苏教版小学六年级奥数试卷「带答案」
无论在学习或是工作中,只要有考核要求,就会有试卷,做试卷的意义在于,可以检验学习效果,找出自己的差距,提高增强自信心。还在为找参考试卷而苦恼吗?以下是小编整理的苏教版小学六年级奥数试卷「带答案」,供大家参考借鉴,希望可以帮助到有需要的朋友。
小学六年级奥数试卷「带答案」 篇1
一、两个不同的自然数倒数之和为a,则a 是 406 .2005
二、东风小学有2400名学生,每名学生每天上5节课,每位教室每天教4节课,每节课是一位教室给30名学生讲授,那么该小学共有教师__100___位。
三、王跃老师带着一些钱去买签字笔,到商店后发现这种笔降价了25%,结果他带的钱恰好可以比原来多买25支。那么降价前这些钱可以买签字笔___75____支。
四、用4.02乘以一个两位整数,得到的乘积是一个整数。这个乘积的10倍是____2010__。
五、小明有一包弹球,其中25%是绿色的,10%是黄色的,余下的20%是蓝色的.。如果蓝色的弹球是40个,那么这包弹球的个数是____200__。
六、某支球队现在的胜率为45%,接下来的8场比赛中若有6场获胜,则胜率将提高到50%。那么现在这支球队共取得了__18____场比赛的胜利。
七、有奖销售,凡买商品价值满200元者,发奖券一张。发完2000张奖券为止。设一等奖5名,各奖1000元;二等奖50名,各奖100元;三等奖100名,各奖50元。根据这些信息,请你回答下列问题:
(1)中奖率为( 7.75 )%;(2)这次有奖销售活动的奖金总额为( 15000 )元;
(3)如果奖券全部发出,那么卖出的商品所得销售总额至少( 400000 )元,奖金额占销售额的( 3.75 )%。
八、甲、乙两车同时从A、B两地相对开出,两车第一次在离A地70千米处相遇,相遇后继续前进,到达终点后立即返回,两车在距离B地50千米处第二次相遇, A、B两地相距( )千米。
九、股市交易中,无论买进或卖出均需要交纳交易资金的千分之三作为手续费,某股民以10.65元买进股票300股。过了一段时间,又以13.68元卖出去。该股民买卖这只股票赚了( 887.10 )元钱。
十、在△ABC中,BD=DE=EC,CF:AC=1:3。若△ADH的面积比△HEF的面积多24平方厘米,则△ABC的面积是___108____平方厘米。
十一、一个正整数,它的2倍的约数恰好比它自己的约数多2个,它的3倍的约数恰好比它自己的约数多3个,那么这个正整数是___12__。
十二、某岛国的一家银行每天9:00-17:00营业。正常情况下,每天9:00准备现金50万元,假设每小时的提款量都一样,每小时的存款量也都一样,到17:00下班时有现金60万元。如果每小时提款量是正常情况的4倍,而存款量不变的话,14:00银行就没现金了。如果每小时提款量是正常情况的10倍,而存款量减少到正常情况一半的话,要使17:00下班时银行还有现金50万元,那么9:00开始营业时需要准备现金_330___万元。?
小学六年级奥数试卷「带答案」 篇2
一、填空。
1、 五百零三万七千写作( ),7295300省略“万”后面的尾数约是( )万。
2、 1小时15分=( )小时 5.05公顷=( )平方米
3、 在1.66,1.6,1.7%和3/4中,最大的数是( ),最小的数是( )。
4、 在比例尺1:30000000的地图上,量得A地到B地的距离是3.5厘米,则A地到B地的实际距离是( )。
5、 甲乙两数的和是28,甲与乙的比是3:4,乙数是( ),甲乙两数的差是( )。
6、 一个两位小数,若去掉它的小数点,得到的新数比原数多47.52。这个两位小数是( )。
7、 A、B两个数是互质数,它们的最大公因数是( ),最小公倍数是( )。
8、 小红把2000元存入银行,存期一年,年利率为2.68%,利息税是5%,那么到期时可得利息( )元。
9、 在边长为a厘米的正方形上剪下一个最大的圆,这个圆与正方形的周长比是( )。
10、 一种铁丝1/2米重1/3千克,这种铁丝1米重( )千克,1千克长( )米。
