高中数学联赛的常考的知识点
导语:高中数学联赛是高中阶段最大型的一个数学比赛,这项大赛会选拔出优秀的科学人才。欢迎阅读,仅供参考,更多相关的知识,请关注CNFLA学习网的!
高中数学联赛的知识点:
常用定理 1、费马点 (I)基本概念
定义:在一个三角形中,到3个顶点距离之和最小的点叫做这个三角形的费马点。
(1)若三角形ABC的3个内角均小于120°,那么3条距离连线正好平分费马点所在的周角。所以三角形的费马点也称为三角形的等角中心。
(2)若三角形有一内角不小于120度,则此钝角的顶点就是距离和最小的点。 (II)证明
我们要如何证明费马点呢:
费马点证明图形
(1)费马点对边的张角为120度。
△CC1B和△AA1B中,BC=BA1,BA=BC1,∠CBC1=∠B+60度=∠ABA1, △CC1B和△AA1B是全等三角形,得到∠PCB=∠PA1B 同理可得∠CBP=∠CA1P
由∠PA1B+∠CA1P=60度,得∠PCB+∠CBP=60度,所以∠CPB=120度 同理,∠APB=120度,∠APC=120度 (2)PA+PB+PC=AA1
将△BPC以点B为旋转中心旋转60度与△BDA1重合,连结PD,则△PDB为等边三角形,所以∠BPD=60度 又∠BPA=120度,因此A、P、D三点在同一直线上,
又∠CPB=∠A1DB=120度,∠PDB=60度,∠PDA1=180度,所以A、P、D、A1四点在同一直线上,故PA+PB+PC=AA1。 (3)PA+PB+PC最短
在△ABC内任意取一点M(不与点P重合),连结AM、BM、CM,将△BMC以点B为旋转中心旋转60度与△BGA1重合,连结AM、GM、A1G(同上),则AA1
平面四边形中费马点证明相对于三角型中较为简易,也较容易研究。 (1)在凸四边形ABCD中,费马点为两对角线AC、BD交点P。
费马点
(2)在凹四边形ABCD中,费马点为凹顶点D(P)。 经过上述的推导,我们即得出了三角形中费马点的找法:
当三角形有一个内角大于或等于一百二十度的时候,费马点就是这个内角的顶点;如果三个内角都在120度以内,那么,费马点就是使得费马点与三角形三顶点的连线两两夹角为120度的点。 (III)费马点性质:
费马点
(1)平面内一点P到△ABC三顶点的之和为PA+PB+PC,当点P为费马点时,距离之和最小。 特殊三角形中:
(2).三内角皆小于120°的三角形,分别以 AB,BC,CA,为边,向三角形外侧做正三角形ABC1,ACB1,BCA1,然后连接AA1,BB1,CC1,则三线交于一点P,则点P就是所求的费马点.
(3).若三角形有一内角大于或等于120度,则此钝角的顶点就是所求. (4)当△ABC为等边三角形时,此时外心与费马点重合
二、梅涅劳斯定理和塞瓦定理 1、梅涅劳斯定理
梅涅劳斯定理证明
梅涅劳斯(Menelaus)定理(简称梅氏定理)是由古希腊数学家梅涅劳斯首先证明的。它指出:如果一条直线与△ABC的三边
AF
AB、BC、CA或其延长线交于F、D、E点,那么证明:做平行线即可,过程略 2、角元形式:
(1)第一角元形式的梅涅劳斯定理
FB
BCCD
DOOA
1
如图:若E,F,D三点共线,则
(sin∠ACF/sin∠FCB)(sin∠BAD/sin∠DAC)(sin∠CBA/sin∠ABE)=1 即图中的蓝角正弦值之积等于红角正弦值之积 该形式的梅涅劳斯定理也很实用 (2)第二角元形式的梅涅劳斯定理
在平面上任取一点O,且EDF共线,则(sin∠AOF/sin∠FOB)(sin∠BOD/sin∠DOC)(sin∠COA/sin∠AOE)=1。(O不与点A、B、C重合) 三、塞瓦定理 塞瓦定理
在△ABC内任取一点O,
直线AO、BO、CO分别交对边于D、E、F,则 (BD/DC)*(CE/EA)*(AF/FB)=1 证法简介 (Ⅰ)本题可利用梅涅劳斯定理证明: ∵△ADC被直线BOE所截, ∴ (CB/BD)*(DO/OA)*(AE/EC)=1 ①
而由△ABD被直线COF所截,∴ (BC/CD)*(DO/OA)*(AF/FB)=1② ②÷①:即得:(BD/DC)*(CE/EA)*(AF/FB)=1 (Ⅱ)也可以利用面积关系证明
∵BD/DC=S△ABD/S△ACD=S△BOD/S△COD=(S△ABD-S△BOD)/(S△ACD-S△COD)=S△AOB/S△AOC ③
同理 CE/EA=S△BOC/ S△AOB ④ AF/FB=S△AOC/S△BOC ⑤ ③×④×⑤得BD/DC*CE/EA*AF/FB=1 塞瓦定理推论
1.设E是△ABD内任意一点,AE、BE、DE分别交对边于C、G、F,则(BD/BC)*(CE/AE)*(GA/DG)=1
因为(BC/CD)*(DG/GA)*(AF/FB)=1,(塞瓦定理)所以 (BD/CD)*(CE/AE)*(AF/FB)=K(K为未知参数)且(BD/BC)*(CE/AE)*(GA/DG)=K(K为未知参数)又由梅涅劳斯定理得:(BD/CD)*(CE/AE)*(AF/FB)=1 所以(BD/BC)*(CE/AE)*(GA/DG)=1 2.塞瓦定理角元形式
