小学数和数的运算知识点

时间:2022-04-15 17:01:49 小学数学 我要投稿

小学数和数的运算知识点

  上学期间,相信大家一定都接触过知识点吧!知识点有时候特指教科书上或考试的知识。为了帮助大家更高效的学习,下面是小编整理的小学数和数的运算知识点,欢迎大家借鉴与参考,希望对大家有所帮助。

小学数和数的运算知识点

  小学数和数的运算知识点 篇1

  概念

  (一)整数

  1、整数的意义

  自然数和0都是整数。整数包括负整数、零、正整数。

  2、自然数

  我们在数物体的时候,用来表示物体个数的1,2,3,4,5叫做自然数。一个物体也没有,用0表示,0也是自然数,是最小的自然数。

  3、计数单位

  一(个)、十、百、千、万、十万、百万、千万、亿都是计数单位。每相邻两个计数单位之间的进率都是10,这样的计数法叫做十进制计数法。

  4、数位

  计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。个位、十位、百位、千位是个级;万位、十万位、百万位、千万位是万级;亿位、十亿位、百亿位、千亿位是亿级。

  5、数的整除

  整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。

  如果数a能被数b(b≠0)整除,即有a÷b=c或者a×b=c(a、b、c都必须是非0自然数)时,a就叫做b的倍数,b就叫做a的因数(或约数),倍数和因数是相互依存的,必须说成谁是谁是的因数(倍数)。

  如有35÷7=5,或者5×7=35,就说35是7和5的倍数,7和5是35的因数。

  一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。例如:10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10。

  一个数的倍数的个数是无限的,最小的倍数是它本身。3的倍数有:3、6、9、12其中最小的倍数是3,没有最大的倍数。

  个位上是0、2、4、6、8的数,都是2的倍数,例如:202、480、304都是2的倍数。个位上是0或5的数,都是5的倍数,例如:5、30、405都是5的倍数。

  一个数的各个数位上的数字之和是3的倍数,这个数就是3的倍数,例如:12、108、204都3的倍数。

  一个数的各个数位上的数字之和是9的倍数,这个数就是9的倍数.

  是3的倍数不一定是9的倍数,是9的倍数一定是3的倍数。

  一个数的末两位数是4或25的倍数,这个数就一定是4或25的倍数。例如:16、404、1256都是4的倍数,50、325、500、1675都是25的倍数。

  一个数的末三位数是8或125的倍数,这个数就是8或125的倍数。例如:1168、4600、5000、12344都是8的倍数,1125、13375、5000都是125的倍数。

  是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。0也是偶数,是最小的偶数。自然数不是偶数就是奇数。

  一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),质数只有2个因数,100以内的25个质数是2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

  一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,合数最少有3个因数,例如4、6、8、9、12都是合数。

  1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其因数的个数分类,可分为质数、合数和1。

  每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5叫做15的质因数。

  把一个合数用质因数相乘的形式表示出来,叫做分解质因数。如把28分解质因数是28=2×2×7

  几个数公有的因数,叫做这几个数的公因数(个数有限)。其中最大的一个,叫做这几个数的最大公因数,如12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。其中,1、2、3、6是12和18的公因数,6是它们的最大公因数。

  公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:(1)1和任何自然数互质;(2)相邻的两个自然数互质;(3)两个不同的质数互质;(4)当合数不是质数的倍数时,这个合数和这个质数互质。

  (5)两个合数的公因数只有1时,这两个合数互质。如果几个数中任意两个都互质,就说这几个数两两互质。

  如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。如果两个数是互质数,它们的最大公因数就是1。

  几个数公有的倍数,叫做这几个数的公倍数(个数无限),其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6、8、10、12、14、16、183的倍数有3、6、9、12、15、18其中6、12、18是2、3的`公倍数,6是它们的最小公倍数。如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

  如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

  (二)小数

  1、小数的意义

  把整数1平均分成10份、100份、1000份得到的十分之几、百分之几、千分之几可以用小数表示。

  一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几

  一个小数由整数部分、小数部分和小数点三部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。

  在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。

  2、小数的分类

  纯小数:整数部分是零的小数,叫做纯小数。例如:0.25、0.368都是纯小数。带小数:整数部分不是零的小数,叫做带小数。例如:3.25、5.26都是带小数。有限小数:小数部分的数位是有限的小数,叫做有限小数。例如:41.7、25.3、0.23都是有限小数。

  无限小数:小数部分的数位是无限的小数,叫做无限小数。例如:4.33

  3.1415926

  无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。如:π

  循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如:3.5550.033312.109109

  一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。例如:

  3.99的循环节是“9”,0.5454的循环节是“54”。

  纯循环小数:循环节从小数部分第一位(十分位)开始的,叫做纯循环小数。例如:

  3.1110.5656

  混循环小数:循环节不是从小数部分第一位(十分位)开始的,叫做混循环小数。

  3.12220.03333

  写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首位、末位数字上各点一个圆点。如果循环节只有一个数字,就只在它的上面点一个点。例如:3.777简写作0.5302302简写作。

  (三)分数

  1、分数的意义

  把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

  在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线上面的数叫做分子,表示有这样的多少份。

  把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

  2、分数的分类

  真分数:分子比分母小的分数叫做真分数。真分数小于1。

  假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。有些假分数可以写成整数与真分数合成的数,叫做带分数;有些假分数可以化成整数。