11、 一个圆柱与一个圆锥体积相等,底面积也相等。已知圆柱的高是12厘米,圆锥的高是( )。
12、 已知一个比例中两个外项的积是最小的合数,一个内项是5/6,另一个内项是( )。
13、 一辆汽车从A城到B城,去时每小时行30千米,返回时每小时行25千米。去时和返回时的速度比是( ),在相同的时间里,行的路程比是( ),往返AB两城所需要的时间比是( )。
二、判断。
1、小数都比整数小。( )
2、把一根长为1米的绳子分成5段,每段长1/5米。( )
3、甲数的1/4等于乙数的1/6,则甲乙两数之比为2:3。( )
4、任何一个质数加上1,必定是合数。( )
5、半径为2厘米的加,圆的周长和面积相等。( )
三、选择。
1、2009年第一季度与第二季度的天数相比是( )
A、第一季度多一天 B、天数相等 C、第二季度多1天
2、一个三角形最小的锐角是50度,这个三角形一定是( )三角形。
A、钝角 B、直角 C、锐角
3、一件商品先涨价5%,后又降价5%,则( )
A、现价比原价低 B、现价比原价高 C、现价和原价一样
4、把12.5%后的%去掉,这个数( )
A、扩大到原来的100倍 B、缩小原来的1/100 C、大小不变
5、孙爷爷今年a岁,张伯伯今年(a-20)岁,过X年后,他们相差( )岁。
A、20 B、X+20 C、X-20
6、在一条线段中间另有6个点,则这8个点可以构成( )条线段。
A、21 B、28 C、36
四、计算。
1、直接写出得数。
4、求阴影部分的'面积(单位:厘米)。
五、 综合运用。
1、甲乙两个商场出售洗衣机,一月份甲商场共售出980台,比乙商场多售出1/6,甲商场比乙商场多售出多少台?
2、农机厂计划生产800台,平均每天生产44台,生产了10天,余下的任务要求8天完成,平均每天要生产多少台?
3、一间教室要用方砖铺地。用边长是3分米的正方形方砖,需要960块,如果改用边长为2分米的正方形方砖,需要多少块?(用比例解)
4、一个长为12厘米的长方形的面积比边长是12厘米的正方形面积少36平方厘米。这个长方形的宽是多少厘米?
5、六年级三个班植树,任务分配是:甲班要植三个班植树总棵树的40%,乙、丙两班植树的棵树的比是4:3,当甲班植树200棵时,正好完成三个班植树总棵树的2/7。丙班植树多少棵?
6、请根据下面的统计图回答下列问题。
⑴
⑵
⑶
⑷
⑸
( )月份收入和支出相差最小。 9月份收入和支出相差( )万元。 全年实际收入( )万元。 平均每月支出( )万元。 你还获得了哪些信息?
参考答案
一、填空(每一空1分,共20分)。
二、判断(每小题1分,共5分)。
1、× 2、× 3、√ 4、× 5、×
三、选择(每小题2分,共12分)。
1、C 2、C 3、A 4、A 5、A 6、C
四、计算(9+8+12+3+2)
1、直接写出得数(每小题1分,共9分)。
2、求X的值(每小题4分,每一步1分,共8分)。
3、能简算的要简算(每小题3分,共12分)。
4、求阴影部分的面积(3分)
6×6÷2
=36÷2
=18(平方厘米)
五、综合运用(5+5+5+5+5+6,共31分)
1、解:设乙商场售出X台
6、(1)(4)
(2)(30)
(3)(740)
(4)(30)
(5)略,可多种方法解答。
小学六年级奥数试卷「带答案」 篇3
一、用心选一选
1.关于0,下列几种说法不正确的是( )
A.0既不是正数,也不是负数
B.0的相反数是0
C.0的绝对值是0
D.0是最小的数
2.下列各数中,在﹣2和0之间的数是( )
A.﹣1
B.1
C.﹣3
D.3
3.2008年元月某一天的天气预报中,北京的最低温度是﹣12℃,哈尔滨的最低温度是﹣26℃,这一天北京的最低气温比哈尔滨的最低气温高( )
A.14℃
B.﹣14℃
C.38℃
D.﹣38℃
4.下列计算结果为1的是( )
A.(+1)+(﹣2)
B.(﹣1)﹣(﹣2)
C.(+1)(﹣1)
D.(﹣2)(+2)
5.计算﹣1+,其结果是( )
A.
