初中数学学习方法:看增幅

时间:2021-01-17 14:48:51 学习方法 我要投稿
  • 相关推荐

初中数学学习方法:看增幅

  导语:人们通过长期的实践,发现了许多运用数学思想的手段、门路或程序。下面就由小编为大家带来初中数学学习方法:看增幅,大家一起去看看怎么做吧!

初中数学学习方法:看增幅

  初中数学学习方法:看增幅

  (一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。然后再简化代数式a+(n-1)b。

  例:4、10、16、22、28……,求第n位数。

  分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2

  (二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。如增幅分别为3、5、7、9,说明增幅以同等幅度增加。此种数列第n位的数也有一种通用求法。

  基本思路是:1、求出数列的第n-1位到第n位的增幅;

  2、求出第1位到第第n位的总增幅;

  3、数列的第1位数加上总增幅即是第n位数。

  举例说明:2、5、10、17……,求第n位数。

  分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。那么,数列的.第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:

  [3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1

  所以,第n位数是:2+ n2-1= n2+1

  此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。

  (三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.

  (四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。