高一数学常考知识点:不等式的问题

时间:2022-10-09 14:55:47 高中数学 我要投稿

高一数学常考知识点:不等式的问题

  在我们平凡无奇的学生时代,相信大家一定都接触过知识点吧!知识点就是掌握某个问题/知识的学习要点。掌握知识点有助于大家更好的学习。以下是小编整理的高一数学常考知识点:不等式的问题,欢迎大家借鉴与参考,希望对大家有所帮助。

高一数学常考知识点:不等式的问题

  高一数学常考知识点:不等式的问题 篇1

  不等式的性质

  ①对称性

  ②传递性

  ③加法单调性,即同向不等式可加性

  ④乘法单调性

  ⑤同向正值不等式可乘性

  ⑥正值不等式可乘方

  ⑦正值不等式可开方

  ⑧倒数法则

  注意事项

  1、符号

  不等式两边相加或相减同一个数或式子,不等号的方向不变。(移项要变号)

  不等式两边相乘或相除同一个正数,不等号的方向不变。(相当系数化1,这是得正数才能使用)

  不等式两边乘或除以同一个负数,不等号的方向改变。(除或乘1个负数的时候要变号)

  2、解集

  确定解集:

  ①比两个值都大,就比大的还大(同大取大)

  ②比两个值都小,就比小的还小(同小取小)

  ③比大的大,比小的小,无解(大大小小取不了)

  ④比小的大,比大的小,有解在中间(小大大小取中间)

  三个或三个以上不等式组成的不等式组,可以类推。

  3、数轴法

  可以在数轴上确定解集:

  把每个不等式的解集在数轴上表示出来,数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集。有几个就要几个。

  证明方法

  1、比较法

  作差比较法:根据a-b>0a>b,欲证a>b,只需证a-b>0

  作商比较法:根据a/b=1,

  当b>0时,得a>b,

  当b>0时,欲证a>b,只需证a/b>1,

  当b<0时,得a

  2、综合法

  由因导果. 证明不等式时,从已知的不等式及题设条件出发,运用不等式性质及适当变形推导出要证明的不等式. 合法又叫顺推证法或因导果法。

  3、分析法

  执果索因. 证明不等式时,从待证命题出发,寻找使其成立的充分条件. 由于”分析法“证题书写不是太方便,所以有时我们可以利用分析法寻找证题的途径,然后用”综合法“进行表述。

  4、放缩法

  将不等式一侧适当的放大或缩小以达到证题目的,已知A

  5、数学归纳法

  证明与自然数n有关的不等式时,可用数学归纳法证之。

  用数学归纳法证明不等式,要注意两步一结论。

  在证明第二步时,一般多用到比较法、放缩法和分析法。

  6、反证法

  证明不等式时,首先假设要证明的命题的反面成立,把它作为条件和其他条件结合在一起,利用已知定义、定理、公理等基本原理逐步推证出一个与命题的条件或已证明的定理或公认的简单事实相矛盾的结论,以此说明原假设的结论不成立,从而肯定原命题的结论成立的方法称为反证法。

  7、换元法

  换元的目的就是减少不等式中变量的个数,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。

  8、构造法

  通过构造函数、图形、方程、数列、向量等来证明不等式。

  高一数学常考知识点:不等式的问题 篇2

  1.定义:

  用符号〉,=,〈号连接的式子叫不等式。

  2.性质:

  ①不等式的两边都加上或减去同一个整式,不等号方向不变。

  ②不等式的两边都乘以或者除以一个正数,不等号方向不变。

  ③不等式的两边都乘以或除以同一个负数,不等号方向相反。

  3.分类:

  ①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

  ②一元一次不等式组:

  a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

  b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

  4.考点:

  ①解一元一次不等式(组)

  ②根据具体问题中的数量关系列不等式(组)并解决简单实际问题

  ③用数轴表示一元一次不等式(组)的解集

  高一数学常考知识点:不等式的'问题 篇3

  1.不等式:用符号"<",">","≤","≥"表示大小关系的式子叫做不等式。

  2.不等式分类:不等式分为严格不等式与非严格不等式。

  一般地,用纯粹的大于号、小于号">","<"连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)"≥","≤"连接的不等式称为非严格不等式,或称广义不等式。

  3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。

  4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

  5.不等式解集的表示方法:

  (1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3

  (2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。

  6.解不等式可遵循的一些同解原理

  (1)不等式F(x)< G(x)与不等式 G(x)>F(x)同解。

  (2)如果不等式F(x)< G(x)的定义域被解析式H(x)的定义域所包含,那么不等式 F(x)< G(x)与不等式H(x)+F(x)

  (3)如果不等式F(x)< G(x)的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)< G(x)与不等式H(x)F(x)0,那么不等式F(x)< G(x)与不等式H(x)F(x)>H(x)G(x)同解。

  7.不等式的性质:

  (1)如果x>y,那么yy;(对称性)

  (2)如果x>y,y>z;那么x>z;(传递性)

  (3)如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法则)

  (4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz

  (5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z

  (6)如果x>y,m>n,那么x+m>y+n(充分不必要条件)

  (7)如果x>y>0,m>n>0,那么xm>yn

  (8)如果x>y>0,那么x的n次幂>y的n次幂(n为正数)

  8.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

  9.解一元一次不等式的一般顺序:

  (1)去分母 (运用不等式性质2、3)

  (2)去括号

  (3)移项 (运用不等式性质1)

  (4)合并同类项

  (5)将未知数的系数化为1 (运用不等式性质2、3)

  (6)有些时候需要在数轴上表示不等式的解集

  10. 一元一次不等式与一次函数的综合运用:

  一般先求出函数表达式,再化简不等式求解。

  11.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成

  了一个一元一次不等式组。

  12.解一元一次不等式组的步骤:

  (1) 求出每个不等式的解集;

  (2) 求出每个不等式的解集的公共部分;(一般利用数轴)

  (3) 用代数符号语言来表示公共部分。(也可以说成是下结论)

【高一数学常考知识点:不等式的问题】相关文章:

初中数学常考的知识点:不等式与不等式组01-19

初中数学常考知识点:不等式的性质01-27

中考数学常考的知识点:不等式组01-21

初中数学常考的知识点:开方的问题01-24

高一数学的常考的知识点整理01-15

高一数学的常考知识点归纳01-15

小学数学常考的问题:数学符号01-19

高二数学常考知识点:圆的方程问题01-26

2017高一数学函数常考的知识点02-05