掌握了这道题横扫一元二次方程根的问题
导语:一元二次方程根的分布问题是高中数学的重要知识点,很多函数问题,方程问题最后都能转化为根的分布问题.而这块内容初中不讲,高中也不讲,所以同学们都掌握的不是很好,下面是小编为大家整理的高中数学的解题方法,希望对大家有所帮助,欢迎阅读,仅供参考,更多相关的知识,请关注CNFLA学习网
一元二次方程根的`分布问题是高中数学的重要知识点,很多函数问题,方程问题最后都能转化为根的分布问题.而这块内容初中不讲,高中也不讲,所以同学们都掌握的不是很好,今天小数老师给大家一道题目,能一下掌握这种题目的做法!加油!
分析
这道题就是一道简单的一元二次方程的根的问题,是小数老师为了讲清楚这个知识点专门找的例题,在我们考试时,基本不会碰上这么直接的题目(除非是只考这个知识点),也就是说在这个问题上,一般是披着外衣的,同学们必须练就火眼金睛,才能看到这个问题的本质。一般会在导数题目中考察这个问题,后面小数老师会陆续给出例题,大家持续关注!
回顾
通过之前我们学过的函数零点的知识点,我们能知道,函数的零点可以转化为方程的根,也可以转化为函数与x轴的交点,或者是两个函数的交点,所以,对于一元二次方程的根的分布问题,我们也有以上几种转化形式,在这里,基本上转化为对应的二次函数与x轴的交点即可。
我们可以数一下一元二次方程根的分布有几种情况:
1、在R上没有实根;有且只有一个实根;有两个不相等的实根;
此时只需要考虑判别式即可。
当判别式大于0时,有两个不相等的实根;
当判别式等于0时,有且只有一个个实根;
当判别式小于0时,没有实根。
2、当x在某个范围内的实根分布
此时一般需要考虑4个方面,分别是:
开口方向,判别式,对称轴,端点值f(m)的情况。
具体如下:
表一:(两根与0的大小比较即根的正负情况)
分布情况
两个负根即两根都小于0
两个正根即两根都大于0
一正根一负根即一个根小于0,一个大于0
大致图象(a>0)
得出的结论
大致图象(a<0)
得出的结论
综合结论(不讨论a)
表二:(两根与k的大小比较)
分布情况
两根都小于k即
两根都大于k即
一个根小于k,一个大于k即
大致图象(a>0)
得出的结论
大致图象(a<0)
得出的结论
综合结论(不讨论a)
表三:(根在区间上的分布)
分布情况
两根都在
内
两根有且仅有一根在
内
(图象有两种情况,只画了一种)
一根在
内,另一根在
内,
大致图象(a>0)
得出的结论
大致图象(a<0)
得出的结论
综合结论(不讨论a)
——————
解析
其实小数老师不说,你也应该能明白了吧!
【掌握了这道题横扫一元二次方程根的问题】相关文章:
一元二次方程根的分布问题01-21
一元二次方程根与系数的关系优秀教学设计01-26
初二数学一元二次方程实数根教学设计03-31
数学《列一元二次方程解应用题》教学设计03-31
一元二次方程练习题01-31
数学一元二次方程的教案03-22
认识一元二次方程的教学设计12-13
一元二次方程的解法练习题01-31
一元二次方程的应用数学教案03-22