  3、约分和通分

  把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。只针对一个分数进行。

  分子分母(公因数只有1)是互质数的分数,叫做最简分数。

  把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。必须针对几个分数进行。

  (四)百分数

  表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。百分数通常用

  方法

  (一)数的读法和写法

  1.整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。

  2.整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

  3.小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。

  4.小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。

  5.分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。

  6.分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。

  7.百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。

  8.百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。

  (二)数的改写

  一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。

  1.准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。例如把1254300000改写成以万做单位的数是125430万;改写成以亿做单位的数12.543亿。

  2.近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。例如:1302490015省略亿后面的尾数是13亿。

  3.四舍五入法:要省略的尾数的最高位上的数是4或者比4小,就把尾数去掉;如果尾数

  的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略345900万后面的尾数约是35万。省略4725097420亿后面的尾数约是47亿。

  4.大小比较

  1.整数的比较:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。

  2.小数的比较:先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大

  3.分数的比较:分母相同的分数,分子大的就大,分子小的就;分子相同的数,分母小的反而大,分母大的反而小。分数的分母和分子都不相同的,先通分,再比较两个分数的大小。

  (三)数的互化

  1.小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的必须约分。

  2.分数化成小数:用分子除以分母。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般按要求用四舍五入法保留近似数。

  3.一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。

  4.小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。

  5.百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

  6.分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

  7.百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。

  (四)数的整除

  1.把一个合数分解质因数,通常用短除法。先用这个合数的质因数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。

  2.求几个数的最大公因数的方法是:先用这几个数的公因数(1除外)连续去除,一直除到所得的商只有公因数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公因数。

  3.求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公因数(1除外)去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。

  4.成为互质关系的两个数:1和任何自然数互质;相邻的两个自然数互质;当合数不是质数的倍数时,这个合数和这个质数互质;两个合数的公因数只有1时,这两个合数互质。

  (五)约分和通分

  约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。

  通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

  性质和规律

  (一)商不变的规律

  商不变的规律:在除法里,被除数和除数同时乘上或者同时除以相同的数(0除外),商不变。

  (二)小数的性质

  小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。

  (三)小数点位置的移动引起小数大小的变化(左缩右扩)

  1.小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍

  2.小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍

  3.小数点向左移或者向右移位数不够时,要用“0

  (四)分数的基本性质

  分数的基本性质:分数的分子和分母都乘或者除以相同的数(零除外),分数的大小不变。

  (五)分数与除法的关系

  1.被除数÷除数=被除数/除数

  2.因为零不能作除数,所以分数的分母不能为零。

  3.被除数相当于分子,除数相当于分母,商相当于分数值。

  运算的意义

  (一)整数四则运算

  1、整数加法:

  把两个数合并成一个数的运算叫做加法。

  在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。加数+加数=和一个加数=和-另一个加数

  2、整数减法:

  已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。

  在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。

  小学数和数的运算知识点 篇2

  (1)数的意义包含的知识点

  ①自然数、整数;②分数;③百分数;④小数;⑤循环小数。

  要求:理解并掌握这些概念,掌握自然数、分数、百分数、小数的计数单位,准确说出每个数包含的计数单位的个数,会进行数的分解与组成。认识这些数之间的关系。

  (2)数的读法和写法:

  ①整数读写法;②小数读写法;③分数读写法。

  复习的重点是:整数的多位数读写。其中中间、末尾有零的数的读写是难点。

  要求:

  ①正确读写整数、小数、分数。

  ②由于较大数目的读写比较抽象、枯燥,复习时要借助“分级线“加强指导,另外要创设现实的问题情境,增强趣味性。如:提供现实生活的报道数据,感受多位数与现实的联系,调动学习学习的热情,体验大数目的实际意义,增强学习和应用意识。

  (3)数的改写:

  ①把一个较大的多位数改写成以“万”或“亿”作单位的数。

  ②、求小数的近似数

  ③省略“万”或“亿”后面的尾数。

  ④假分数与整数、带分数的互相改写。

  ⑤分数、小数、百分数的互化(不包括循环小数化为分数)。

  复习的难点是:“改写”与“省略”之间的区别

  要求:

  ①复习时侧重对比训练。如:把20098000改写成以万为单位的数是(),省略万后面的尾数是()。在对比训练中体验它们的联系与区别。

  ②改写、互化时注意互化方法灵活性的训练

  (4)数的大小比较:

  ①整数大小比较;②小数大小比较;③分数大小比较;④百分大小比较;⑤整数、小数、百分数之间的比较。

  复习难点:分数大小的比较。

  要求:

  ①掌握比较方法,会比较数的大小;

  ②给学生一定的时间与空间,让他们自己去探索每一类数的比较方法之间的联系、区别,培养学生自主学习的能力。

【小学数和数的运算知识点】相关文章:

初中数学知识点之有理数的加法运算11-27

初中数学知识点归纳之有理数的加法运算11-09

小学奥数知识点12-05

小学参考的奥数知识点12-06

小学奥数知识点梳理11-28

奥数知识点:数的整除12-06

小学奥数常考的知识点12-05

小学四年级奥数:定义新运算12-11

高频小学奥数知识点整理11-30

小学奥数关于整数拆分的知识点11-22