初中数学常考的知识点:不等式与不等式组

时间:2021-01-18 16:40:38 初中数学 我要投稿

初中数学常考的知识点:不等式与不等式组

  导语:下面是小编为大家整理的关于初中不等式与不等式组概念的知识点梳理,欢迎阅读,仅供参考,更多相关的知识,请关注CNFLA学习网!

初中数学常考的知识点:不等式与不等式组

  1.不等式:用符号"<",">","≤","≥"表示大小关系的式子叫做不等式。

  2.不等式分类:不等式分为严格不等式与非严格不等式。

  一般地,用纯粹的大于号、小于号">","<"连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)"≥","≤"连接的不等式称为非严格不等式,或称广义不等式。

  3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。

  4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

  5.不等式解集的表示方法:

  (1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3

  (2)用数轴表示:不等式的.解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。

  6.解不等式可遵循的一些同解原理

  (1)不等式F(x)< G(x)与不等式 G(x)>F(x)同解。

  (2)如果不等式F(x)< G(x)的定义域被解析式H(x)的定义域所包含,那么不等式 F(x)< G(x)与不等式H(x)+F(x)

  (3)如果不等式F(x)< G(x)的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)< G(x)与不等式H(x)F(x)0,那么不等式F(x)< G(x)与不等式H(x)F(x)>H(x)G(x)同解。

  7.不等式的性质:

  (1)如果x>y,那么yy;(对称性)

  (2)如果x>y,y>z;那么x>z;(传递性)

  (3)如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法则)

  (4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz

  (5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z

  (6)如果x>y,m>n,那么x+m>y+n(充分不必要条件)

  (7)如果x>y>0,m>n>0,那么xm>yn

  (8)如果x>y>0,那么x的n次幂>y的n次幂(n为正数)