四年级常考的奥数题:鸡兔同笼应用题(附答案)
导语:日子象念珠一样,一天接着一天滑过,串成周,串成月 下面是小编为大家整理的:小学奥数题,希望对大家有所帮助,欢迎阅读,仅供参考,更多相关的知识,请关注CNFLA学习网!
小学数学奥数题【例一】
1、红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红、蓝铅笔各买几支?
解:以“分”作为钱的单位.我们设想,一种“鸡”有11只脚,一种“兔子”有19只脚,它们共有16个头,280只脚.
现在已经把买铅笔问题,转化成“鸡兔同笼”问题了.利用上面算兔数公式,就有
蓝笔数=(19×16-280)÷(19-11)
=24÷8
=3(支).
红笔数=16-3=13(支).
答:买了13支红铅笔和3支蓝铅笔.
对于这类问题的计算,常常可以利用已知脚数的'特殊性.例2中的“脚数”19与11之和是30.我们也可以设想16只中,8只是“兔子”,8只是“鸡”,根据这一设想,脚数是
8×(11+19)=240.
比280少40.
40÷(19-11)=5.
就知道设想中的8只“鸡”应少5只,也就是“鸡”(蓝铅笔)数是3.
30×8比19×16或11×16要容易计算些.利用已知数的特殊性,靠心算来完成计算.
实际上,可以任意设想一个方便的兔数或鸡数.例如,设想16只中,“兔数”为10,“鸡数”为6,就有脚数
19×10+11×6=256.
比280少24.
24÷(19-11)=3,
就知道设想6只“鸡”,要少3只.
要使设想的数,能给计算带来方便,常常取决于你的心算本领.
小学数学奥数题【例二】
1、有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?
解:我们设想,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,·也就是
244÷2=122(只).
在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数
122-88=34,
有34只兔子.当然鸡就有54只.
答:有兔子34只,鸡54只.
上面的计算,可以归结为下面算式:
总脚数÷2-总头数=兔子数.
上面的解法是《孙子算经》中记载的.做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是4和2,4又是2的2倍.可是,当其他问题转化成这类问题时,“脚数”就不一定是4和2,上面的计算方法就行不通.因此,我们对这类问题给出一种一般解法.
还说例1.
如果设想88只都是兔子,那么就有4×88只脚,比244只脚多了
88×4-244=108(只).
每只鸡比兔子少(4-2)只脚,所以共有鸡
(88×4-244)÷(4-2)= 54(只).
说明我们设想的88只“兔子”中,有54只不是兔子.而是鸡.因此可以列出公式
鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数).
当然,我们也可以设想88只都是“鸡”,那么共有脚2×88=176(只),比244只脚少了
244-176=68(只).
每只鸡比每只兔子少(4-2)只脚,
68÷2=34(只).
说明设想中的“鸡”,有34只是兔子,也可以列出公式
兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数).
上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数.
假设全是鸡,或者全是兔,通常用这样的思路求解,有人称为“假设法”.
【四年级常考的奥数题:鸡兔同笼应用题(附答案)】相关文章:
奥数题质因数附答案03-25
九年级奥数行程应用题附答案03-27
奥数应用题及答案大全12-01
六年级奥数应用题附答案03-15
鸡兔同笼小学奥数题03-27
幼升小面试常考奥数题汇03-19
有关奥数的应用题03-28
奥数比例的应用题03-31
小学奥数题常考的知识点总结12-04
五年级奥数应用题练习三(附答案)03-04