B.﹣
C.﹣1
D.1
6.下列单项式中,与﹣3a2b为同类项的是( )
A.3a2b
B. b2a
C.2ab3
D.3a2b2
7.下列计算正确的是( )
A.2a+2b=4ab
B.3x2﹣x2=2
C.﹣2a2b2﹣3a2b2=﹣5a2b2
D.a+b=a2
10.2008年5月5日,奥运火炬手携带着象征和平、友谊、进步的奥运圣火火种,离开海拔5200米的珠峰大本营,向山顶攀登.他们在海拔每上升100米,气温就下降0.6℃的低温和缺氧的情况下,于5月8日9时17分,成功登上海拔8844.43米的地球最高点.而此时珠峰大本营的温度为﹣4℃,峰顶的温度为(结果保留整数)( )
A.﹣26℃
B.﹣22℃
C.﹣18℃
D.22℃
二、填空题(共8小题,每小题3分,满分24分)
11.商店运来一批苹果,共8箱,每箱n个,则共有__________个苹果.
12.用科学记数法表示下面的数125000000=__________.
13.的倒数是__________.
14.单项式﹣x3y2的系数是__________,次数是__________.
15.多项式3x3﹣2x3y﹣4y2+x﹣y+7是__________次__________项式.
16.化简﹣[﹣(﹣2)]=__________.
17.计算:﹣a﹣a﹣2a=__________.
18.一个三位数,百位数字是x,十位数字是y,个位是3,则这个三位数是__________.
三.努力做一做(每小题6分,共24分)
19.计算:10﹣24﹣28+18+24.
20.计算:(﹣3)(﹣)(﹣)
21.计算:(﹣1)2008﹣(﹣14+2)[2﹣(﹣3)2].
22.先化简,再求值:﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2.
四、解答题(共5小题,满分42分)
23.把下列各数填入表示它所在的数集的大括号:
﹣2.4,3,21.08,0,﹣100,﹣(﹣2.28),﹣,﹣|﹣4|
正有理数集合:{ }
负有理数集合:{ }
整数集合:{ }
负分数集合:{ }.
24.某校团委组织160名学生(其中女生b人)去树林植树,每个男生植树x棵,每个女生植树y棵,你能用代数式表示他们共植树的棵数吗
解因为女生为b人,所以男生为__________人.根据题意,男生共植树__________棵,女生共植树__________棵,所以他们共植树__________棵.
25.某出租车沿公路左右行驶,向左为正,向右为负,某天从A地出发后到收工回家所走的路线如下:(单位:千米)+8,﹣9,+4,+7,﹣2,﹣10,+18,﹣3,+7,+5
(1)问收工时离出发点A多少千米
(2)若该出租车每千米耗油0.3升,问从A地出发到收工共耗油多少升
26.四人做传数游戏,甲任报一个数给乙,乙把这个数加1传给丙,丙再把所得的数乘以2后传给丁,丁把所听到的数减1报出答案.
(1)如果甲所报的数为x,请把丁最后所报的答案用代数式表示出来,
(2)若甲报的数为9,则丁的答案是多少
(3)若丁报出的答案是15,则甲传给乙的数是多少
27.为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0 .45元收费,如果超过140度,超过部分按每度0.60元收费.
(1)若某住户四月份的用电量是a度,求这个用户四月份应交多少电费
(2)若该住户五月份的用电量是200度,则他五月份应交多少电费
七年级上册期中数学试卷答案
一、用心选一选(每题只有一个答案,3分10=30分)
1.关于0,下列几种说法不正确的是( )
A.0既不是正数,也不是负数
B.0的相反数是0
C.0的绝对值是0
D.0是最小的数
考点:绝对值;有理数;相反数.
分析:根据0的特殊性质逐项进行排除.
解答:解:0既不是正数,也不是负数,A正确;
0的相反数是0,0的绝对值是0,这都是规定,B、C正确;
没有最小的数,D错误.
故选D.
点评:本题主要是对有理数中0的考查,熟记0的特殊性对解题很有帮助.
2.下列各数中,在﹣2和0之间的数是( )
A.﹣1
B.1
C.﹣3
D.3
考点:有理数大小比较.
分析:根据有理数的大小比较法则比较即可.
解答:解:A、﹣2﹣10,故本选项正确;
B、10,1不在﹣2和0之间,故本选项错误;
C、﹣3﹣2,﹣3不在﹣2和0之间,故本选项错误;
D、30,3不在﹣2和0之间,故本选项错误;
故选A.
点评:本题考查了有理数的大小比较的应用,注意:正数都大于0,负数都小于0,正数都大于负数,两个负数比较大小,其绝对值大的反而小.
3. 2008年元月某一天的天气预报中,北京的最低温度是﹣12℃,哈尔滨的最低温度是﹣26℃,这一天北京的最低气温比哈尔滨的最低气温高( )
A.14℃
B.﹣14℃
C.38℃
D.﹣38℃
考点:有理数的减法.
