![](https://js.9136.com/img/panrw/shuxue.png)
- 相关推荐
初二数学常考的知识点:一元二次方程的性质
在日常的学习中,相信大家一定都接触过知识点吧!知识点就是掌握某个问题/知识的学习要点。哪些知识点能够真正帮助到我们呢?下面是小编精心整理的初二数学常考的知识点:一元二次方程的性质,仅供参考,希望能够帮助到大家。
(1)配方法的步骤:
先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式
(2)分解因式法的步骤:
把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式
(3)公式法
就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c
(4)一元二次方程的二次函数的关系
大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。
那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了
一元二次方程的应用题
一、增长率问题
例1 恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率。
解 设这两个月的平均增长率是x。,则根据题意,得200(1-20%)(1+x)2=193.6,
即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去)。
答 这两个月的平均增长率是10%。
说明 这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中m<n。对于负的增长率问题,若经过两次相等下降后,则有公式m(1-x)2=n即可求解,其中m>n。
二、商品定价
例2 益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?
解 根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0,
解这个方程,得a1=25,a2=31。
因为21×(1+20%)=25.2,所以a2=31不合题意,舍去。
所以350-10a=350-10×25=100(件)。
答 需要进货100件,每件商品应定价25元。
说明 商品的定价问题是商品交易中的重要问题,也是各种考试的热点。
三、储蓄问题
例3 王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率。(假设不计利息税)
解 设第一次存款时的年利率为x。
则根据题意,得[1000(1+x)-500](1+0.9x)=530。整理,得90x2+145x-3=0。
解这个方程,得x1≈0.0204=2.04%,x2≈-1.63。由于存款利率不能为负数,所以将x2≈-1.63舍去。
答 第一次存款的年利率约是2.04%。
说明 这里是按教育储蓄求解的,应注意不计利息税。
四、趣味问题
例4 一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?
解 设渠道的深度为xm,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m。
则根据题意,得 (x+0.1+x+1。4+0.1)·x=1.8,整理,得x2+0.8x-1.8=0。
解这个方程,得x1=-1.8(舍去),x2=1。
所以x+1。4+0.1=1+1.4+0.1=2.5。
答 渠道的上口宽2.5m,渠深1m。
说明 求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解。
五、古诗问题
例5 读诗词解题:(通过列方程式,算出周瑜去世时的年龄)。
大江东去浪淘尽,千古风流数人物;
而立之年督东吴,早逝英年两位数;
十位恰小个位三,个位平方与寿符;
哪位学子算得快,多少年华属周瑜?
解 设周瑜逝世时的年龄的个位数字为x,则十位数字为x-3。
则根据题意,得x2=10(x-3)+x,即x2-11x+30=0,解这个方程,得x=5或x=6。
当x=5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;
当x=6时,周瑜年龄为36岁,完全符合题意。
答 周瑜去世的年龄为36岁。
说明 本题虽然是一道古诗问题,但它涉及到数字和年龄问题,通过求解同学们应从中认真口味。
六、象棋比赛
例6 象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分。如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979,1980,1984,1985。经核实,有一位同学统计无误。试计算这次比赛共有多少个选手参加。
解 设共有n个选手参加比赛,每个选手都要与(n-1)个选手比赛一局,共计n(n-1)局,但两个选手的对局从每个选手的角度各自统计了一次,因此实际比赛总局数应为 n(n-1)局。由于每局共计2分,所以全部选手得分总共为n(n-1)分。显然(n-1)与n为相邻的自然数,容易验证,相邻两自然数乘积的末位数字只能是0,2,6,故总分不可能是1979,1984,1985,因此总分只能是1980,于是由n(n-1)=1980,得n2-n-1980=0,解得n1=45,n2=-44(舍去)。
答 参加比赛的选手共有45人。
说明 类似于本题中的象棋比赛的其它体育比赛或互赠贺年片等问题,都可以仿照些方法求解。
七、情景对话
例7 春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了对话中收费标准。
某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元。请问该单位这次共有多少员工去天水湾风景区旅游?
解 设该单位这次共有x名员工去天水湾风景区旅游。因为1000×25=25000<27000,所以员工人数一定超过25人。
则根据题意,得[1000-20(x-25)]x=27000。
整理,得x2-75x+1350=0,解这个方程,得x1=45,x2=30。
当x=45时,1000-20(x-25)=600<700,故舍去x1;
当x2=30时,1000-20(x-25)=900>700,符合题意。
答:该单位这次共有30名员工去天水湾风景区旅游。
说明 求解本题要时刻注意对话框中的数量关系,求得的解还要注意分类讨论,从中找出符合题意的结论。
【初二数学常考的知识点:一元二次方程的性质】相关文章:
初中数学常考的知识点:圆的的性质10-04
初中数学常考知识点:不等式的性质03-06
初中数学常考的知识点:角的定义和性质10-04
初中数学常考的知识点:二次函数概念和性质10-03
初二常考的知识点整理集锦09-30
高考数学集合常考知识点10-03
初中数学常考的知识点:平移10-04
2017高考数学常考知识点10-12
中考常考的数学知识点大全06-09
高考数学常考知识点圆的方程10-04