高考数学函数选择题的做法

时间:2022-11-26 06:44:09 高中数学 我要投稿
  • 相关推荐

高考数学函数选择题的做法

  导语: 有不少同学多会有这样的感觉,对于数学选择题毫无思路,不知道从何下手,数学函数选择题应该怎么解,下面是小编为大家整理的,数学知识,更多相关信息请关CNFLA学习网!

高考数学函数选择题的做法

  函数选择题怎么做?

  【例1】若函数)(xfxaxa (0a且1a)有两个零点,则实数a的取值范围是.

  【答案】),(1

  【解析】函数)(xf=xaxa (0a且1a)有两个零点,方程0axax有两个不相等的实数根,即两个函数xay与axy的图像有两个不同的交点,当10a时,两个函数的图像有且仅有一个交点,不合题意;当1a时,两个函数的图像有两个交点,满足题意.

  【例2】设函数f(x)()xR满足f(x)=f(x),f(x)=f(2x),且当[0,1]x时,f(x)=x3.又函数g(x)=|xcos()x|,则函数h(x)=g(x)-f(x)在13[,]22上的零点个数为 ( )

  A、5 B、6 C、7 D、8

  【答案】B

  【解析】因为当[0,1]x时,f(x)=x3. 所以当[1,2]x时,(2)[0,1]x,3

  ()(2)(2)fxfxx,

  当1[0,]2x时,()cos()gxxx当13[,]22

  x时,()cos()gxxx,注意到函数f(x)、 g(x)都是偶函数,且f(0)= g(0), f(1)= g(1),13()()022

  gg,作出函数f(x)、 g(x)的大致图象,函数h(x)除了0、1这两个零点之外,分别在区间1113[,0][][][1]2222

  、0,、,1、,上各有一个零点,共有6个零点,故选B

  【例3】函数2()cosfxxx在区间[0,4]上的零点个数为 ( )

  A、4 B、5

  C、6 D、7

  【答案】C

  【解析】:f(x)=0,则x=0或cosx2=0,x2=k2

  ,kZ,又x[0,4],k=0,1,2,3,4,所以共有6个解.选C.

  【例4】函数 f(x)=2x+3x的零点所在的一个区间是 ( )

  A、(-2,-1) B、(-1,0) C、(0,1) D、(1,2)

  【答案】B

  【解析】∵f(-1)=2-1+3(-1)=-52

  0, f(0)=20

  +0=10, f(-1) f(0)0.

  f(x)=2x+3x的零点所在的一个区间为(-1,0).

【高考数学函数选择题的做法】相关文章:

高考数学选择题的解题秘诀!04-25

高考数学选择题规律大揭秘05-24

高考数学三角函数诱导公式(大全)01-02

考研数学选择题技巧09-22

高中常考的数学知识点:对数函数与幂函数11-10

高二数学正切函数的诱导公式教案10-30

初中数学三角函数公式09-28

高中数学幂函数的性质总结09-19

高中数学函数知识点04-26

高中数学函数知识点归纳07-25