分析:由北京气温减去哈尔滨的气温,即可得到结果.
解答:解:﹣12﹣(﹣26)=﹣12+26=14(℃),
故选:A.
点评:此题考查了有理数的减法,熟练掌握减法法则是解本题的'关键.
4.下列计算结果为1的是( )
A.(+1)+(﹣2)
B.(﹣1)﹣(﹣2)
C.(+1)(﹣1)
D.(﹣2)(+2)
考点:有理数的混合运算.
分析:根据有理数的加减乘除法的法则依次计算即可.
解答:解:A、(+1)+(+2)=3,故本选项错误;
B、(﹣1)﹣(﹣2)=(﹣1)+2=1,故本选项正确;
C、(+1)(﹣1)=﹣1,故本选项错误;
D、(﹣2)(+2)=﹣1,故本选项错误.
故选B.
点评:本题考查了有理数的混合运算,是基础知识要熟练掌握.
5.计算﹣1+,其结果是( )
A.
B.﹣
C.﹣1
D.1
考点:有理数的加法.
分析:根据有理数的加法法则,即可解答.
解答:解:﹣1+,
故选:B.
点评:本题考查了有理数的加法,解决本题的关键是熟记有理数的加法法则.
6.下列单项式中,与﹣3a2b为同类项的是( )
A.3a2b
B. b2a
C.2ab3
D.3a2b2
考点:同类项.
分析:根据所含字母相同,并且相同字母的指数也相同的项叫做同类项即可解答.
解答:解:在﹣3a2b中,a的指数是2,b的指数是1;
A、a的指数是2,b的指数是1,所以是同类项;
B、a的指数是1,b的指数是2,所以不是同类项;
C、a的指数是1,b的指数是3,所以不是同类项;
D、a的指数是2,b的指数是2,所以不是同类项;
故选A.
点评:本题考查了同类项的知识,属于基础题,注意判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.
7.下列计算正确的是( )
A.2a+2b=4ab
B.3x2﹣x2=2
C.﹣2a2b2﹣3a2b2=﹣5a2b2
D.a+b=a2
考点:合并同类项.
分析:根据合并同类项即把系数相加,字母与字母的指数不变.
解答:解:A、2a与2b不是同类项,不能合并,故错误;
B、3x2﹣x2=2x2,故错误;
C、正确;
D、a与b不是同类项,不能合并,故错误;
故选:C.
点评:本题考查了合并同类项,解决本题的关键是明确同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.
小学六年级奥数试卷「带答案」 篇4
和 差 问 题
已知两数的和与差,求这两个数
【口诀】:
和加上差,越加越大;
除以2,便是大的;
和减去差,越减越小;
除以2,便是小的。
例:已知两数和是10,差是2,求这两个数。
按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4
和 比 问 题
已知整体求部分
【口诀】:
家要众人合,分家有原则。
分母比数和,分子自己的。
和乘以比例,就是该得的。
例:甲乙丙三数和为27,甲;乙:丙=2:3:4,求甲乙丙三数。
分母比数和,即分母为:2+3+4=9;
分子自己的,则甲乙丙三数占和的比例分别为2/9,3/9,4/9。
和乘以比例,所以甲数为27X2/9=6,乙数为:27X3/9=9,丙数为:27X4/9=12
差 比 问 题
【口诀 】
我的比你多,倍数是因果。
分子实际差,分母倍数差。
商是一倍的,
乘以各自的倍数,
两数便可求得。
例:甲数比乙数大12,甲:乙=7:4,求两数。
先求一倍的量,12/(7-4)=4,
所以甲数为:4X7=28,乙数为:4X4=16
鸡兔同笼问题
【口诀】:
假设全是鸡,假设全是兔。
多了几只脚,少了几只足?
除以脚的差,便是鸡兔数。
例:鸡免同笼,有头36 ,有脚120,求鸡兔数。
求兔时,假设全是鸡,则免子数=(120-36X2)/(4-2)=24
求鸡时,假设全是兔,则鸡数 =(4X36-120)/(4-2)=12
浓 度 问 题
(1)加水稀释
【口诀】:
加水先求糖,糖完求糖水。
糖水减糖水,便是加糖量。
例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?
加水先求糖,原来含糖为:20X15%=3(千克)
糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)
糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)
(2)加糖浓化
【口诀】:
加糖先求水,水完求糖水。
糖水减糖水,求出便解题。
例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?