AD,BE,CF交于一点的充分必要条件是:
(sin∠BAD/sin∠DAC)*(sin∠ACF/sin∠FCB)*(sin∠CBE/sin∠EBA)=1 由正弦定理及三角形面积公式易证
3.如图,对于圆周上顺次6点A,B,C,D,E,F,直线AD,BE,CF交于一点的充分必要条件是: (AB/BC)*(CD/DE)*(EF/FA)=1
由塞瓦定理的角元形式,正弦定理及圆弦长与所对圆周角关系易证。 4.还能利用塞瓦定理证三角形三条高交于一点
设三边AB、BC、AC的垂足分别为D、E、F,根据塞瓦定理逆定 理,因为(AD:DB)*(BE:EC)*(CF:FA)=[(CD*ctgA)/[(CD*ctgB)]*[(AE*ctgB)/(AE*ctgC)]*[(BF*ctgC)/[(AE*ctgB)]=1,所以三条高CD、AE、BF交于一点。
四、西姆松定理
西姆松定理图示
西姆松定理是一个几何定理。表述为:过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。(此线常称为西姆松线)。西姆松定理的逆定理为:若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上。 西姆松定理说明 相关的结果有:
(1)称三角形的垂心为H。西姆松线和PH的交点为线段PH的中点,且这点在九点圆上。 (2)两点的西姆松线的交角等于该两点的圆周角。
(3)若两个三角形的外接圆相同,这外接圆上的一点P对应两者的西姆松线的交角,跟P的位置无关。 (4)从一点向三角形的三边所引垂线的垂足共线的'充要条件是该点落在三角形的外接圆上。 证明
证明一: △ABC外接圆上有点P,且PE⊥AC于E,PF⊥AB于F,PD⊥BC于D,分别连DE、DF.
易证P、B、F、D及P、D、C、E和A、B、P、C分别共圆,于是∠FDP=∠ACP ①,(∵都是∠ABP的补角) 且∠PDE=∠PCE
② 而∠ACP+∠PCE=180° ③ ∴∠FDP+∠PDE=180°
④ 即F、D、E共线. 反之,当F、D、E共线时,由④→②→③→①可见A、B、P、C共圆.
证明二: 如图,若L、M、N三点共线,连结BP,CP,则因PL垂直于BC,PM垂直于AC,PN垂直于AB,有B、P、L、N和
M、P、L、C分别四点共圆,有
∠PBN = ∠PLN = ∠PLM = ∠PCM. 故A、B、P、C四点共圆。
若A、B、P、C四点共圆,则∠PBN = ∠PCM。因PL垂直于BC,PM垂直于AC,PN垂直于AB,有B、P、L、N和M、P、L、C四点共圆,有
∠PBN =∠PLN =∠PCM=∠PLM. 故L、M、N三点共线。 相关性质的证明
连AH延长线交圆于G, 连PG交西姆松线与R,BC于Q 如图连其他相关线段
AH⊥BC,PF⊥BC==>AG//PF==>∠1=∠2
A.G.C.P共圆==>∠2=∠3
PE⊥AC,PF⊥BC==>P.E.F.C共圆==>∠3=∠4 ==>∠1=∠4 PF⊥BC ==>PR=RQ
BH⊥AC,AH⊥BC==>∠5=∠6 A.B.G.C共圆==>∠6=∠7 ==>∠5=∠7
AG⊥BC==>BC垂直平分GH ==>∠8=∠2=∠4
∠8+∠9=90,∠10+∠4=90==>∠9=∠10 ==>HQ//DF ==>PM=MH
第二个问,平分点在九点圆上,如图:设O,G,H 分别为三角形ABC的外心,重心和垂心。 则O是,确定九点圆的中点三角形XYZ的垂心,而G还是它的重心。 那么三角形XYZ的外心 O1, 也在同一直线上,并且 HG/GO=GO/GO1=2,所以O1是OH的中点。
三角形ABC和三角形XYZ位似,那么它们的外接圆也位似。两个圆的圆心都在OH上,并且两圆半径比为1:2
所以G是三角形ABC外接圆和三角形XYZ外接圆(九点圆)的
所以H到三角形ABC的外接圆上的连线中点必在三角形DEF的外接圆上.... 五、托勒密定理
1、定理的内容 托勒密(Ptolemy)定理指出,圆的内接凸四边形两对对边乘积的和等于两条对角线的乘积。 原文:圆的内接四边形中,两对角线所包矩形的面积等于 一组对边所包矩形的面积与另一组对边所包矩形的面积之和。 从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式,托勒密定理实质上是关于共圆性的基本性质. 证明
一、(以下是推论的证明,托勒密定理可视作特殊情况。)
在任意四边形ABCD中,作△ABE使∠BAE=∠CAD ∠ABE=∠ ACD 因为△ABE∽△ACD
所以 BE/CD=AB/AC,即BE·AC=AB·CD (1) 而∠BAC=∠DAE,,∠ACB=∠ADE 所以△ABC∽△AED相似.
