抬起两条腿时,扮演兔子的同学把两只手举起来,计算地上腿的条数,与实际相差了多少条腿,相差的这些腿是谁的?)
2、引导学生把刚才的表演过程用画图的方法呈现出来。
3、引导学生把画图的过程用算式表示出来。
5、小结:刚才我们假设都是鸡或者是兔,把这种方法叫做假设法。
(四)列方程解
1、在解决鸡兔同笼问题时除了列表法和假设法,还有别的方法吗?
2、要用列方程必须找到等量关系式,请大家认真读题找出等量关系式。
3、引导学生列出方程。
4、板演解方程的过程。
三、巩固练习
1、解决《孙子算经》中的原题。
(1)学生理解题意。
(2)用自己最喜欢的方法解决。
(3)集体订正。
2、完成书中做一做。
(1)小组讨论题里的什么相当于鸡,什么相当于兔?
(2)用自己喜欢的方式解决。
(3)集体订正。
《鸡兔同笼》优秀教学设计 篇9
复习目标:
通过复习进一步用假设法或列表法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。
复习重点:
尝试用不同的方法解决鸡兔同笼问题,在尝试中培养学生的思维能力。
复习难点:
在解决问题的过程中,培养学生的逻辑思维能力。
教法:
分析、引导
学法:
自主探究
课前准备:多媒体。
教学过程:
一、定向导学:2分钟
1、板书课题
2、复习目标:
掌握用列表法、假设法或列方程的方法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。
二、方法归类:8分
1、填空:
一只公鸡( )条腿,两只公鸡( )条腿,五只公鸡( )条腿。
一只兔子( )条腿,两只兔子( )条腿,五只兔子( )条腿。
鸡兔共五只,腿有( )条。
2、谁记得解决这类问题的方法呢?
学生回答
3、了解抬脚法
笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,
有94只脚。鸡和兔各有几只?
古人的算法可以用下图表示:
头… 35 脚减半 35 下减上 35 上减下 23 …鸡
脚… 94 47 12 12 …兔
三、解决问题:10分
(1)、鸡兔同笼,有20个头,56条腿, 鸡、兔各有多少只?
(2)、停车场里停了三轮车和小汽车共11辆,总共有40个轮子,问三轮车和小汽车各有几辆?
(3)比赛答题,对一题加10分,错一题扣6分,一道对题比一道错题多( )
分。
(4)数学竞赛,答对一题得10分,答错一题扣6分。小明抢答了16道题,最后得分16分,他答对了几道题?
四、小结检测:20分钟
1、小结:通过今天的复习,你有什么收获?还有什么疑问吗?
2、检测:
a、问答:
(1)解答鸡兔同笼问题要弄清( )多少只,还要弄清( )多少只。
b、解决问题
(1)全班一共有38人,共租了8条船,每条大船乘6人,每条小船乘4人,每条船都坐满了。问大船和小船各多少条?
(2)大和尚一人吃3个馒头,小和尚3人吃一个馒头,100个和尚吃100个馒头。求大、小和尚各有多少个人?
(3)篮球比赛,张鹏共得21分,张鹏在这场比赛中投进了几个3分球?几个2分球?(张鹏没有罚球)
(4)有龟和鹤共40只,龟的腿和鹤的腿共112条,龟和鹤各有多少只?