加糖先求水,原来含水为:20X(1-15%)=17(千克)
水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=21.25(千克)
糖水减糖水,后的糖水量减去原来的糖水量,21.25-20=1.25(千克)
路 程 问 题
(1)相遇问题
【口诀】:
相遇那一刻,路程全走过。
除以速度和,就把时间得。
例:甲乙两人从相距120千米的两地相向而行,甲的速度为40千米/小时,乙的速度为20千米/小时,多少时间相遇?
相遇那一刻,路程全走过。即甲乙走过的路程和恰好是两地的距离120千米。
除以速度和,就把时间得。即甲乙两人的总速度为两人的速度之和40+20=60(千米/小时),所以相遇的时间就为120/60=2(小时)
(2)追及问题
【口诀】:
慢鸟要先飞,快的随后追。
先走的路程,除以速度差,
时间就求对。
例:姐弟二人从家里去镇上,姐姐步行速度为3千米/小时,先走2小时后,弟弟骑自行车出发速度6千米/小时,几时追上?
先走的路程,为3X2=6(千米)
速度的差,为6-3=3(千米/小时)
所以追上的时间为:6/3=2(小时)
盈 亏 问 题
【口诀】:
全盈全亏,大的减去小的;
一盈一亏,盈亏加在一起。
除以分配的.差,
结果就是分配的东西或者是人。
例1:小朋友分桃子,每人10个少9个;每人8个多7个。求有多少小朋友多少桃子?
一盈一亏:则公式为:(9+7)/(10-8)=8(人),相应桃子为8X10-9=71(个)
例2:士兵背子弹。每人45发则多680发;每人50发则多200发,多少士兵多少子弹?
全盈问题:大的减去小的,则公式为:(680-200)/(50-45)=96(人)则子弹为96X50+200=5000(发)。
例3:学生发书。每人10本则差90本;每人8 本则差8本,多少学生多少书?
全亏问题。大的减去小的。则公式为:(90-8)/(10-8)=41(人),相应书为41X10-90=320(本)
牛 吃 草 问 题
【口诀】:
每牛每天的吃草量假设是份数1,
A头B天的吃草量算出是几?
M头N天的吃草量又是几?
大的减去小的,除以二者对应的天数的差值,
结果就是草的生长速率。
原有的草量依此反推。
公式就是A头B天的吃草量减去B天乘以草的生长速率。
将未知吃草量的牛分为两个部分:
一小部分先吃新草,个数就是草的比率;
有的草量除以剩余的牛数就将需要的天数求知。
例:整个牧场上草长得一样密,一样快。27头牛6天可以把草吃完;23头牛9天也可以把草吃完。问21头多少天把草吃完?
每牛每天的吃草量假设是1,则27头牛6天的吃草量是27X6=162,23头牛9天的吃草量是23X9=207;
大的减去小的,207-162=45;二者对应的天数的差值,是9-6=3(天)
结果就是草的生长速率。所以草的生长速率是45/3=15(牛/天);
原有的草量依此反推。
公式就是A头B天的吃草量减去B天乘以草的生长速率。
所以原有的草量=27X6-6X15=72(牛/天)。
将未知吃草量的牛分为两个部分:
一小部分先吃新草,个数就是草的比率;
这就是说将要求的21头牛分为两部分,一部分15头牛吃新生的草;
剩下的21-15=6去吃原有的草,
所以所求的天数为:原有的草量/分配剩下的牛=72/6=12(天)
年 龄 问 题
【口诀】:
岁差不会变,同时相加减,
岁数一改变,倍数也改变。
抓住这三点,一切都简单。
例1:小军今年8 岁,爸爸今年34岁,几年后,爸爸的年龄的小军的3倍?
岁差不会变,今年的岁数差点34-8=26,到几年后仍然不会变。
已知差及倍数,转化为差比问题。
26/(3-1)=13,几年后爸爸的年龄是13X3=39岁,小军的年龄是13X1=13岁,所以应该是5年后。
例2:姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数的和是40岁时,两人各应该是多少岁?
岁差不会变,今年的岁数差13-9=4几年后也不会改变。
几年后岁数和是40,岁数差是4,转化为和差问题。
则几年后,姐姐的岁数:(40+4)/2=22,弟弟的岁数:(40-4)/2=18,所以答案是9年后
【小学六年级奥数试卷「带答案」】相关文章:
小升初奥数试卷及答案01-22
2016最新的小学奥数题「带答案」01-15
小学奥数常考的30到题目带答案01-13
2017小升初奥数试卷及答案07-05
小学经典奥数题及答案01-29
小学奥数题及答案01-09
初中奥数经典的奥数题目及答案01-14
小学六年级奥数试卷01-15
小升初奥数经典奥数题及答案解析01-10