BC/ED=AC/AD即ED·AC=BC·AD (2) (1)+(2),得
AC(BE+ED)=AB·CD+AD·BC 又因为BE+ED≥BD
(仅在四边形ABCD是某圆的内接四边形时,等号成立,即“托勒密定理”) 所以命题得证 复数证明
用a、b、c、d分别表示四边形顶点A、B、C、D的复数,则AB、CD、AD、BC、AC、BD的长度分别是:(a-b)、(c-d)、(a-d)、(b-c)、(a-c)、(b-d)。 首先注意到复数恒等式: (a − b)(c − d) + (a − d)(b − c) = (a − c)(b − d) ,两边取模,运用三角不等式得。 等号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、C、D四点共圆等价。 四点不限于同一平面。 平面上,托勒密不等式是三角不等式的反演形式。 二、
设ABCD是圆内接四边形。 在弦BC上,圆周角∠BAC = ∠BDC,而在AB上,∠ADB = ∠ACB。 在AC上取一点K,使得∠ABK = ∠CBD; 因为∠ABK + ∠CBK = ∠ABC = ∠CBD + ∠ABD,所以∠CBK = ∠ABD。 因此△ABK与△DBC相似,同理也有△ABD ~ △KBC。 因此AK/AB = CD/BD,且CK/BC = DA/BD; 因此AK·BD = AB·CD,且CK·BD = BC·DA; 两式相加,得(AK+CK)·BD = AB·CD + BC·DA; 但AK+CK = AC,因此AC·BD = AB·CD + BC·DA。证毕。 三、
托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).已知:圆内接四边形ABCD,求证:AC·BD=AB·CD+AD·BC.
证明:如图1,过C作CP交BD于P,使∠1=∠2,又∠3=∠4,∴△ACD∽△BCP.得AC:BC=AD:BP,AC·BP=AD·BC ①。又∠ACB=∠DCP,∠5=∠6,∴△ACB∽△DCP.得AC:CD=AB:DP,AC·DP=AB·CD ②。①+②得 AC(BP+DP)=AB·CD+AD·BC.即AC·BD=AB·CD+AD·BC.
推论
1.任意凸四边形ABCD,必有AC·BD≤AB·CD+AD·BC,当且仅当ABCD四点共圆时取等号。
2.托勒密定理的逆定理同样成立:一个凸四边形两对对边乘积的和等于两条对角线的乘积,则这个凸四边形内接于一圆、 推广
托勒密不等式:四边形的任两组对边乘积不小于另外一组对边的乘积,取等号当且仅当共圆或共线。 简单的证明:复数恒等式:(a-b)(c-d)+(a-d)(b-c)=(a-c)(b-d),两边取模, 得不等式AC·BD≤|(a-b)(c-d)|+|(b-c)(a-d)|=AB·CD+BC·AD 注意:
1.等号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、C、D四点共圆等价。 2.四点不限于同一平面。
【高中数学联赛的常考的知识点】相关文章:
高中数学联赛最常考的知识点09-19
高中数学常考的知识点:集合01-18
高中数学常考知识点圆的方程01-27
高中数学常考知识点抽样的方法04-22
高中数学几何常考的的知识点整理01-31
高中数学的常考公式汇集08-28
高中数学常考的公式集合01-17
小学数学常考的知识点08-18
初中数学常考的知识点:01-19