《鸡兔同笼》优秀教学设计 篇10
教学内容:
人教版《数学》四年级下册P103——P104页数学广角——《鸡兔同笼》。
教材分析:
“鸡兔同笼”问题是我国民间广为流传的有趣的数学问题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。对于四年级的学生来说,解决“鸡兔同笼”问题最好的方法是列表法或假设法。“假设法”有利于培养学生的逻辑推理能力,列表法可以让学生经历猜测、验证等解决问题的基本策略。通过两种方法的探究让学生感知解决问题的多样性。因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。
教学目标:
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、经历自主探究解决问题的过程,能够用列表、假设的方法解决“鸡兔同笼”问题,使学生感知解决问题的多样性。
3、在解决问题的过程中,培养学生的逻辑推理能力,增强应用意识和实践能力。
教学重点:
1、理解掌握解决问题的不同思路和方法。
2、学会用不同的方法解决实际生活中有关“鸡兔同笼”的问题。
教学难点:
理解掌握假设法,能运用假设法解决数学问题。
教学具准备:
表格
教学过程:
一、导入
师生谈话导入新知
(设计理念:通过谈话营造轻松的学习环境,同时引出课题,让学生感知我国古代数学文化的源远流长激发学生的民族自豪感;通过谈话引出问题为下一教学环节做好铺垫。)
二、探究新知
1、质疑:提问:
(1)一只鸡和一只兔不看外表单从数量上看有什么相同点和不同点?
(2)鸡和兔相比:什么比什么多?多多少?
(3)出示:如果有4只兔和3只鸡同笼,一共有多少个头和多少只脚呢?
(4)尝试解决,交流想法;
(5)出示交换已知条件以后的题目。
(设计理念:通过对比两种动物的异同,引出基础题目,让学生经历观察、比较、分析、归纳概括的过程,同时也让学生了解鸡兔腿数数量的差别,每只兔比每只鸡腿数多2,这为下一教学环节,猜测、调整和有序整理探究列表法奠定基础,同时也为探究假设法做好铺垫。)
2、教学例1
(1)出示例题1。
师:请同学们读一读,和前面的题目一样吗?什么地方不一样?
请同学们大胆的猜一猜鸡兔各有几只?猜的时候要注意什么?(共有8个头)
(设计理念:通过对比两题的已知和未知条件的不同培养学生认真审题的良好学习习惯,同时也为后面的猜测、有序整理、验证做好铺垫。)
(2)学生自由猜测。
师:大家的猜测有很多种,听起来有点乱,我们按顺序整理一下(出示表格)。
(3)验证猜想。
(4)观察发现规律。
(5)总结概括:在数学中这种方法叫列表法。(板书)。
(设计理念:通过猜测让学生感知在解决类似问题时这是最基础的方法,然后通过列表法进行验证让学生感知有序整理可以找到问题的答案。最后通过观察、交流探讨发现鸡兔数量的变化引起腿数变化的规律,这样也积累了学生解决问题的经验。)
质疑:如果遇到鸡兔数目多的时候,这种方法行吗?怎么办呢?
3、探讨假设法:
a、假设全是兔。
1师以童话故事的形式引入全是兔的情境。
2集体探究,引导交流。
b、假设全是鸡。
1师再次继续童话故事引入全是鸡的情境。
2小组独立探究交流假设全是鸡的计算方法。
3指名小组展示并叙述计算过程。
4、小结:
刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。(板书:假设法)
5、延伸:
其实解决“鸡兔同笼”的问题还有其它方法,同学们如果有兴趣的话下来以后可以了解一下。
(设计理念:通过情境假设,让学生感知数学的趣味性,提高了学生探究新知的兴趣,也为假设法的探究增添了趣味。同时,学生又经历了自主探究、合作交流的学习过程,体验了解决问题的方法的多样性。为后面灵活的解决问题打下了基础。)
三、练习巩固
出示练习题。
四、课后总结
(设计理念:学生通过练习一方面加强了对列表法、假设法的巩固,另一方面学生运用所学知识灵活的解决问题,增强了学生的应用意识;通过小结收获整理课堂新知,培养学生归纳总结的能力。)
板书
鸡兔同笼
1、列表法
2、假设法
【《鸡兔同笼》优秀教学设计】相关文章:
小学数学《鸡兔同笼》教学设计11-29
荷花教学设计优秀教学设计02-06
燕子的优秀教学设计02-23
白鹅的优秀教学设计02-12
桥的优秀教学设计02-12
雨后优秀教学设计02-12
卖炭翁优秀教学设计02-12
登高优秀教学设计02-12