高三上学期数学期末考复习方法

时间:2021-02-01 18:52:01 学习方法 我要投稿

高三上学期数学期末考复习方法

  导语:讲到学习方法,我想用六个字来概括:"严格、严肃、严密。"这种科学的学习方法,除了向别人学习之外,更重要的是靠自己有意识的刻苦锻炼。下面是小编为是大家整理的,数学复习方法,希望对大家有所帮,欢迎阅读,仅供参考,更多相关的知识,请关该CNFLA学习网。

高三上学期数学期末考复习方法

  什么是基本的、必须要掌握的呢?有一个比较简单的方法来确认,就是看教材的目录。比如从不等式这一章教材目录上看,不等式的性质是基础;不等式的解法是重点(一元二次不等式的解法则是重中之重);对基本不等式则需思考:何为“基本”?在数学中如何体现出来;而不等式的证明仅是供学有余力的同学选用,这样在复习时方向就明确了,有利于合理分配时间与精力。我们还可以将上述看目录的方法延伸到整个教材,来看章节之间的联系,体会数学知识的内在联系。

  学会梳理、形成能力

  仍以不等式为例。

  1.追根溯源,梳理知识我们可以从溯源开始,即知识是如何发现、发生、发展与其他知识之间的关系如何。比较准则是不等式知识的源头,很多问题最后都会归于比较准则。如下例:

  例1:比较 |a+b|/1+|a+b|与|a|/1+|a|+ |b|/1+|b|的大小

  由比较准则可知:a>b,c>0→ac>bc(不等式性质3),在上述基础上可知:若a>b>0,m>0→am>bm→ab+am>ab+bm→b+m/a+m>b/a(两边同时乘1/a(a+m))因为:|a+b|≤|a|+|b|→|a+b|/1+|a+b| ≤|a|+|b|/1+|a|+|b|=|a|/1+|a|+|b| + |b|/1+|a|+|b|≤|a|/1+|a| + |b|/1+|b|

  因此|a+b|/1+|a+b|≤|a|/1+|a| + |b|/1+|b|

  从上述过程可以发现,复杂、未知的数学问题总是可以通过不断的转化,回归到基本的问题。学习数学很大程度上就是要培养这种不断转化的能力,如果能将一些常用的结论或常见类型问题模型化,则将提高转化的能力,缩短转化的思维链。而每次解决一个问题时适时地整理问题的来龙去脉,理清问题解决的逻辑过程会有助于加速转化能力的形成。同时要注意不要局限于题目本身,还要注意它与其他知识的.联系。如在性质3的基础上还有,若a.>b>0→0<1/a<1/b(倒数性质),在此基础上可以进一步研究反比例函数的单调性,分式型函数的单调性问题等等。

  2.多角度审视,追根溯源是纵向的梳理知识发展的逻辑过程,多角度审视则是横向

  联系努力联想,使知识间互相联系、互相支持,对加深知识的理解很有好处。如:

  例2:已知:a,b∈R+,ab=a+b+3,求ab的取值范围。可以从四个视角解决问题。视角一:从基本不等式入手;视角二:构造定值运用基本不等式;视角三:构造方程;视角四:转化为函数问题。不难发现,求变量范围问题基本的途径是通过不等式(基本不等式或解关于此变量的不等式)或运用函数的单调性。从而我们找到了解决范围问题通性、通法。

  3.关注数学思想,数学文化的核心内涵是数学思想,数学方法。数学思想无处不在,如:

  例3:。集合A={x|1≤2x2-3ax+a2-a≤2}的子集恰有2个,求实数a的取值范围。

  解:由二次函数图像可知y=2x2-3ax+a2-a恰与直线y=2有一个交点,即与直线相切。

  即△=9a2-8(a2-a-2)=a2+8a+16≤0→a=4

  将一个解不等式组的问题转化为函数图像与直线交点的问题,即向函数问题转化,根据图像又可以转化为方程问题。

【高三上学期数学期末考复习方法】相关文章:

大一数学期末考复习方法09-06

大一新生必备的数学期末考复习方法01-03

初中数学期末复习方法介绍11-07

高中数学期末复习方法11-02

高中数学期末复习方法指导11-02

考研数学复习方法07-27

高考数学复习方法12-31

初中数学复习方法12-28

小升初数学复习方法12-24

高三上学期评语10-19