高二数学难点高效突破
导语:很多同学为找不到突破数学的难点而焦虑,没有正确的学习方法,做再多的题也是枉费,突破难点,轻松拿下高分,下面就由小编为大家带来高二数学难点高效突破,大家一起去看看怎么做吧!
一、 定位整体
新课程标准对“常用逻辑用语”的定位为:“正确使用逻辑用语是现代社会公民应该具备的基本素质,无论是进行思考、交流,还是从事各项工作,都需要正确的运用逻辑用语表达自己的思想。在本模块中,同学们将在义务教育的基础上,学习常用逻辑用语,体会逻辑用语在表述和论证中的作用,利用这些逻辑用语准确地表达数学内容,更好地进行交流。” 因此,学习逻辑用语,不仅要了解数理逻辑的有关知识,还要体会逻辑用语在表述或论证中的作用,使以后的论证和表述更加准确、清晰和简洁。
二、 明确重点
“常用逻辑用语”分成三大节,分别为:命题及其关系,简单的逻辑联结词,全称量词与存在量词。
“命题及其关系”分两小节:一、“四种命题”,此节重点在于四种命题形式及其关系,互为逆否命题的等价性;二、“充分条件和必要条件”,此节重点在于充分条件、必要条件、充要条件的'准确理解以及正确判断。
“简单的逻辑联结词”重点在于“且”、 "或”、 "非”这三个逻辑联结词的理解和应用。
“全称量词与存在量词”重点在于理解全称量词与存在量词的意义,以及正确做出含有一个量词的命题的否定。
三、 突破难点
1. "四种命题”的难点在于分清命题的条件和结论以及判断命题的真假
例1 分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假。
(1) 全等三角形的面积相等;
(2) m>时,方程mx2-x+1=0无实根;
解析 (1) 条件为两个三角形全等,结论为它们的面积相等。因此,原命题即为“若两个三角形全等,则它们的面积相等”,逆命题为“若两个三角形面积相等,则它们全等”,否命题为“若两个三角形不全等,则它们的面积不相等”,逆否命题为“若两个三角形面积不相等,则它们不全等”。根据平面几何知识,易得原命题和逆否命题为真命题,逆命题和否命题为假命题。
(2) 原命题即为“若m>,则方程mx2-x+1=0无实根”,逆命题为“若方程mx2-x+1=0无实根,则m>”,否命题为“若m≤,则方程mx2-x+1=0有实根”,逆否命题为“若方程mx2-x+1=0有实根,则m≤”。根据判别式Δ=1-4m的正负可知,原命题、逆命题、否命题、逆否命题均为真命题。
突破 对于判断命题的真假,我们需要先弄清何为条件、何为结论,然后根据相应的知识进行判断,当原命题不容易直接判断时,可以先判断其逆否命题的真假性,从而得到原命题的真假性。
2. "充分条件和必要条件”的难点在于充要性的判断
例2 在下列命题中,判断p是q的什么条件。(在“充分不必要条件”、“必要不充分条件”、“充要条件”、“既不充分又不必要条件”中选出一种)
(1) p:|p|≥2,p∈R;q:方程x2+px+p+3=0有实根。
(2) p:圆x2+y2=r2与直线ax+by+c=0相切;q:c2=(a2+b2)r2,其中a2+b2≠0,r≠0.
(3) 设集合M={x|x>2},N={x|x<3},p:x∈M∩N;q:x∈M∪N.
解析 (1) 当|p|≥2时,例如p=3,此时方程x2+px+p+3=0无实根,因此“若p则q”为假命题;当方程x2+px+p+3=0有实根时,根据判别式有p≤-2或p≥6,此时|p|≥2成立,因此“若q则p”为真命题。故p是q的必要不充分条件。
(2) 若圆x2+y2=r2与直线ax+by+c=0相切,则圆心(0,0)到直线ax+by+c=0的距离等于r,即r=,化简可得c2=(a2+b2)r2,因此“若p则q”为真命题;反过来,由c2=(a2+b2)r2,可得r=,即圆心(0,0)到直线ax+by+c=0的距离等于r,由解析几何知识得圆与直线相切,因此“若q则p”为真命题。故p是q的充要条件。
(3) M∩N=(2,3),M∪N=R,若x∈(2,3),此时显然有x∈R,因此“若p则q”为真命题;反过来,若x∈R,例如x=5,此时x?埸(2,3),因此“若q则p”为假命题。故p是q的充分不必要条件。
突破 ①从逻辑的观点理解:判断充分性、必要性的前提是判断给定命题的真假性,若“若p则q”为真命题,则p是q的充分条件;若“若q则p”为真命题,则p是q的必要条件;若两者都是真命题,则p是q的充要条件;若两者都是假命题,则p是q的既不充分也不必要条件。②从集合的观点理解:建立命题p,q相应的集合。 p:A={x|p(x)成立},q:B={x|q(x)成立}。那么:若A?哿B,则p是q的充分条件;若B?哿A,则p是q的必要条件;若A=B,则p是q的充要条件。若A?芫B且B?芫A,则p是q的既不充分也不必要条件。
【高二数学难点高效突破】相关文章:
初中数学教学难点的突破技巧09-02
如何突破高中数学命题难点01-28
快速突破高中数学命题难点的方法01-21
初中数学课堂教学难点突破方法09-02
高二数学应该这样学最高效01-21
高二数学轻松高效的学习方法03-08
轻松高效的高二数学学习方法03-08
高二高效数学学习方法指导03-05
如何突破小学生作文教学的难点01-19